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SUMMARY

The whole computer hardware industry embraced the multi-core. The extreme optimisation of sequential
algorithms is then no longer sufficient to squeeze the real machine power, which can be only exploited via
thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to
be parallelised. This paper presents an in-depth study of the parallelisation of an implementation of the
C4.5 algorithm for multi-core architectures. We characterise elapsed time lower bounds for the forms of
parallelisations adopted, and achieve close to optimal performance. Our implementation is based on the
FastFlow parallel programming environment and it requires minimal changes to the original sequential code.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

After decades of enhancements of single core chips by increasing instruction-level parallelism,
hardware manufacturers realised that the effort required for further improvements is no longer worth
the benefits eventually achieved. Microprocessor vendors have shifted their attention to thread-level
parallelism by designing chips with multiple internal cores, which are used to equip the whole
range of platforms, from laptop to high-performance distributed platforms. The multiplication of
cores, however, does not always translate into greater performance. On one hand, sequential code
will get no performance benefits from them. On the other hand, the exploitation of multi-core as
distributed machines (e.g. via message-passing libraries) does not fully squeeze their potentiality,
and often, it requires the full redesign of algorithms. Developers, including data and knowledge
engineers, are then facing the challenge of achieving a trade-off between performance and human
productivity (cost and time to solution) in developing applications on multi-core. Parallel software
engineering have engaged this challenge mainly by way of design tools, in the form of high-level
sequential language extensions and coding patterns [1, 2].

In this paper, we present an approach for growing and pruning decision trees on multi-core
machines. To the best of our knowledge, this is the first work on the parallelisation of decision
trees for modern shared-cache multi-core platforms. Even though there is an abundant literature
for distributed systems, the direct application of such approaches to multi-cores suffers from the
technical and methodological problems highlighted earlier. We consider the C4.5 algorithm by
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2 M. ALDINUCCI, S. RUGGIERI AND M. TORQUATI

Quinlan [3], a cornerstone in data mining and machine learning (see e.g., [4]). C4.5 constructs a
decision tree top-down in the growing phase, then prunes branches by a bottom-up transversal in
the pruning phase. Tree growing starts from a set of cases with predictive attributes and a class
value, and at each node it follows a Divide&Conquer pattern by selecting an attribute for splitting
cases into subsets, which are assigned to child nodes, and then recursing on each of those subsets.
Tree pruning consists of a doubly-recursive bottom-up visit of the decision tree, pruning sub-trees
according to an error estimation function. More in detail, we start from the Yet another Decision Tree
builder (YaDT) implementation of C4.5 [5], which is a from-scratch and efficient C++ version of the
Quinlan’s algorithm. YaDT is a quite paradigmatic example of sequential complex code, adopting
extreme sequential optimisations, for which the effort in designing further improvements would
result in a minimal impact on the overall performances. Nevertheless, the potential for improvements
is vast, and it resides in the idle CPU cores on the user’s machine. Even when the execution time of a
single tree growing and pruning is reasonably low, there are applications that motivate performance
improvement. For instance, ensembling methods, such as windowing [3] and boosting [6], build a
(long) sequence of classification models, where each classifier possibly depends on the predictive
performances of the previous ones (hence, with no immediate parallelisation of the ensembling).
Another case where an almost real-time efficiency is expected is explorative data analysis, where
users can interactively navigate and re-build decision (sub-)trees [7].

Our approach for parallelising YaDT is based on the FastFlow programming framework [8],
a recent proposal for parallel programming over multi-core platforms that provides a variety
of facilities for writing efficient lock-free parallel patterns, including pipeline parallelism, task
parallelism and Divide&Conquer computations. Besides technical features, FastFlow offers a
methodological approach that will lead us to parallelise YaDT with minimal changes to the original
sequential code, yet achieving up to 10⇥ boost in performance on a single twelve-core CPU.
Nevertheless, because the pattern-based programming methodology of FastFlow is common to a
large portion of the mainstream frameworks for multi-core [2, 9], the approach proposed can be
verified with other frameworks.

In this paper, we provide an in-depth experimental analysis of the tree growing parallelisation of
C4.5, with 64-bit compilation of all software and diversified hardware architectures. The main novel
research contribution of this paper consists of characterising lower bounds on the elapsed time of
the forms of parallelisation adopted. We also show how the performances achieved by our specific
implementation are close to such bounds. Surprisingly enough, existing works on parallelisation of
decision tree induction algorithms have conducted no such bound analysis of their performances.
This is a major advancement over related approaches. The approach proposed has been replicated to
tackle the parallelisation of the tree pruning phase, a common post-processing step that alleviates for
the over fitting problem. The error-based decision tree pruning strategy of C4.5 is considerably faster
than tree growing on sequential algorithms, but it becomes the next bottleneck once the growing
phase has been parallelised and sped up. To the best of our knowledge, this is the first work to deal
with parallel pruning of decision trees.

Preliminary results on our parallelisation of the decision tree growing phase appeared in [10].
The experimental framework has been revised in this paper by moving to a 64-bit compilation of
all software (vs 32-bit) and to up-to-date hardware architectures. The other major contributions
of this paper, including the characterisation and experimentation of time lower bounds and the
parallelisation of the tree pruning phase, are completely original contributions.

This paper is organised as follows. In Section 2, the FastFlow programming environment is
introduced. We recall in Section 3 the C4.5 decision tree growing algorithm, including the main
optimisations that lead to YaDT. The parallelisation of YaDT is presented in detail in Section 4,
followed by an experimental evaluation in Section 5. Section 6 discusses how the approach extends
to the post-processing phase of decision tree pruning and compares memory occupation of the
sequential and parallel versions of YaDT. We present related works in Section 7, and summarise
the contributions of the paper in the conclusions.
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Figure 1. FastFlow layered architecture with pattern examples.

2. THE FASTFLOW PARALLEL PROGRAMMING ENVIRONMENT

FastFlow is a parallel programming framework aiming at simplifying the development of
applications for multi-core platforms, being these applications either brand new or ports of legacy
codes [8]. FastFlow fosters pattern-based programming and can support fine-grained parallel
computations. It directly provides programmers with a reduced set of modular patterns as vehicles
of common streaming paradigms. Because patterns are implemented as C++ templates, new user-
defined variants of patterns can be defined by way of standard object oriented techniques.

Basically, parallel patterns provide structured synchronisations among concurrent entities where
shared memory pointers are passed in a consumer-producer fashion. In particular, the FastFlow
run-time support takes care of all the synchronisations needed and related to the communication
among the different parallel entities resulting from the compilation of the high level FastFlow
pattern(s) used in an application. Those patterns model most of the typical stream based
parallelism exploitation forms, including: farm, farm-with-feedback (suitable for implementing
Divide&Conquer computations), pipeline, and their arbitrary nesting and composition. Data parallel
computations can be exploited by way of the map and reduce patterns, which also work on streams
and can be nested with stream patterns [11]. The possibility to efficiently handle both stream parallel
and data parallel computations using the same programming model represents an advantage of
FastFlow with respect to other frameworks that support either stream or data parallel computations.

The FastFlow patterns can be arbitrarily nested to model increasingly complex parallelism
exploitation patterns. FastFlow implementation guarantees an efficient execution of the skeletons
on currently available multi-core systems by building the skeletons themselves on top of a library of
lock-free producer/consumer queues [12]. As shown in Figure 1, FastFlow is conceptually designed
as a stack of layers that progressively abstract the shared memory parallelism at the level of
cores up to the definition of high-level programming patterns. The higher layer provides parallel
programming patterns, which are compiled onto streaming networks that are implemented using
only lock-free queues and mediator threads. As an example, a farm pattern is implemented as shown
in Figure 1, mid right schema. A mediator (E or Emitter) is used to dispatch tasks appearing onto
the input stream towards a pool of worker threads. These, in turn, deliver results to a mediator (C or
Collector) that delivers the results onto the output stream.

FastFlow can be categorised as a high-level parallel programming framework. This category
includes several mainstream frameworks such as Hadoop [13], Intel ArBB & TBB [2], and OpenMP
[1]. Hadoop targets distributed platforms and it implements the MapReduce pattern only. Intel ArBB
and OpenMP target shared-memory multi-core platforms but they provide mainly data parallel
patterns. Intel TBB provides programmers with data parallel patterns (i.e., TBB algorithms), a
limited support for stream parallelism (pipelining) but it does not support full control of parallelism

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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4 M. ALDINUCCI, S. RUGGIERI AND M. TORQUATI

void node:: split () {
2.2 computeFrequencies() ;

if (oneClass () || fewCases()) {
2.4 set as leaf () ;

return;
2.6 }

for ( int i=0;i<getNoAtts();++i)
2.8 gain[ i ] = gainCalculation ( i ) ;

int best = argmax(gain) ;
2.10 if ( attr [ best ]. isContinuous () )

findThreshold ( best ) ;
2.12 ns = attr [ best ]. nSplits () ;

for ( int i=0; i<ns; ++i)
2.14 childs .push back(

new node(selectCases ( best , i ) ) ) ;
2.16 }

Figure 2. Node splitting procedure.

in recursive algorithms as it can be done in FastFlow. For instance, the TBB Range structure,
which could be exploited to model recursive partitioning as in decision tree growing, supports
only binary splits into sub-Ranges, thus forcing a parallelisation approach of multi-way splits more
complex than needed. As shown in this paper, FastFlow enables the parallelisation of decision
tree building with few, localised changes in the sequential code. FastFlow is available as open
source software under LGPLv3 [14]. More details as well as performance comparisons against other
parallel programming frameworks such as Cilk, OpenMP, and Intel TBB can be found in [14, 15].

3. THE C4.5 SEQUENTIAL ALGORITHM FOR DECISION TREE GROWING

Classifiers are induced by supervised learning from a relation T called the training set. An attribute
C of the relation is the class, while the remaining ones A1, . . . , Am are the predictive attributes.
Tuples in T are called cases. Predictive attributes can be discrete or continuous and unknown or
unspecified values may appear in cases. The class is discrete and it does not admit unknown values.
A decision tree is a classification model in the form of a tree consisting of decision nodes and leaves.
A leaf specifies a class value. A decision node specifies a test over one of the predictive attributes,
called the attribute selected at the node. For each possible outcome of the test, a child node is present.
A test on a discrete attribute A has h outcomes A = d1, . . . , A = dh, where d1, . . . dh are the known
values in the domain of A. A test on a continuous attribute A has 2 outcomes, A  t and A > t,
where t is a threshold value determined at the node. The C4.5 decision tree induction algorithm [3]
is a constant reference in the development and analysis of novel classification models (see e.g., [4]).
The core algorithm constructs the decision tree top-down in the growing phase, then prune branches
by a bottom-up transversal in the pruning phase. In this section, we restrict to consider the growing
phase, whilst the pruning phase is discussed in Section 6.1. During tree growing, each node is
associated with a set of weighted cases, where weights are used to take into account unknown
attribute values. At the beginning, only the root is present, associated with the whole training set T
and all weights set to 1. At each node a Divide&Conquer algorithm selects an attribute for splitting.

Consider the method node::split in Figure 2. Let T be the set of cases associated at a node.
For every class value c, the weighted frequency of cases in T whose class is c is computed (§2.2 —
throughout the paper, we use the §M.n notation to reference line n from the pseudo-code in Figure
M). If all cases in T belong to the same class or the number of cases in T is less than a certain
user specified threshold then the node is set as a leaf (§2.3-6). Otherwise, the information gain of
each attribute at the node is calculated (§2.7-8). Because the information gain of a discrete attribute
selected in an ancestor node is necessarily 0, the number of attributes to be considered at a node
is variable (denoted by getNoAtts in §2.7). For a discrete attribute A, the information gain of

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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void tree :: build () {
3.2 queue<node *> q;

root = new node( allCases ) ;
3.4 q.push(root ) ;

while( !q.empty() ) {
3.6 node *n = q. front () ;

q.pop() ;
3.8 n�>split() ;

for ( int i=0; i<n�>nChilds(); ++i) {
3.10 node *child = n�>getChild(i);

child�>get cases();
3.12 q.push( child ) ;

}
3.14 n�>release cases() ;

}
3.16 }

Figure 3. Tree growing procedure.

splitting T into subsets T1, . . . , Th, one for each known value of A, is calculated. For a continuous
attribute A, cases in T with known value for A are first ordered ascending w.r.t. such an attribute,
say to values v1, . . . , vk. For each i 2 [1, k � 1], fixed the semi-sum value v = (vi + vi+1)/2, the
information gain gainv is computed by considering the splitting of T into cases T v

1 whose value for
the attribute A is lower than or equal than v, and cases T v

2 whose value is greater than v is considered.
The value v

0 for which gainv0 is maximum is called the local threshold and the information gain
for the attribute A is set to gainv0 . The attribute A with the highest information gain is selected
for the test at the node (§2.9). If A is continuous, the threshold of the split is computed (§2.10-11)
as the greatest value of A in the whole training set T that is below the local threshold. Finally, let
us consider the generation of the child nodes (§2.12-16). For each split of the selected attribute, a
new child node is added, whose cases are selected from T according to the split test. Cases with
unknown value of the selected attribute are passed to each child, but their weights are scaled.

The original Quinlan’s implementation of C4.5 was written in ANSI C. Several optimisations
were proposed in the last two decades, concerning both the data structures holding the training
set and the computation of the information gain of continuous attributes, which is the most
computationally expensive procedure [16, 17, 18]. YaDT [5] is a from scratch C++ implementation
of C4.5 (Release 8, the latest), implementing and enhancing the optimisations proposed in the cited
papers. Its object-oriented design allows for encapsulating the basic operations on nodes into a C++
class, with the advantage that the growing strategy of the decision tree can now be a parameter
(depth first, breadth first, or any other top-down growth). By default, YaDT adopts a breadth first
growth, whose pseudo-code is shown in Figure 3 as method tree::build. The call to the method
get cases (§3.11) builds an array of cases (case id’s, actually) and weights for a child node starting
from the same data structure at the parent node. The method release cases (§3.14) releases the
data structure at the parent node once all children are queued. Experimental results show that YaDT
reaches up to 10⇥ improvement over C4.5 with only 1/3 of its memory occupation [5, 18].

4. PARALLELISATION STRATEGIES OF DECISION TREE GROWING ALGORITHM

Two major approaches have been considered in the literature for parallelising decision tree growing.
Task parallelism consists of splitting the processing of different subtrees into independent tasks in
a Divide&Conquer fashion. Data parallelism consists in (logically or physically) distributing the
training set among the processors by partitioning attributes or cases. In the related works (Section 7),
we will provide details of the various approaches. We propose here a parallelisation of YaDT, called
YaDT-FastFlow (YaDT-FF), obtained by stream parallelism, which allows us for mixing task and
data parallelism. Each decision node is considered a task that generates a set of sub-tasks; these
tasks are arranged in a stream that flows across a farm-with-feedback skeleton which implements

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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6 M. ALDINUCCI, S. RUGGIERI AND M. TORQUATI

void tree :: build ff () {
4.2 root = new node( allCases ) ;

E=new ff emitter ( root ,PAR DEGREE);
4.4 std :: vector<ff worker*> w;

for ( int i=0;i<PAR DEGREE;++i)
4.6 w.push back( new ff worker () ) ;

ff farm<ws scheduler>
4.8 farm(PAR DEGREE*QSIZE);

farm.add workers(w);
4.10 farm.add emitter(E);

farm.wrap around();
4.12 farm.run and wait end();

}

Figure 4. YaDT-FF tree growing setup.

void * ff emitter :: svc(void * task ) {
5.2 if ( task == NULL) {

task = new ff task ( root ) ;
5.4 int r = root�>getNoCases();

setWeight( task , r ) ;
5.6 return task ;

}
5.8 node *n = task�>getNode();

int nChilds = n�>nChilds();
5.10 for ( int i=0; i<nChilds; i++) {

node *child = n�>getChild(i);
5.12 ctask = new ff task ( child ) ;

child�>get cases();
5.14 int r = child�>getNoCases();

setWeight( ctask , r ) ;
5.16 ff send out ( ctask ) ;

}
5.18 n�>release cases() ;

if (! nChilds && noMoreTasks())
5.20 return NULL;

return FF GO ON;
5.22 }

5.24 void * ff worker :: svc(void * task ) {
node *n = task�>getNode();

5.26 n�>split() ;
return task ;

5.28 }

Figure 5. Emitter and worker definition for the NP strategy.

the Divide&Conquer paradigm. The FastFlow Divide&Conquer schema is shown in the top-right
corner of Figure 1. Tasks in the stream are scheduled by an emitter thread towards a number of
worker threads, which process them in parallel and independently, and return the resulting tasks back
to the emitter. For the parallelisation of YaDT, we adopt a two-step approach: first, we accelerate the
tree::buildmethod (see Figure 3) by exploiting task parallelism among node processing, and we
call this strategy Nodes Parallelisation (NP); then, we add the parallelisation of the node::split
method (see Figure 2) by exploiting data parallelism among attributes processing, and we call such
a strategy Nodes & Attributes Parallelisation (NAP). The two strategies share the same basic setup
method, tree::build ff shown in Figure 4, which creates an emitter object (§4.2-3) and an array
of worker objects (§4.4-6). The size of the array, PAR DEGREE, is the parallelism degree of the farm
skeleton. The root node of the decision tree is passed to the constructor of the emitter object. The
parallelisation is managed by the FastFlow layer through a ff farm object, which creates feedback
channels between the emitter and the workers (§4.7-11). Parameters of ff farm include: the size
QSIZE of each worker input queue, and the scheduling policy (ws scheduler), which is based
on tasks weights. Basically, such a policy assigns a new task to the worker with the lowest total
weight of tasks in its own input First In First Ou (FIFO) queue. The emitter class ff emitter
and the worker class ff worker define the behaviour of the farm skeleton through the methods
svc (shorthand for service), which are called by the FastFlow run-time to process input tasks.
Parallelisation strategies are defined by coding only these two methods. Let us describe them in
detail.

4.1. Nodes parallelisation strategy (Figure 5)

At start-up the ff emitter::svc method is called by the FastFlow run-time with a NULL
parameter (§5.2). In this case, a task for processing the root node is built (recall that the root node
is passed to the constructor of the emitter, hence it is accessible), and its weight is set to the number
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Figure 6. Example emitter and worker states in the NP strategy.

of cases at the root (§5.3-5). By returning the task, the emitter queues it to some worker according
to the weighted scheduling strategy. Upon receiving in input a task coming from a worker, the
emitter, by way of the ff send out method, produces in output the sub-tasks corresponding to the
children of the node (§5.8-17). Notice that child nodes call the get cases method to retrieve their
cases from the parent node, and, finally, the parent node calls release cases to free its cases
(§5.18). If there are no child nodes and no more tasks in worker queues (§5.19-20), the emitter
returns NULL as to signal that the computation is finished. Otherwise, the FF GO ON tag in the return
statement (§5.21) tells the run-time that further tasks must be waited for from the input channel. The
ff worker::svc method for the generic farm worker (§5.24-28) calls the node splitting algorithm
node::split, and then it immediately returns the computed task back to the emitter. The overall
coding is simple — almost a rewriting of the original tree::build method. Moreover, it is quite
generalisable to any top-down tree-growing algorithm with greedy choice of the splitting at each
node. The weighted scheduling policy is the most specific part; in particular, for the use of weights
that are linear in the number of cases at the node. This is motivated by the experimental results in
[18, Figure 1], showing that the YaDT implementation of node::split exhibits a low-variance
elapsed time per case for the vast majority of nodes.

Figure 6 shows a snapshot of the NP strategy execution with two workers. A partially built tree is
shown on the left hand side, with nodes 4 and 5 being processed by worker W1 and W2 respectively,
and nodes 1, 2 and 3 already queued by the emitter. After processing node 4, worker W1 delivers
the task to the emitter queue, and it starts processing node 1 from its input queue. Similarly, worker
W2 delivers node 5, and it starts processing node 3. Assume that the emitter reads first node 4 from
its input queue †. Because node 4 has two child nodes, namely node 6 and 7, the emitter generates
tasks for them, and delivers the tasks in the workers’ queues. The scheduling policy determines
which worker each task is assigned to. Notice that, because queues are FIFO, the scheduling policy
does not affect the order of tasks within a worker’s queue.

4.2. Nodes and attributes parallelisation strategy (Figure 7)

The NAP strategy builds over NP. For a given decision node, the emitter follows a Divide&Conquer
parallelisation over its children, as in the case of the NP strategy. In addition, for each child node,
the emitter may decide to parallelise the calculation of the information gains in the node::split
method (§2.7-8). In such a case, the stopping criterion at §2.3 must be evaluated prior to the
parallelisation, and the creation of the child nodes occurs after all information gains are computed.
This leads to partitioning the code of node::split into three methods, as shown in Figure 8.

For the root node, attribute parallelisation is always the case (§7.3-10). A task with label
BUILD ATT is constructed for each attribute, with the field att recording the attribute identifier
(the index i). Tasks are weighted and queued. The information about how many tasks are still
to be completed is maintained in the child cnt field of the decision node — such a field is
added to the original node class. Upon receiving in input a task coming from a worker, the

†In general, the choice is non-deterministic.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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void * ff emitter :: svc(void * task ) {
7.2 if ( task == NULL ) {

if ( root�>splitPre() ) return NULL;
7.4 int r = root�>getNoCases();

int c = root�>getNoAtts();
7.6 for ( int i=0; i<c; ++i) {

task = new ff task ( root ,BUILD ATT);
7.8 task�>att = i ;

setWeight( task , r ) ;
7.10 ff send out ( task ) ;

}
7.12 root�>child cnt = c;

return FF GO ON;
7.14 }

node *n = task�>getNode();
7.16 if ( task�>isBuildAtt()) {

if (��n�>child cnt>0)
7.18 return FF GO ON;

n�>splitPost() ;
7.20 }

int nChilds = n�>Childs();
7.22 for ( int i=0; i< nChilds; i++) {

node *child = n�>getChild(i);
7.24 child�>get cases();

int r = child�>getNoCases();
7.26 int c = child�>getNoAtts();

if (! buildAttTest ( r ,c) ) {

7.28 ctask =new ff task ( child ,BUILD NODE);
setWeight( ctask , r ) ;

7.30 ff send out ( ctask ) ;
} else {

7.32 if ( child�>splitPre() ) continue;
for ( int j=0; j<c; ++j) {

7.34 ctask =new ff task ( child ,BUILD ATT);
ctask�>att = j ;

7.36 setWeight( ctask , r ) ;
ff send out ( ctask ) ;

7.38 }
child�>child cnt = c;

7.40 }
n�>release cases() ;

7.42 if (! nChilds && noMoreTasks())
return NULL;

7.44 return FF GO ON; }

7.46 void * ff worker :: svc(void * task ) {
node *n = task�>getNode();

7.48 if ( task�>isBuildAtt())
n�>splitAtt( task�>att);

7.50 else

n�>split() ;
7.52 return task ;

}

Figure 7. Emitter and worker definition for the NAP strategy.

bool node:: splitPre () {
8.2 computeFrequencies() ;

if (oneClass () || fewCases()) {
8.4 set as leaf () ; return true ;

} return false ;
8.6 } void node:: splitAtt ( int i ) {

gain[ i ] = gainCalculation ( i ) ;
8.8 } void node:: splitPost () {

int best = argmax(gain) ;
8.10 if ( attr [ best ]. isContinuous () )

findThreshold ( best ) ;
8.12 ns = attr [ best ]. nSplits () ;

for ( int i=0;i<ns;++i)
8.14 childs .push back(

new node(selectCases ( best , i ) ) ) ;
8.16 }

Figure 8. Partitioning of node::split.

emitter checks whether it concerns the processing of an attribute (§7.16). If this is the case (§7.17-
20), the child cnt counter is decremented until the last attribute task arrives, and then the
node::splitPost method is called to evaluate the best split. At this point (§7.21), the emitter
is provided with a processed node, either from a worker, or as the result of the node::splitPost
call. For every child node, the cases are retrieved from the parent node (§7.24), and then the test
buildAttTest at §7.28 controls whether to generate a single node processing task, or one attribute
processing task for each attribute at the child node. In the former case (§7.28-30), we proceed as in
the NP strategy; in the latter case (§7.32-37), we proceed as for the root node‡. Once child nodes
are generated, the parent node can free cases at the node (§7.41). Finally, if there are no child nodes

‡Notice that tasks for nodes (resp., attributes) processing are labelled with BUILD NODE (resp., BUILD ATT).
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and no more tasks in worker queues (§7.42-43), the emitter returns NULL as to signal that the
computation is finished. Otherwise, it returns FF GO ON, thus waiting for other tasks. Concerning
workers, based on the task label, the ff worker::svc method (§7.47-53) calls the node splitting
procedure or the information gain calculation for the involved attribute.

Let us now discuss in detail two relevant issues in the NAP strategy. Let r be the number of cases
and c the number of attributes at a node.

The first issue is concerned with task weights. Node processing tasks are weighted with r (§7.29),
as for the NP strategy. Attribute processing tasks have a finer grain, which suggests that they must
have assigned a lower weight. However, although attribute tasks are executed in parallel, there is
a synchronisation point: all attribute tasks of a node must have been processed before the emitter
could generate tasks for the child nodes. By giving a lower weight to attribute tasks, we run the risk
that two or more of them are scheduled to the most unloaded worker, thus resulting in a sequential
execution. For this reason, also attribute processing tasks are weighted with r (§7.9,§7.36).

The second issue is concerned with the test buildAttTest, which discriminates between nodes
parallelisation and attributes parallelisation. Because the latter is finer grained, a test should select
attributes parallelisation for larger nodes, and nodes parallelisation for smaller ones — where the
size of a node is measured in terms of r and c. We have designed and experimented three test
conditions. Attribute parallelisation is chosen respectively when:

• (↵ < r) the number of cases at the node is above some hand-tuned threshold value ↵;
• (|T | < c r log r) the average grain of node processing (in YaDT, sorting c attributes by

quicksort, which is r log r on average) is higher than a threshold that is dependent on the
training set. Intuitively, the threshold should be such that the test is satisfied at the root node,
which is the coarser-grained task, and for nodes whose size is similar. Because the average
grain of processing a single attribute at the root is |T | log |T |, we fix the threshold to a lower
bound for such a value, namely to |T | — which turns out to be a lower bound for processing
a single attribute at the root (attribute values must be scanned at least once);

• (|T | < c r

2) the worst-case grain of node processing (quicksort is r

2 in the worst-case) is
higher than a threshold that is dependent on the training set. As in the previous case, the
threshold is set to the lower bound |T | for processing a single attribute at the root node. The
higher value cr

2 in the right-hand-side, however, leads to selecting attributes processing more
often than the previous case, with the result of over-provisioning, namely the creation of a
higher number of (finer-grained) concurrent tasks.

As shown in the next section, the third condition exhibits the best performance.

5. PERFORMANCE EVALUATION OF PARALLELISATION STRATEGIES

In this section we show the performances obtained by the NP and the NAP strategies of YaDT-
FF. The datasets used in experiments and their characteristics are reported in Table I, including
the number of discrete and continuous attributes, the size and depth of the decision tree, and its
unbalancing factor (described later on). The datasets are publicly available from the UCI Machine
Learning repository [19], apart from datasets SyD10M9A-xxx, which are synthetically generated
using function 5 of the QUEST data generator [20]. We generated 3 distinct synthetic datasets
by varying the distribution of the binary class as follows: 20%–80% for SyD10M9A; 50%–50%
for SyD10M9A-05; and 5%–95% for SyD10M9A-005. SyD10M9A will be our reference synthetic
dataset. All other datasets are standard references in the literature, and they are among the top largest
datasets at the UCI Machine Learning repository. Moreover, they are representative of datasets with
different number of cases, number of total attributes, number/proportion of continuous attributes,
and size of the decision tree. All experimental results are taken by performing 5 runs, excluding
the highest and the lowest values, and computing the average of the remaining ones. This is done
to smooth out the (actually, very limited) variability introduced by the operating system services
running on the experimental machines.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Table I. Training sets used in experiments, including number of cases (|T |), number of class values (NC),
number of discrete and continuous attributes, and size and depth of the decision trees built from them.

No. of attributes Decision tree

T name |T | NC Discrete Continous Total Size Depth Unbalancing

p53Mutants 31 420 2 0 5408 5408 167 20 0.85

Census-Income 299 285 2 33 7 40 122 306 31 0.43

Forest Cover 581 012 7 44 10 54 41 775 62 0.42

U.S. Census 2 458 285 5 67 0 67 125 621 44 0.49

KDD Cup 99 4 898 431 23 7 34 41 2810 29 0.65

SyD10M9A 10 000 000 2 3 6 9 169 108 22 0.37

SyD10M9A-05 10 000 000 2 3 6 9 184 325 24 0.32

SyD10M9A-005 10 000 000 2 3 6 9 128 077 23 0.45

Table II. YaDT elapsed sequential time (in seconds): 32-bit vs 64-bit compilation.

Nehalem Magny-Cours

T name 32-bit 64-bit 32-bit 64-bit

p53Mutants 95.88 95.83 151.54 136.10

Census-Income 3.55 3.16 4.63 4.62

Forest Cover 16.40 13.53 19.10 19.27

U.S. Census 14.24 12.67 17.16 17.25

KDD Cup 99 17.16 15.39 22.67 22.62

SyD10M9A 106.23 114.15 133.41 134.36

5.1. Experimental framework

All experiments are executed on two different workstation architectures: Nehalem – a dual quad-
core Intel Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes
of main memory with Linux x86 64; and Magny-Cours – a single 12 cores AMD Magny-Cours
Opteron 6174 @2.2GHz with 12MB L3 cache and 128 GBytes of main memory, with Linux x86 64.
They are quite standard representatives of current mid-to-high-end workstations.

The Nehalem-based machine exploits Simultaneous MultiThreading (SMT, a.k.a. HyperThread-
ing) with 2 contexts per core and the Quickpath interconnect equipped with a distributed cache
coherency protocol. The SMT technology makes a single physical processor appear as two logical
processors for the operating system, but all execution resources are shared between the two contexts:
caches of all levels, execution units, etc.

5.2. 32-bit vs. 64-bit YaDT compilation

Preliminary results of the parallelisation of YaDT are reported in our conference paper [10].
There, we presented experiments on 32-bit compiled executables running on 64-bit Intel-based
architectures. It is legitimate to ask ourselves whether the performances of YaDT are affected by a
64-bit compilation or on a different architecture. In Table II we show the sequential execution times
obtained from both 32-bit and 64-bit versions of the YaDT tree growing algorithm when running on
64-bit Intel and AMD architectures. As it can be observed, the 64-bit executable is moderately faster
than the 32-bit one for almost all the datasets considered. One exception is the synthetic dataset,
which shows a performance penalty of about 7%. The higher performances of the 64-bit compilation
can be justified by a better utilisation of the underling 64-bit architecture, for example, 64-bit code
may benefit of extra registers not available for 32-bit code. On the other hand, the 64-bit compilation
mode implies larger data types (mainly because of larger pointer representation and larger padding
in data structures) hence more cache-misses. Because almost all newer server and workstations are
64-bit architectures and compilers running on 64-bit OSes produce 64-bit executable by default, in
the rest of the paper we consider only 64-bit executions.
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Figure 9. NP strategy speedup. Nehalem box (left), Magny-Cours box (right).

5.3. Performances of the NP strategy

Let us start considering the parallelisation of nodes processing. The speedup§ obtained by varying
the number of farm’s worker threads is shown in Figure 9. The maximum speedup is similar on both
architectures, and quite variable from a dataset to another; it ranges from 1.16 for p53Mutants to 3.6
for the Census-Income dataset on the Nehalem box. As one would expect, exploiting inter-nodes
parallelism alone is not enough to reach a close to optimal speedup, because a large fraction of the
computing time is spent in the coarse-grained sequential computation of nodes, thus lacking enough
parallelism. This phenomenon has been already observed in previous work on task parallelisation
of decision tree construction over distributed memory architectures (see e.g., [21], and related work
in Section 7). Let us provide here a meaningful justification by introducing a lower bound for any
parallelisation strategy exploiting concurrency on the grain of nodes. Intuitively, the computation of
a node can only start after its father has been processed, which, in turn, can only start after all of its
ascendants have been processed. As a consequence, the elapsed time needed for the tree path with
the highest computational cost is a lower bound for any strategy based on nodes parallelisation. In
symbols, we write

lb(n) = t(n) +maxm2child(n)lb(m)

where t(n) is the time for sequential processing (i.e., to execute node::split) of node n, and
child(n) is the set of child nodes of n. Observe that the lower bound is strict, because it assumes an
oracle scheduler that gives priority to nodes along the path with the highest computational cost, a
number of workers sufficient to compute in parallel all other nodes, and zero-time synchronisations.

From the experimental side, we have instrumented the sequential code to compute lb(root) for
the root node of the tree, after it has been completely built. Figure 10 reports the ratio of the
elapsed time of the NP strategy over the lower bound time. Notably, our implementation reaches
a good efficiency, requiring at most twice the lower bound time. This confirms the effectiveness
both of our design, in particular of the weighted scheduling policy as an online approximation of
the oracle scheduler, and of the underlying FastFlow layer. Moreover, Figure 10 also highlights that
the scalability of any parallelisation on the grain of nodes is inherently limited.

From the theoretical side, we observe that, because t(n) is proportional to the number of cases at
node n, the path with the highest computational cost turns out to be the largest path, where the size of
a path is measured as the sum of the number of cases at nodes in the path. In other words, the more
a tree is unbalanced (cases are concentrated along a single path), the less a nodes parallelisation
is efficient, independently from the number of worker threads and from the scheduling policy.
In Table I, the unbalancing column reports the ratio between the size of the largest path and the

§The speedup metric is defined as speedup(n) = Tseq/Tpar (n) where Tseq is the sequential execution time and Tpar (n)
is the parallel execution time with n worker threads.
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Figure 10. Ratio of elapsed time over lower-bound time for the NP strategy. Nehalem box (left), Magny-
Cours box (right).
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Figure 11. Speedup of the NP strategy for synthetic datasets with different unbalancing factors. Nehalem
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Table III. Effectiveness of buildAttTest(c,r) for different test conditions (Nehalem box, 7 worker threads).
|T | = no. of cases in the training set, c = no. of attributes at the node, r = no. of cases at the node, and

↵ = 1000.

Total Execution Time (sec.)

T name |T | < cr2 ↵ < r |T | < cr log r

p53Mutants 14.56 15.67 14.71

Census-Income 0.76 0.77 0.68
Forest Cover 1.83 1.93 1.85

U.S. Census 2.1 2.14 2.19

KDD Cup 99 3.46 3.45 3.60

SyD10M9A 17.07 20.11 19.39

overall sum of the number of cases in all nodes of a tree. Notice that the three synthetic datasets
SyD10M9A-05, SyD10M9A and SyD10M9A-005 are similar as for number of cases and attributes,
but they are purposely generated with increasing unbalance ratios. This was obtained by unbalancing
the distribution of class values. Figure 11 reports the speedups for the three synthetic datasets,
confirming the theoretical analysis.

Summarising, although modest, the speedup of the NP strategy is notably close to the limit of
its form of parallelisation, and, equally notably, it was achieved by a minimal effort to port the
sequential code.
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Figure 12. NAP strategy speedup. Nehalem box (left), Magny-Cours box (right).
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Figure 13. NAP strategy execution breakdown on emitter (E) and workers (W1–W7) (Nehalem box).

5.4. Performances of the NAP strategy

The NAP strategy aims at increasing the available parallelism by exploiting concurrency also in the
computation of the information gain of attributes. This is particularly effective for nodes with many
cases and/or attributes, because it reduces the sequential fraction of the execution. As discussed
in Section 4, the emitter relies on a test condition in order to decide whether to adopt attributes
parallelisation. Table III shows that the test |T | < cr

2 provides the best performances among the
three test conditions presented in Section 4. This is justified by the fact that the test produces a higher
number of finer-grained tasks when compared to the test |T | < cr log r, and it is dataset-tailored
when compared to the test ↵ < r. In all of the remaining experiments, we fix the test |T | < cr

2.
The speedup of YaDT-FF with the NAP strategy is shown in Figure 12. It ranges from 4.1 to

9.45 on the Nehalem architecture and from 3.63 to 10.13 on the Magny-Cours box. Recall that
the Nehalem box has eight physical cores (plus SMT hardware support), hence a speedup greater
or equal than 7 can be considered optimal or very close to optimal. The speedup gain over the
NP strategy is remarkable. Only for the Census-Income dataset, the smallest dataset, the speedup
gain is just +15% over NP on the Nehalem, and just +8% over NP on the Magny-Cours machine.
The attributes parallelism added by the NAP strategy leads the speedup of the p53Mutants dataset,
the one with the largest set of attributes and the smallest tree size, from the lowest to the highest
rank position when compared with the NP strategy. Notice that the SyD10M9A dataset apparently
benefits from a super-linear speedup. Actually, this occurs because the speedup is defined and
plotted against the number of farm workers. Hence, the fraction of work done by the emitter thread
is not considered, yet not negligible as shown in Figure 13. As a matter of a fact, the FastFlow
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Figure 14. NAP strategy speedup for the p53Mutants dataset with a subset of its attributes. Nehalem box
(left), Magny-Cours box (right).
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Figure 15. NAP strategy speedup on a random sample of T cases from dataset SyD10M9A. Nehalem box
(left), Magny-Cours box (right).

farm-with-feedback pattern implicitly exploits pipeline parallelism between the emitter and the
generic worker (see also [22]). Our definition of speedup is, however, justified by the fact that,
on the emerging platforms with SMT support, the emitter thread can be mapped onto one of the
processors running worker threads with very limited or no performance penalty (see later on the
discussion on SMT).

YaDT-FF also exhibits a good scalability with respect to both the number of attributes (Figure 14)
and the number of cases (Figure 15) in the training set. Figure 14 shows the speedup for the
p53Mutants dataset with subsets of its predictive attributes. All such subsets include the 87 attributes
selected in the decision tree built from all attributes, so that the decision tree remains the same for
all of them. When enough parallelism is present, due to a large number of attributes compared to
the number of worker threads, we obtain an almost optimal speedup. Figure 15 shows the speedup
for subsets of cases of the SyD10M9A dataset. The achieved speedup seamlessly increases with the
number of cases in the training set.

Finally, we point out that a lower bound for the elapsed time of any parallelisation strategy
exploiting attributes parallelism can be devised by the same reasonings as in the analysis of the
NP strategy. Intuitively, the lower bound is obtained by the elapsed time of the tree path with the
highest computational cost, where the cost of processing a node is now the maximal sequential time
for processing a single attribute at the node. Such a lower bound, however, results to be too strict,
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Figure 17. Nodes (white) vs attributes (black) parallelisation choices.

because computing the information gain of an attribute for a small number of cases has a very fine-
grain (for that reason, we switch to nodes parallelisation for smaller nodes), which is the order of
the synchronisation overhead of any parallel approach.

5.5. Task scheduling

The parallelisation of decision tree construction algorithms may suffer from load balancing issues
due to the difficulties in predicting the time needed for processing a node or a sub-tree. For example,
the binary search of the threshold (§2.11) has to be performed only when a continuous attribute is
selected for the test at a node. Figure 13 shows that load balancing is not a critical issue for YaDT-
FF with the NAP strategy. We motivate the good performance obtained by two main reasons: 1) the
NAP strategy produces a significant over-provisioning of tasks with respect to the number of cores;
these tasks continuously flow (in a cycle) from the emitter to the workers and they are subject to quite
efficient online scheduling within the emitter; 2) FastFlow communications are asynchronous and
exhibit very low overhead also for fine-grained tasks (see [15]). This makes it possible to sustain
all the workers with tasks to be processed for the entire computation. The low overhead of the
communications helps to reduce the dependence of the achieved speedup from the effectiveness of
the scheduling policy. Nevertheless, such dependence exists.

Figure 16 shows results for three different scheduling policies: 1) Dynamic Round-Robin (DRR);
2) On-Demand (OD); 3) Weighted Scheduling (WS). The DRR policy schedules a task to a worker
in a round-robin fashion, skipping workers with full input queue (with queue size set to 4096 slots).
The OD policy is a fully online scheduling, i.e., a DDR policy where each worker has an input queue
of size 1. The WS policy is a user-defined scheduling that can be set up by assigning weights to tasks

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 M. ALDINUCCI, S. RUGGIERI AND M. TORQUATI

through calls to the setWeight method. We recall that YaDT-FF adopts a WS policy, with the
weight of a task set to the number r of cases at the node. It is immediate to observe from Figure 16
that all the scheduling policies are fairly efficient. WS exhibits superior performance because it is
tailored over the YaDT-FF algorithm; it actually behaves as a quite efficient online scheduling. A
possible variant of the WS policy is to re-arrange tasks that have already been scheduled to workers
on the basis of the their weights (e.g., via priority-based Multiple Producer Multiple Consumer
(MPMC) concurrent queue or by using work-stealing strategies). However, because re-arranging
cannot be implemented using solely the lock-free and fence-free mechanisms of FastFlow, it is
likely that the additional overhead may easily overcome possible gains.

Finally, we show in Figure 17 how often nodes parallelisation has been chosen by the emitter
against the attributes parallelisation in the NAP strategy (we recall that the test condition |T | < cr

2

was fixed). Black stripes lines in the figure denote attributes parallelisation choices whereas white
stripes denote nodes parallelisation ones. As expected, the former case occurs more often when
processing the top part of the decision tree (from left to the right, in the figure).

5.6. Simultaneous multithreading

The Nehalem hyperthreaded box may execute 2 threads simultaneously per each of its 8 physical
cores. SMT is essentially a memory latency hiding technique that is effective when different threads
in a core exhibit a shared working set that induces high cache hit rate. However, even in non-ideal
conditions, SMT is able to moderately increase instructions per clock-cycle count, hence, the overall
performance by partially hiding costly main memory accesses with threads execution. Figure 12
shows the performance obtained by SMT when more than 7 worker threads are used. The speedup
gains for the U.S. Census, SyD10M9A, Forest Cover and p53Mutants datasets range from 22% to
44%. For the other two datasets, the overprovisioning of threads does not significantly affect the
overall performance (the gain is from 4% to 10%). These figures match the expected benefit for this
kind of architectures [23], and they confirm the benefit of SMT support for YaDT-FF.

Simultaneous multithreading technology is also beneficial for non-blocking lock-free algorithms,
such as ones used in the FastFlow run-time support. On SMT platforms busy-waiting instructions
keep busy a processor context (decode unit and register file) but not execution units. This make it
possible to run mediator threads, such emitters and collectors, on the same core of worker threads
without impairing computation capability of the worker threads. The FastFlow run-time is very
aggressive in using available cores: mediator threads are mapped on different cores till there are
enough free cores for allocating worker threads, then they are mapped on a separate context of the
same physical core hosting a worker thread. This approach both motivates the plotting of speedup
against the number of worker threads and the super-linear speedup in the case when only few
processors of the platform run worker threads. The assumption is anyway fair with respect to the
maximum speedup achieved.

6. PARALLELISATION OF TREE PRUNING AND MEMORY OCCUPATION EVALUATION

6.1. Parallelisation of decision tree pruning

It is legitimate to ask ourselves whether the approach presented so far can be replicated to other
problems consisting of a top-down visit/building of tree data structures. The answer is positive.
We have designed an NP-like parallel version of the phase following decision tree growing that
is known as tree pruning. Decision trees are commonly pruned to trade accuracy for simplicity,
and to alleviate for the over fitting problem (see [24] for a survey of pruning strategies). The C4.5
system adopts a post-processing error-based pruning (EBP) strategy, which, like the tree growing
algorithm, is a standard reference for novel proposals. The strategy consists of a non-trivial bottom-
up visit of the decision tree, with an inner recursion visit of sub-trees – a form of doubly-recursive
visit. See [25] for a computational complexity analysis of EBP.

Traditionally, efficiency of the pruning phase has not been a major concern, because pruning was
by far computationally less expensive than tree growing. Research in sequential optimisation and
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Figure 18. Ratio of elapsed time over lower-bound time for the tree pruning phase. Nehalem box (left),
Magny-Cours box (right).

Figure 19. Memory usage over time on Nehalem box with 7 workers for YaDT (left) vs YaDT-FF (right) for
dataset Forest Cover. The vertical lines mark the end of the growing phase and the start of the pruning phase.

parallelisation of the growing phase, however, has lead to the nowadays situation where the pruning
time is in the order of magnitude of the growing time. For instance, the speedup figures of Figure 12
lead the elapsed times of tree growing in the order of magnitude of the tree pruning phase. To the
best of our knowledge, however, there is no previous attempt at parallelising the pruning phase in
the literature. Our NP-like implementation of the parallelisation is described in great detail in [26].
As for the NP strategy, a lower bound has been calculated by instrumenting the sequential code.

The plots in Figure 18 show the ratio between the elapsed time and the experimentally computed
lower bound time for all the datasets. Apart from Census-Income, the elapsed time obtained by the
parallelisation of the pruning phase is below or close to twice the lower-bound time. As observed
for the NP strategy, such a lower bound is a strict limit, reachable only by an oracle scheduler. This
confirms the effectiveness of the parallelisation approach proposed in this paper.

6.2. Memory occupation evaluation of decision tree parallelisation

Figure 19 reports memory occupation over time of YaDT and YaDT-FF for both the growing and
pruning phases for the Forest Cover dataset. Memory footprint has been traced by reading the
Linux’s /proc/pid/statm memory statistic file every 10ms. With reference to the sequential execution
of YaDT, we point out that the pruning phase uses considerable more memory compared to the
growing phase. This is due to the double recursion visit algorithm of the pruning phase, which
requires allocations of cases at a node in the outer visit and at all of its descendants in the inner
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visit. Moreover, the depth-first implementation of the double recursion causes the high number
of interleaved allocation and deallocation operations readily visible in the left-hand-side plot of
Figure 19. The parallel execution of YaDT-FF requires some additional memory compared to YaDT.
However, the proportions of memory occupation between the growing and the pruning phases are
maintained. The memory allocations in the pruning phase are more stable than for YaDT, because
tasks are weighted by the number of cases at a node (irrespective of whether they refer to the outer
or the inner visit of a node). Let us now discuss why the overall memory occupation of YaDT-FF
does not significantly exceeds the one of YaDT. First, we notice that the additional data structures
needed by YaDT-FF include: FIFO queues, whose size is fixed (see Figure 4); ff task objects,
whose number is bounded by the size of FIFO queues; and additional member variables of the
node class (e.g., child cnt), whose memory occupation is proportional to the size of the decision
tree being built. The remaining allocations consist of selecting cases at nodes starting from the cases
at the parent node, for example, at (§5.13) for the NP strategy, and at (§7.24) for NAP strategy. The
sequential code maintains the cases of the nodes in the frontier of the breadth first growth of the
tree. The parallel code maintains the cases of a frontier in the top down (but not necessarily breadth
first) tree growth. Because cases at a node are partitioned among its child nodes (apart from cases
with unknown value of the tested attribute which are replicated among child nodes), the overall
number of cases at the nodes in the two frontiers is the same, yet the frontier in the parallel version
is typically larger. Summarising, the additional memory occupation of YaDT-FF is proportional to
the memory occupation of YaDT and to the (fixed) size of the communication data structures.

7. RELATED WORK

There has been a recent blooming interest of the data mining and machine learning communities on
algorithms for parallel platforms [27, 28, 29, 30, 31]. The recurring problem of designing advanced
locking schemas in order to decrease the synchronisation overhead in shared memory machines
have been considered in [29, 32]. YaDT-FF overcomes such a problem via the FastFlow lock-
free synchronisation mechanisms: all synchronisations happen asynchronously in the emitter as the
result of data-dependencies among tasks. In the following, we cluster related work on parallelisation
of decision trees according to the task, data, or hybrid parallelisation paradigm adopted.

7.1. Task parallelism

Task parallelism consists of splitting the processing of different subtrees into independent tasks in
a Divide&Conquer fashion. The NP strategy presented in Section 4 fully adheres to this approach,
despite task parallelism is realised via stream parallelism. In distributed implementations, the
approach is also referred to as partitioned tree construction [21], because tree construction consists
of dynamically distributing the decision nodes among the processors for further expansion. The
approach suffers from load balancing problems due to the possible different sizes of the trees
constructed by each processor, which is a nontrivial issue because load balancing strategies are
typically communication intensive and complex to be integrated in the code. As example, in the
early work of [33], the whole training set is replicated in the memory of all the processors, in
order to avoid communication of cases across processing nodes. In [34, 35], the Divide&Conquer
paradigm is realised in a distributed environment enriched with a virtual shared memory support
using a loop-farm skeleton, consisting of a farm where the output stream is sent back as input
stream (see Figure 1, mid right schema). Compared to the NP strategy, an extra process is used (the
collector C in Figure 1) for managing the termination condition. In order to find a suitable trade-off
between load balancing and computation-to-communication ratio, workers expand not a single
node but up to a given number of levels of a sub-tree. Finally, the NP strategy adopts a tailored
scheduling policy, whilst their approach is based on a on-demand policy. In [36], a Pthread-based
Divide&Conquer parallelisation on a shared-memory architecture is proposed. The approach differs
from YaDT-FF in using a parallel quicksort, in relying on the dynamic creation of a large number
of concurrent threads (which might seriously impair the run-time efficiency — the implementation
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is tested on a single synthetic dataset), and in the hand-made code porting and tuning process. As a
general advancement over related work, we have characterised a lower bound on the elapsed time of
any task parallelisation strategy, and shown that the NP performances are very close to such a bound.

7.2. Data parallelism

Data parallelism consists in distributing the training set among the processors by partitioning
attributes or cases [37].

In vertical data partitioning, each processor computes the gain calculations for a subset of the
attributes, for example, in distributed implementation, for the attributes assigned at the processor
node [38]. Gain calculations are then exchanged between nodes to determine the best split. This
solution suffers both from load balancing problems, because the cost of gain calculation is not
uniform across (discrete vs continuous) attributes, and, for distributed implementations, from
high communication costs. The NAP strategy in our approach adopts a similar method for gain
calculations. As already observed, however, load balancing is tackled by switching to the NP
strategy on the basis of a test condition, communication costs are negligible in a shared memory
environment, and synchronisation costs are minimum due to the design of the FastFlow framework.

In horizontal data partitioning, cases are evenly distributed among the processing nodes. Each
processor computes the aggregate values (of its cases) needed for information gain calculation,
and it exchanges them with the other nodes to determine the best split. This solution suffers from a
heavy re-coding of the node splitting procedure (see Figure 2), and, for distributed implementations,
from high communication costs. Horizontal data distribution is exploited in the SPRINT classifier
[39], which stores the training set according to the SLIQ layout [40]. The authors show a superior
performance with respect to vertical data distributions in the direct parallelisation of the SLIQ
sequential classifier. ScalParC [41] improves on SPRINT by adopting a distributed hash table that
mitigates the communication cost problems. Concerning shared-memory machines, [22] proposes
a porting of SPRINT to several data parallel versions, from BASIC to the Moving-Windows-K
(MWK) algorithm, exhibiting progressively weaker coupling: a global barrier for BASIC and a
conditional variable per node for MWK. Also, a hybrid version was considered. All versions are
implemented on top of a master-worker infrastructure, which is similar to one used in YaDT-FF, thus
also exploiting pipeline parallelism between the master and workers. However, synchronisations
between master and workers occur via Pthread mutexes and conditional variables, and therefore
exhibit low scalability for fine grained tasks. The work also highlights the limits of mutual exclusion
as synchronisation mechanism in this class of algorithms. A variant of ScalParC for shared memory
ccNUMA systems is proposed in [42], together with a deep investigation of the impact of data
locality and cache misses. The RainForest sequential algorithm [17] has been parallelised in [43].
The approach builds a decision tree by levels, with a horizontal data partitioning for computing
aggregate values needed in the gain calculation. Synchronisation occurs in order to sum up the
partial aggregates and to choose the best split.

7.3. Hybrid task and data parallelism

Hybrid approaches have been explored as a means to control the communication overhead. In the
hybrid parallel formulation [21] and in pCLOUDS [44], a data parallel approach is used for the
top levels of the tree, i.e., when the grain of decision node computation is large, and a task parallel
approach for the lower levels. In [34], tasks are categorised as large, intermediate or small. Large
tasks process a single decision node. Intermediate tasks process a sub-tree up to a maximum number
of decision nodes. Small tasks sequentially process the whole sub-tree of a decision node. YaDT-FF,
and in particular the NAP strategy, is inspired by the two latter works and distinguish from them
because it does not need the redesign of the sequential algorithm but rather an easy-yet-efficient
porting of the existing code; it targets multi-core rather than distributed memory machines; it adopts
an effective test condition for deciding whether to parallelise on nodes (task parallelism) or on
attributes (data parallelism); the two parallel approaches are not used in successive phases as in
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mentioned works, but they are temporally inter-weaved and executed on the same stream parallel
infrastructure.

8. CONCLUSIONS

The shift of hardware vendors towards multi-core computing requires re-thinking the design of
applications to squeeze the real machine power. In this paper, we presented an in-depth study of a
decision tree growing algorithm by porting YaDT, an implementation of C4.5, to multi-core using
the FastFlow parallel programming framework. Our implementation required minimal changes of
the original sequential code, yet using non-trivial hybrid task-data parallelisation strategies. This
is a first relevant contribution of our approach, since human productivity, total cost and time to
solution are important metrics in software development, as equally important as MIPS, FLOPS and
speedup. Another major novel contribution is the characterisation of elapsed time lower bounds
for the forms of parallelisation adopted, showing that our approach achieves close to optimal
performance. Despite a large body of related work on the parallelisation of decision tree growing on
distributed systems, such a lower bound analysis has not been previously considered. Finally, our
proposed approach has been replicated in tackling the parallelisation of the decision tree pruning
phase, which is another totally novel contribution of this paper.
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