
This document is published in: 

Concurrency and Computation: Practice and Experience 25 (2013) 17, 
pp.2363-2380 
DOI:10.1002/cpe.3104

© 2013 John Wiley & Sons, Ltd.

http://dx.doi.org/10.1002/cpe.3104
http://e-archivo.uc3m.es/


Applying the dynamics of evolution to achieve reliability in

master–worker computing

Evgenia Christoforou1, Antonio Fernández Anta 1, Chryssis Georgiou 2,*,†,
Miguel A. Mosteiro 3, 4 and Angel Sánchez 5, 6

1Institute IMDEA Networks, Madrid, Spain
2Department of Computer Science, University of Cyprus, Nicosia, Cyprus

3Department of Computer Science, Kean University, Union, NJ, USA
4GSyC, Universidad Rey Juan Carlos, Madrid, Spain

5GISC, Department of Mathematics, Universidad Carlos III de Madrid, Madrid, Spain
6BIFI Institute, Zaragoza, Spain

SUMMARY

We consider Internet-based master–worker task computations, such as SETI@home, where a master pro-
cess sends tasks, across the Internet, to worker processes; workers execute and report back some result.
However, these workers are not trustworthy, and it might be at their best interest to report incorrect results.
In such master–worker computations, the behavior and the best interest of the workers might change over
time. We model such computations using evolutionary dynamics, and we study the conditions under which
the master can reliably obtain task results. In particular, we develop and analyze an algorithmic mechanism
based on reinforcement learning to provide workers with the necessary incentives to eventually become
truthful. Our analysis identifies the conditions under which truthful behavior can be ensured and bounds
the expected convergence time to that behavior. The analysis is complemented with illustrative
simulations. Copyright © 2013 John Wiley & Sons, Ltd.

KEY WORDS: performing tasks; Internet-based computing; evolutionary dynamics; reinforcement learn-
ing; algorithmic mechanism design

1. INTRODUCTION

1.1. Motivation

As an alternative to expensive supercomputing parallel machines, Internet provides a feasible
computational platform for processing complex computational jobs. Several Internet-based appli-
cations operate on top of this global computation infrastructure. Examples are volunteer-based
‘@home’ projects [1] such as SETI [2] and profit-seeking computation platforms such as Amazon’s
Mechanical Turk [3].

Although the potential is great, the use of Internet-based computing is limited by the untrustwor-
thy nature of the platform’s components [1, 4, 5]. In SETI for example, there is a machine, call it
the master, that sends tasks, across the Internet, to volunteers’ computers, call them workers, that
execute and report back some result. However, these workers may not be are not trustworthy and
it might be at their best interest to report incorrect results; that is, workers (or their owners) can
be viewed as rational [4, 6, 7]. In SETI, the master attempts to attenuate the impact of these bogus

*Correspondence to: Chryssis Georgiou, Department of Computer Science, University of Cyprus, Nicosia, Cyprus.
†E-mail: chryssis@cs.ucy.ac.cy

1



results by assigning the same task to several workers and comparing their outcomes (i.e., redundant
task allocation is employed [1, 8]).

Prior work [9–11] has shown that it is possible to design algorithmic mechanisms with
reward/punishment schemes so that the master can reliably obtain correct task results. We view these
mechanisms as one-shot in the following sense: In a round, the master sends a task to be computed
to a collection of workers, and the mechanism, using auditing and reward/punishment schemes,
guarantees (with high probability) that the master obtains the correct task result. For another task to
be computed, the process is repeated (with the same or different collection of workers) but without
taking advantage of the knowledge gained.

Given a long running computation (such as SETI-like master–worker computations), it can be the
case that the best interest, and hence the behavior of the workers, might change over time. The ques-
tion then arises: Would it be possible to design a mechanism for performing many tasks, over the
course of a possibly infinite computation, that could benefit from the repeated interaction between
a master and the same collection of workers?

1.2. Our approach

In this work, we provide a positive answer to the earlier question. To do so, we introduce the concept
of evolutionary dynamics (widely used under the biological and social perspective) and apply it to
Internet-based master–worker task computing. More specifically, we employ reinforcement learning
[12, 13] to model how system entities, or learners, interact with the environment to decide upon a
strategy, and use their experience to select or avoid actions according to the consequences observed.
Positive payoffs increase the likelihood of reusing the strategy just chosen, and negative payoffs
reduce it. Payoffs are seen as parameterizations of players’ responses to their experiences. Empiri-
cal evidence [14, 15] suggests that reinforcement learning is more plausible with players that have
information only on the payoffs they receive; that is, they do not have knowledge of the strategies
involved. This model of learning fits nicely in our master–worker computation problem: each worker
have no information about the master and the other workers’ strategies, and it does not know the set
of strategies that led to the payoff it receives. The workers have only information about the strategies
they choose at each round and their own received payoffs. The master also has minimal informa-
tion about the workers and their intentions (to be truthful or not). Thus, we employ reinforcement
learning for both the master and the workers in an attempt to build a reliable computational platform.

1.3. Our contributions

� To the best of our knowledge, this is the first work that studies the evolutionary dynamics of
Internet-based master–worker task computing through reinforcement learning. We develop and
analyze a mechanism based on reinforcement learning to be used by the master and the work-
ers. In particular, in each round, the master allocates a task to the workers and decides whether
to audit their responses with a certain probability pA. Depending on whether it audits or not,
it applies a different reward/punishment scheme, and adjusts the probability pA for the next
round (also known as the next task execution). Similarly, in a round, each worker i decides,
with a certain probability pC i , whether it will report an incorrect result or it will truthfully
compute and report the correct task result. Depending on the outcome of its decision, measured
by the increase or the decrease of the worker’s utility, the worker adjusts its probability pC i for
the next round.

� We show necessary and sufficient conditions under which the mechanism ensures eventual cor-
rectness. That is, we establish the conditions under which, after some finite number of rounds,
the master obtains the correct task result in every round, with minimal auditing, while keeping
the workers satisfied (with respect to their utility). Eventual correctness can be viewed as a form
of evolutionary stable strategy [16, 17] as studied in Evolutionary Game Theory (EGT) [18]:
even if a ‘mutant’ worker decides to change its strategy to cheating, it will soon be brought
back to an honest strategy.

� Finally, we show that our mechanism, when adhering to the aforementioned conditions, reaches
eventual correctness quickly. In particular, we show analytically probabilistic bounds on the

2



convergence time, as well as bounds on the expected convergence time. Our analysis is
complemented with simulations, for a variety of parameter combinations likely to occur in
practice.

1.4. Background and related work

An increasing number of works that apply game theory to distributed computing exists, including
research on Internet routing, resource/facility location and sharing, containment of virus spreading,
secret sharing, P2P services, and task computations. For more discussion on the connection between
game theory and distributed computing, we refer the reader to the surveys by Halpern [19] and by
Abraham et al.[20], and to the book by Nisan et al. [21].

The problem of achieving reliability in master–worker computations has recently been studied
under two different views: from a ‘classical’ distributed computing view [8,22,23] and from a game-
theoretic view [9,11]. Under the first view, the workers are classified as either malicious (Byzantine)
or altruistic, based on a predefined behavior. The malicious workers have a ‘bad’ behavior, which
results in reporting an incorrect result to the master. This behavior is, for example, due to a hard-
ware or a software error or due to an ill-state of the worker, such as being a wrongdoer intentionally.
Altruistic workers exhibit a ‘good’ behavior, that is, they always compute and return the correct task
result. From the perspective of the master, the altruistic workers are the ‘correct’ ones. Under this
view, ‘classical’ distributed computing models are defined (e.g., a fixed bound on the probability of
a worker being malicious is assumed), and typical malicious-tolerant voting protocols are designed.

Under the classical game-theoretic view, workers act on their own self-interest, and they do not
have an a priori established behavior (malicious or altruistic). They are assumed to be rational [4,6].
In other words, the workers decide on whether they will be honest and report the correct task result,
or cheat and report a bogus result, depending on which strategy increases their benefit or utility.
Under this view, algorithmic mechanisms [6, 24, 25] are employed, where games are designed to
provide the necessary incentives so that processors’ interests are best served by acting ‘correctly’.
In particular, the master provides some reward (resp. penalty) should a worker be honest (resp.
cheat). The design objective is for the master to force a desired unique Nash equilibrium (NE) [26],
that is, a strategy choice by each worker such that none of them has an incentive to change it. That
NE is the one in which the master achieves a desired probability of obtaining the correct task result.

In a previous work by Fernández Anta et al. [9], a game-theoretic approach was used to achieve
reliability in a similar Internet-based master–worker computation. A master processor assigns,
across the Internet, a single computational task to a set of potentially untrusted worker proces-
sors and collects their responses. A weak form of collusion, as in this work, is assumed where all
workers that cheat return the same incorrect result. Game-theoretic models for the problem were
designed and analyzed, for example, one master and one worker, and several workers. For each of
those models, a mechanism that achieves high reliability under the same payoff system that we use
was designed. In [9], besides rewarding the majority of workers, as we do here, other reward models
where considered, for example, rewarding all workers and rewarding none of the workers. The work
in [9] was later extended [10] to also consider the possibility of workers being malicious.

In a work by Yurkewych et al. [11], a similar game-theoretic approach is studied. The master
can audit the results returned by rational workers with a tunable probability. Bounds for that audit
probability are computed to guarantee that workers have incentives to be honest in three scenarios:
redundant allocation with and without collusion, and single-worker allocation. They conclude that,
in their model, single-worker allocation is a cost-effective mechanism, specially in presence of col-
lusion. As opposed to [9], it is possible that a decision is not reached in a round, in which case a
different set of workers is selected, and the process is repeated (but without using any knowledge of
the previous unsuccessful round).

The works in [9] and [11] construct a mechanism assuming a number of parameters are known
to the master and the workers. In addition, the computation between master and workers is viewed
as one-shot: each round of task executions is independent of the previous round. That is, their work
does not consider the advantage of repeated communication with the same set of workers. Moreover
it is expected that in a master–worker computation the behavior and the best interest of the workers

3



change over time. A dynamic environment like that could be analyzed using evolutionary dynamics,
originally introduced in biology as a tool to study the mathematical principles according to which
life is evolving [27]. Since then, a number of fields were inspired by the principles of evolutionary
dynamics (e.g., sociology, and economics, artificial intelligence), and a variety of mechanisms was
developed, aiming to accurately model the process of evolution. Our work is inspired by dynamics
of evolution as a mean to model workers adaptation to a truthful behavior.

The dynamics of evolution have been studied under the principles of EGT. Maynard-Smith
and Price [28, 29] introduced the concept of EGT in an effort to apply game theoretical ideas to
understand evolving populations of lifeforms. This made Maynard-Smith [28] adjust the traditional
concept of strategy, equilibrium, and the nature of a player’s interaction, so that a player would
learn how to optimize its behavior and maximize its return. However, while in traditional game
theory players choose a strategy from their strategy sets, EGT in biology is dealing with species
inheriting possibly mutated strategies. When referring to social entities such as humans, evolution
is understood as a learning process akin to ‘cultural evolution’ [30]. Cultural evolution implies an
analogy between learning and biological evolution. For the existing analogies between learning,
at the individual level, and biological evolution, we refer the reader to a paper by Borgers and
Sarin [31].

In EGT, instead of the NE, Maynard-Smith, and Price used the evolutionarily stable strategy
(ESS) concept [16–18, 32]. A strategy is called evolutionarily stable if, when the whole population
is using this strategy, any group of invaders (mutants) using a different strategy will eventually die
away over multiple generations (evolutionary rounds). All ESS are Nash equilibria, but the reverse
is not true. Our work is driven by the concept of ESS, and we wish to have a similar stable strat-
egy among workers that would guarantee reliability. Even if a mutant worker decides to change
its strategy to cheating, it will be soon brought back to an honest strategy. Instead of the one-shot
and repeated games of classical game theory, EGT assumes that the game is played repeatedly by
players randomly drawn from large populations, uninformed of the preferences of opponents. In our
work, we do not wish to change the set of players as evolutionary rounds progress, but we rather
talk about ‘cultural evolution’, where workers change their strategies as a process of learning, rather
than being replaced themselves.

While evolution operates on the global distribution of strategies within a given population, rein-
forcement learning [13] operates on the individual level of each member of the population. A
well-known model of reinforcement learning is Bush and Mosteller’s model [12]. In this model,
the players have limited information, and they play in discrete time repeatedly the same normal-
form game. At each point in time, the players are characterized by a probability distribution over
their strategy sets. Players’ choices are random, because they are affected by some unpredictable
‘psychological’ factor. This probability distribution is adjusted over time in response to experience.
This experience is gained through repeated interactions of the players with the system, based on
their strategies and the received payoffs. Positive payoffs reinforce the strategy just chosen, and
negative payoffs discourage the use of that strategy.

Specifically, Bush and Mosteller’s model is an aspiration-based reinforcement learning model:
Players adapt by comparing their experience with an aspiration level. There are several models of
how aspirations are formed and adjusted over time, formally described in a study by Bendor et al.
[14]. In the present paper, we use a simple model where aspiration is fixed by the workers and does
not change during the evolutionary process (as in [33]). For more information on the different rein-
forcement learning models and comparisons between them, we refer the reader to a paper by Laslier
et al. [34] and a study by Izquierdo and Izquierdo [35].

A survey by Phelps et al. [36] and an article by Conitzer and Sandholm [37] take a new approach
on Mechanism Design by introducing the concept of evolutionary mechanism design. Evolutionary
mechanism design assumes an engineering approach, based on an incremental process that creates
a partly automated mechanism design. The evolutionary mechanism has a continuous interaction
and feedback from the current mechanism, as opposed to classical mechanism design, which after
the mechanism is introduced in the system, remains in the same NE forever. Looking at it from
a different perspective, evolutionary mechanism design is analogous to EGT. Just as players may
be forced to gradually adjust their strategies, in an analogous manner mechanisms are gradually

4



making adjustments in their rules with respect to what strategies are currently in play. In some way,
our mechanism can be seen as an evolutionary mechanism, because the probability of auditing of
the master and the probability of cheating of the workers change, which is similar to changing the
mechanism.

Distributed computation in the presence of selfishness was studied within the scope of combina-
torial agencies in Economics [38–41]. The basic model considered is a combinatorial variant of the
classical principal-agent problem [42]: A master (principal) must motivate a collection of workers
(agents) to exert costly effort on the master’s behalf, but the workers’ actions are hidden from the
master. Instead of focusing on each worker’s actions, the focus is on complex combinations of the
efforts of the workers that influence the outcome. The principal-agent approach deals in general
with designing contracts between the principal and the workers that allow the principal to get the
most out of the workers without knowing a priori what their actual capabilities are. One difference
with respect to our master–worker framework is that, the worker’s actions cannot really be viewed
as hidden in our setting. Another important difference is that our scheme considers worker punish-
ment, as opposed to the schemes in combinatorial agency where workers cannot be fined (limited
liability constraint); this is possible in our framework as worker’s actions are contractible (either a
worker truthfully performs a task or not).

In the work of Rose and Willemain [43], the principal-agent problem is extended to evolutionary
learning, and bounded rationality of the agents is assumed. Players’ learning is simulated with a
genetic algorithm that roughly mimics selection and mutations in biological evolution. Changes in
the system are externally induced through the use of incentives. The agents’ learning is aided by
the principal’s incentives that are used to adjust the learning, according to the output the principal
desires. The principal is also able to use an artificial selection procedure to identify high performing
agents for its own benefit.

Compared with the work of Rose and Willemain [43], in our line of work the learning model is
different (in addition to the differences our work has with the principal-agent model). We assume
that the learning procedure of the players remains the same through the evolutionary process. In
contrast, in the more general model of Rose and Willemain, the learning procedure of the players
may change over time and players can experience mutations. In both works, incentives are used to
impose a desired behavior over time. But in [43], bounded rationality has been used, while in our
work no cognitive limitation of the workers is assumed. As a future direction, our model could be
enriched by including ‘biological learning’ through replicator dynamics. While in [43], the principal
artificially selects the agents that increase performance, in our context the master could, by using a
reputation technique, exclude from the computation low performing workers.

2. MODEL AND DEFINITIONS

2.1. Master–worker framework

We consider a distributed system consisting of a master processor that assigns, over the Inter-
net, computational tasks to a set W of n workers (with out loss of generality, we assume that
n is odd). In particular, the computation is broken into rounds. In each round, the master sends
a task to be computed to the workers, and the workers return the task result. The master, based
on the workers’ replies, must decide on the value it believes is the correct outcome of the task
in the same round. The tasks considered in this work are assumed to have a unique solution;
although such limitation reduces the scope of application of the presented mechanism [44], there
are plenty of computations where the correct solution is unique: for example, any mathemat-
ical function. Note that in this work, we do not focus on any specific application. Therefore,
applying our mechanism in practice may require to pay attention to details depending on the
specific application considered. In this work, security issues are not considered. Security can be
achieved by cryptographic means, as performed in BOINC [45], which allows for encrypting
communication, authenticating master and workers, signing the code of tasks and executing tasks
in sandboxes.

5



Following Abraham et al. [6] and Shneidman and Parkes [7], we assume that workers are ratio-
nal, that is, they are selfish in a game-theoretic sense and their aim is to maximize their benefit
(utility) under the assumption that other workers do the same. In the context of this paper, a worker
is honest in a round when it truthfully computes and returns the task result, and it cheats when it
returns some incorrect value. So, a worker decides to be honest or to cheat depending on which
strategy maximizes its utility. We denote by pr

C i the probability of a worker i cheating in round r .
This probability is not fixed, as the worker adjusts it over the course of the computation.

While it is assumed that workers make their decision individually and with no coordination, it is
assumed that all the workers that cheat in a round return the same incorrect value (as performed,
e.g., in [8, 9, 22]). This assumption yields a worst case scenario (and hence analysis) for the master
with respect to obtaining the correct result; it subsumes models where cheaters do not necessarily
return the same answer. (In some sense, this can be seen as a cost-free, weak form of collusion).

2.2. Auditing, payoffs, rewards, and aspiration

To ‘persuade’ workers to be honest, the master employs, when necessary, auditing and
reward/punishment schemes. The master, in a round, might decide to audit the response of the
workers, at a cost. In this work, auditing means that the master computes the task by itself and
checks which workers have been honest. We denote by pA the probability of the master auditing
the responses of the workers. The master can change this auditing probability over the course of the
computation. Unless otherwise stated, we assume that there is a value pmin

A > 0 so that at all times
pA > pmin

A . Furthermore, the master can reward and punish workers, which can be used (possibly
combined with auditing) to encourage workers to be honest. When the master audits, it can accu-
rately reward and punish workers. When the master does not audit, it decides on the majority of the
received replies, and it rewards only the majority. We refer to this as the Rm reward scheme (as
presented in previous works).

The payoff parameters considered in this work are detailed in Table I. Note that the first letter of
the parameter’s name identifies whose parameter it is. M stands for master and W for worker. Then,
the second letter gives the type of parameter. P stands for punishment, C for cost, and B for benefit.
Observe that there are different parameters for the reward WBY to a worker and the cost MCY of
this reward to the master. This models the fact that the cost to the master might be different from the
benefit for a worker.

We assume that each worker i has an aspiration ai (the same in all rounds), which is the min-
imum benefit it expects to obtain in a round. In order to motivate the worker to participate in the
computation, the master must ensure that WBY > ai ; in other words, the worker has the potential
of its aspiration to be covered. We assume that the master knows the aspirations. This information
can be included, for example, in a contract the master and the worker agree upon, prior to the start
of the computation.

Among the parameters involved, we assume that the master has the freedom of choosing WBY
and WPC; by tuning these parameters and choosing n, the master tries to achieve the goal of eventual
correctness (see later). All other parameters can either be fixed because they are system parameters
or may also be chosen by the master (except the aspiration, which is a parameter set by each worker).

Table I. Payoffs. The parameters are nonnegative.

WPC Worker’s punishment for being caught cheating
WCT Worker’s cost for computing the task
WBY Worker’s benefit from master’s acceptance
MPW Master’s punishment for accepting a wrong answer
MCY Master’s cost for accepting the worker’s answer
MCA Master’s cost for auditing worker’s answers
MBR Master’s benefit from accepting the right answer

6



2.3. Eventual correctness

The goal of the master is to eventually obtain a reliable computational platform. In other words,
after some finite number of rounds, the system must guarantee that the master obtains the correct
task results in every round with probability 1. We call such property eventual correctness.

3. ALGORITHMIC MECHANISM

We now detail the algorithms run by the master and the workers.

3.1. Master’s algorithm (Algorithm 1)

The master’s algorithm begins by choosing the initial probability of auditing. After that, at each
round, the master sends a task to all workers and, after all answers are received (a reliable network
is assumed), the master audits the answers with probability pA. In the case the answers are not
audited, the master accepts the value contained in the majority of answers and continues to the next
round with the same probability of auditing. In the case the answers are audited, the value pA of
the next round is reinforced (i.e., modified according to the outcome of the round). Then, the master
rewards/penalizes the workers accordingly.

The master initially has scarce or no information about the environment (e.g., workers initial pC ).
The initial probability of auditing will be set according to the information the master possesses. For
example, if it has no information about the environment, a safe approach may be to initially set
pA D 0.5.

Observe that, when the answers are not audited, the master has no information about the num-
ber of cheaters in the round. Thus, the probability pA remains the same as in the previous round.
When the answers are audited, the master can determine the number of cheaters; we denote by
cheaters.r/ the number of cheaters in round r . Then, the master adapts the auditing probability
pA according to this number. Observe that the algorithm guarantees pA > pmin

A . This, combined
with the property pmin

A > 0, will prevent the system to fall in a permanent set of ‘bad’ states where
pA D 0 and pC > 0. A discount factor, which we call tolerance and denote by � , expresses the
master’s tolerable ratio of cheaters (typically, we will assume � D 1=2). Hence, if the proportion of
cheaters is larger than � , pA will be increased, and otherwise, pA will be decreased. The amount by
which pA changes depends on the change in the number of cheaters, modulated by a learning rate
˛m. This latter value determines to what extent the newly acquired information will override the old
information. (For example, if ˛m D 0 the master will never adjust pA).

3.2. Workers’ algorithm (Algorithm 2)

The workers’ algorithm begins with each worker i deciding an initial probability of cheating pC i .
At each round, each worker receives a task from the master and, with probability 1�pC i calculates

7



the task and replies to the master with the correct answer. If the worker decides to cheat, it fabricates
an answer and sends the incorrect response to the master. (We use a flag Si to model the decision of
a worker i to cheat or not.) After receiving its payoff (detailed in the analysis section), each worker
i changes its pC i according to the payoff …i received, the chosen strategy Si , and its aspiration ai .
Observe that the workers’ algorithm guarantees 0 6 pC i 6 1.

Workers have a learning rate ˛w . We assume that all workers have the same learning rate, that is,
they learn in the same manner (see the discussion in [13]; the learning rate is called step-size there);
note that our analysis can be adjusted to accommodate also workers with different learning rates.
We choose the value of ˛w so that ˛w.ai C WPC/ < 1, 8i 2 W . Otherwise, the system could enter
in an oscillating condition where some nodes alternate pC between 0 and 1 never converging to a
stable state, which is necessary to guarantee reliability.

4. ANALYSIS

In this section, we analyze the mechanism presented in Section 3. We model the evolution of the
mechanism as a Markov chain, and we prove necessary and sufficient conditions for achieving even-
tual correctness. We provide analytical evidence that convergence to eventual correctness can be
reached rather quickly. Observe in Algorithms 1 and 2 that there are a number of variables that may
change in each round. We will denote the value of a variable X after a round r with a superindex r ,
as X r .

4.1. The mechanism as a Markov chain

We analyze the evolution of the master–workers system as a Markov chain. To do so, we first define
the set of states and the transition function as follows.

Let the state of the Markov chain be given by the vector of probabilities .pA,pC1,pC 2, : : : ,pC n/.
Then, we denote the state after round r by .pr

A,pr
C1,p

r
C 2, : : : ,pr

C n/. Observe from Algorithms 1
and 2 that any state .pA,pC1,pC 2, : : : ,pC n/ in which pA 2 Œpmin

A , 1� and pC i 2 Œ0, 1� for each
worker i , is a possible initial state of the Markov chain. The workers’ decisions, the number of
cheaters, and the payoffs in round r are the stochastic outcome of the probabilities used in round r .
Then, restricted to pr

A 2 Œpmin
A , 1� and pr

C i 2 Œ0, 1�, we can describe the transition function of the
Markov chain in detail. For each subset of workers F � W , P.F / D Q

j2F pr�1
Cj

Q
k…F .1 � pr�1

C k
/

is the probability that the set of cheaters is exactly F in round r . Then, we have the following.

� With probability pr�1
A � P.F /, the master audits when the set of cheaters is F , and then,

(0) the master updates pA as pr
A D pr�1

A C ˛m.jF j=n � �/, and
(1) each worker i 2 F updates pC i as pr

C i D pr�1
C i � ˛w.ai WPC/,

(2) each worker i … F updates pC i as pr
C i D pr�1

C i C ˛w.ai � .WBY � WCT //.
� With probability .1�pr�1

A /P.F /, the master does not audit when F is the set of cheaters. Then,
the master does not change pA and the workers update pC i as follows. For each i 2 F ,
(3) if jF j > n=2 then pr

C i D pr�1
C i C ˛w.WBY � ai /,

(4) if jF j < n=2 then pr
C i D pr�1

C i � ˛w � ai ,
and for each i … F ,
(5) if jF j > n=2 then pr

C i D pr�1
C i C ˛w.ai C WCT /,

(6) if jF j < n=2 then pr
C i D pr�1

C i C ˛w.ai � .WBY � WCT //.

The following terminology will be used throughout. Let a covered worker be one that is paid at
least its aspiration ai and the computing cost WCT . In any given round r , let an honest worker be
one for which pr�1

C D 0. Let an honest state be one where the majority of workers are honest. Let an
honest set be any set of honest states. We refer to the opposite cases as uncovered worker, cheater
worker (pr�1

C D 1), cheat state, and cheat set, respectively.

4.2. Conditions for eventual correctness

We show the conditions under which the system can guarantee eventual correctness. We begin with
some terminology. Let a set of states S be called closed if, once the chain is in any state s 2 S , it

8



will not move to any state s0 … S . (A singleton closed set is called an absorbing state.) For any given
set of states S , we say that the chain reaches (resp. leaves) the set S if the chain reaches some state
s 2 S (resp. reaches some state s … S ).

In order to show eventual correctness, we must show eventual convergence to a closed honest set.
Thus, we need to show (i) that there exists at least one such closed honest set; (ii) that all closed sets
are honest; and (iii) that one honest closed set is reachable from any initial state. Lemma 1 shows
that, if pA D 0 then some cheat set is closed. Given (ii), the necessity of pmin

A > 0 is motivated by
this claim. Hence, pA > 0 is assumed for the rest of the analysis. Lemma 2 shows that, if the major-
ity of workers is uncovered, no honest set is closed. Given (i), the necessity of a covered majority is
motivated. Hence, it is assumed that the majority of workers are covered for the rest of the analysis.
Lemma 3 shows that the honest set including all the states in which all covered workers are honest
is closed, which proves (i). Lemma 4 shows that any honest set where some covered worker is not
honest is not closed, and Lemma 5 shows that any set that is not honest is not closed. Together,
they prove (ii), and also (iii) because, if only honest sets are closed, there is a way of going from
non-honest sets to one of them. The overall result is established in Theorem 6.

Lemma 1
Consider any set of workers Z � W such that 8i 2 Z W WBY > ai . If jZj > n=2, then the set of
states S D f.pA,pC1, : : : ,pC n/j.pA D 0/ ^ .8w 2 Z W pC w D 1/g, is a closed cheat set.

Proof
Observe first that each state in S is a cheat state, because the master does not audit and a majority
of workers cheat. From transition (3) it can be seen that, if the chain is in a state of the set S before
round r , for each worker i 2 Z, pr

C i > pr�1
C i D 1 holds. In addition, pA does not change. Hence,

once the chain has reached a state in the set S , it will move only to states in the set S . �

As already mentioned, from this lemma, it is concluded that pA > 0 is required for eventual
correctness. From now on, it is assumed that in all rounds pA > pmin

A > 0.

Lemma 2
If there exists a set of workers Z � W such that jZj > n=2 and 8i 2 Z W WBY < ai C WCT , then
no honest set is closed.

Proof
Recall that we choose the value of ˛w so that 8i 2 W W n˛w.ai C WPC/ < 1. Consider any start-
ing state, which by assumption is an honest state, S D f.pA,pC1, : : : ,pC n/j9Y � W W .jY j >

n=2/ ^ .8w 2 Y W pC w D 0/g.
Let the set Z be divided in three sets depending on whether the workers are honest (pC D 0),

cheaters (pC D 1), or cheat with a probability between zero and one (0 < pC < 1). We denote
these sets by Z0, Z1, and Zb , respectively. In the next round, the master audits (possible because
pA > 0), workers in Z0 and Zb do not cheat and workers in Z1 cheat. Then from transition (2), all
workers in Z0 and Zb increase their probability of cheating. From transition (1), all workers in Z1

decrease their cheating probability by ˛w.ai CWPC/. Because all workers in Z1 are cheater workers
(pC D 1) and ˛w.ai C WPC/ < 1, after this round their cheating probability is larger than 0. Hence,
for all workers in Z their cheating probability is larger than 0 and the new state is not honest. �

Lemma 3
Consider any set of workers Z � W such that 8i 2 Z W WBY > ai C WCT and 8j … Z W WBY <

aj C WCT . If jZj > n=2, then the set of states S D f.pA,pC1, : : : ,pC n/j8w 2 Z W pC w D 0g, is
an honest closed set.

Proof
Consider any round r before which the state of the chain is s 2 S . Given that jZj > n=2, at round
r we have cheaters.r/ < n=2. Then, for all workers in Z, the transition function is either (2) or (6),

9



depending on whether the master audits or not. Then, given that WBY > ai C WCT for all workers
in Z, their probability of cheating after round r is still 0. Hence, the claim follows. �

Lemma 4
Consider any set of workers Z � W such that 8i 2 Z W WBY > ai C WCT and 8j … Z W WBY <

aj C WCT . Then, for any set of states S D f.pA,pC1, : : : ,pC n/j9Y � W W .jY j > n=2/ ^ .8w 2
Y W pC w D 0/ ^ .Z ª Y /g, S is not a closed set.

Proof
For the sake of contradiction, assume that S is a closed set. Then, after a round r when the state is
s 2 S , the chain remains in S forever. Given that jY j > n=2 and the assumption that S is a closed set,
at all rounds r 0 > r , we must have cheaters.r 0/ < n=2. Then, given that 8i 2 Z W WBY > ai CWCT ,
from the transition function, it can be seen that the probability of cheating of all workers in Z

decreases in every round, independently of whether the master audits or not. But then, at some
round r 0 > r , for all i 2 Z, pr 0

C i D 0 must hold. Then, Z � Y at round r 0, showing that S is
not closed. �

Lemma 5
Consider any set of workers Z � W such that 8i 2 Z W WBY > ai C WCT and 8j … Z W WBY <

aj C WCT . If jZj > n=2 and pA > 0, then for any set of states S D f.pA,pC1, : : : ,pC n/j9Y �
W W .jY j > n=2/ ^ .8w 2 Y W pC w > 0/g, S is not a closed set.

Proof
To prove this claim, it is enough to show that, after a round r when the state is s 2 S , with some
positive probability the chain moves out of S . Assume that, starting at some round r 0 > r , the
master audits in all rounds in Œr 0, r 00�, for a suitable r 00. Such assumption is valid because pA > 0.
Then, given that 8i 2 Z W WBY > ai C WCT , from the transition function it can be seen that the
probability of cheating of all workers in Z decreases in every round by an amount not smaller than
˛w minfWBY � ai � WCT ,WPC C aig. But then, at some round r 00 > r , for all i 2 Z, we have
pr 00

C i D 0. Therefore, jY j < n=2 at round r 00 showing that S is not closed. �

The following theorem shows that there is a positive probability of reaching some state after
which correctness can be guaranteed, as long as for a chosen majority of workers, the payment is
enough to cover their aspiration and cost of performing the task. Its proof follows directly from
Lemmas 3– 5.

Theorem 6
If pA > 0 and for all i 2 W W ˛w.ai CWPC/ < 1 then, in order to guarantee with positive probability
that, after some finite number of rounds, the system achieves eventual correctness, it is necessary

and sufficient to set WBY > ai C WCT for all i 2 Z in some set Z � W such that jZj > n=2.

Remark 1
From Algorithm 1, it is easy to see that once the closed set S D f.pA,pC1, : : : ,pC n/j8w 2 Z W
pC w D 0g is reached, eventually pA D pmin

A and stays such forever.

4.3. Convergence time

Theorem 6 gives necessary and sufficient conditions to achieve eventual correctness. However, in
order to have a practical system, it is necessary to bound the time taken to achieve it, which we call
the convergence time. In other words, starting from any initial state, we want to compute the number
of rounds that the Markov chain takes to reach an honest closed set. In this section, we show bounds
on the convergence time.

10



4.3.1. Expected convergence time. Let C be the set of all covered workers. We assume, as required
by Theorem 6, that jC j > n=2. From transitions (1) and (2) in the Markov chain definition, it can be
seen that it is enough to have a consecutive sequence of 1=.˛w minfWBY � ai � WCT ,WPC C ai g/
audits to enforce pC D 0 for all covered workers i 2 C . This gives the following upper bound on
the convergence time.

Theorem 7
The expected convergence time is at most �=.pmin

A /�, where � D 1=.˛w mini2C fWBY � ai �
WCT ,WPC C aig/, and C is the set of covered workers.

Proof
The expected convergence time is upper bounded by the expected time for � consecutive audits.
Consider the time divided in phases of � rounds. Let a phase where the master audits in all rounds
be called successful. The expected time for � consecutive audits is at most the expected time for a
successful phase. The probability of success in any given phase is at least .pmin

A /�. Consider the
probability distribution of the number X of phases needed to have success, each with probability
.pmin

A /�. This distribution is geometric, and the expectation of X is 1=.pmin
A /�. Given that each

phase has � rounds, the claim follows. �

The upper bound shown in Theorem 7 may be too pessimistic for certain values of the parameters.
The following theorem provides a tighter bound under certain conditions.

Theorem 8
Let us define, for each worker i , deci , ˛w minfWPC C ai ,WBY � WCT � aig, inci ,
˛w maxfWBY � ai ,WCT C aig. Let C be the set of covered workers. If pmin

A D
maxi2C finci=.inci C deci /g C ", for some 0 < " < 1 � maxi2C finci=.inci C deci /g, then
the expected convergence time is 1=.".mini2C fdecig C maxi2C fincig//.

Proof
Let us define a potential function � over the rounds as follows. Initially �.0/ D maxi2C fp0

C ig.
Then, for each round r > 0, �.r/ D �.r � 1/ if �.r � 1/ D 0. If �.r � 1/ > 0, then
�.r/ D max.0,�.r � 1/ � minj2C fdecj g/ if the master audits in round r > 0, and �.r/ D
�.r � 1/ C maxj2C fincj g otherwise.

Consider any worker i 2 C , and observe that, in the extreme cases, pC i decreases by
minj2C fdecj g when the master audits and increases by maxj2C fincj g when the master does not
audit. Also, once all workers in C have pC i D 0, this value does not change, because there is a
majority of honest workers. Hence, it is clear that for all r > 0, �.r/ 6 maxi2C fpr

C ig.
As a worst case, assume that �.0/ D 1. We compute the expected number of rounds needed

to obtain � D 0 as follows. We need 1=deci audits for each 1=inci non-audit rounds to com-
pensate for the increase in potential. Setting pmin

A D inci=.inci C deci / the master achieves at
least that ratio in expectation for any period. (Omitting that time is discrete for clarity.) Addition-
ally, in order to compensate for the initial �.0/ D 1, 1=deci additional audits are needed. Making
pmin

A D inci=.inci Cdeci /C", for some 0 < " < 1�inci =.inci Cdeci /, the expected convergence
time is 1=.".mini2C fdecig C maxi2C fincig//. �

The following corollary is derived from the previous theorem for a suitable scenario.

Corollary 9
If WPC C ai > WBY � WCT � ai and WBY � ai 6 WCT C ai , 8i 2 C , and if pmin

A D
WCT Cmaxi2C ai

WBY
C", where C is the set of covered workers and 0 < " < 1�.WCT Cmaxi2C ai /=WBY ,

then the expected convergence time is �=", where � D 1=.˛w1WBY/.

11



4.3.2. Probabilistic bound on the number of rounds for convergence. We show now that, under
certain conditions on the parameters of the system, it is possible to bound the probability to achieve
convergence and the number of rounds to do so. Assume that p0

A > 0. Because pA is not changed
unless the master audits, we have the following.

Lemma 10
Let p0

A D p > 0. Then, the master audits in the first � D ln.1="1/=p rounds with probability at
least 1 � "1, for any "1 2 .0, 1/.

Proof
The master audits in the first � rounds with probability 1� .1�p/� > 1�exp.�� �p/ D 1�"1. �

Let us assume that the system parameters are such that, for all workers i , ˛w.WPC C ai / 2 Œ0, 1�

and ˛w.WBY � WCT � ai / 2 .0, 1� (all workers are covered). Let us define dec_cheater ,
˛w minifWPC C aig and dec_honest , ˛w minifWBY � WCT � ai g. From transitions (1) and (2),
we derive the following lemma.

Lemma 11
Let r be a round in which the master audits, and F be the set of cheaters in round r . Then,

pr
C i 6 1 � ˛w.WPC C ai / 6 1 � dec_cheater ,8i 2 F

pr
Cj 6 1 � ˛w.WBY � WCT � aj / 6 1 � dec_honest ,8j … F .

Let us denote the sum of all cheating probabilities before a round r as P r�1 ,
X

i

pr�1
C i .

Lemma 12
Let r be a round in which the master audits such that P r�1 > n=3. If dec_cheater > dec_honest

and dec_cheaterC3�dec_honest > 8=3, then P r 6 n=3 with probability at least 1�exp.�n=96/.

Proof
Let F be the set of cheaters in round r . Then, using a Chernoff bound P rŒjF j < .1 � ı/P r�1� 6
exp.�ı2P r�1=2/, for any ı 2 .0, 1/. Then, because P r�1 > n=3, using ı D 1=4, there are at least
.1 � ı/P r�1 > n=4 cheaters with probability at least 1 � exp.�ı2P r�1=2/ > 1 � exp.�n=96/. If
that is the case, from Lemma 11 and dec_cheater > dec_honest , we have that

P r 6 n � jF jdec_cheater � .n � jF j/dec_honest 6 n � .n=4/dec_cheater

� .3n=4/dec_honest D n.1 � .dec_cheater C 3 � dec_honest/=4/ 6 n=3,

as desired. �

Let us now define deci , ˛w minfai ,WBY�WCT �ai g. Let, dec , mini deci . Assume WPC > 0

and ai > 0, for all workers.

Lemma 13
Consider a round r such that P r�1 6 n=3. Then, with probability at least 1 � exp.�n=36/ each
worker i has pr

C i 6 maxf0,pr�1
C i � decg, and hence P r 6 n=3.

Proof
Using Chernoff, there is a majority of honest workers with probability at least

P rŒmajority honest jP r�1 6 n=3� > 1 � exp.�.1=2/2.n=3/=3/ D 1 � exp.�n=36/.

12



It can be observed in Algorithm 2 that, if there is a majority of honest workers in a round r , then
any worker i has pr

C i 6 maxf0,pr�1
C i � decg, independently of whether the master audits. Hence

the proof. �

Theorem 14
Assume ˛w.WPCCai / 2 Œ0, 1� and ˛w.WBY�WCT �ai / 2 .0, 1� for all workers i . (Observe that all
workers are covered.) Let dec_cheater , ˛w minifWPC C aig, dec_honest , ˛w minifWBY �
WCT � aig, and dec , ˛w minifai ,WBY � WCT � aig. If p0

A D p > 0, dec_cheater >
dec_honest and dec_cheater C 3 � dec_honest > 8=3, then eventual convergence is reached
in at most ln.1="1/=p C 1=dec rounds, with probability at least .1 � "1/.1 � exp.�n=96//.1 �
exp.�n=36//1=dec , for any "1 2 .0, 1/.

Proof
Consider the first round r in which the masters audits. From Lemma 10, r is in the first ln.1="1/=p

rounds with probability at least 1�"1. If so, either P r�1 6 n=3 and also P r 6 n=3 (from Algorithm
2 and the fact that the master audits in round r , P cannot increase in round r), or P r�1 > n=3. In
this latter case, from Lemma 12, P r 6 n=3 with probability at least 1 � exp.�n=96/. Then starting
at round r C 1, from Lemma 13, with probability at least .1 � exp.�n=36//1=dec , there are 1=dec

consecutive rounds with majorities of honest workers. Because in each of these rounds the cheating
probability of any worker decreases at least by dec (unless it is already zero), at the end of these
rounds all workers have zero cheating probability. �

5. SIMULATIONS

This section complements our analytical results with illustrative simulations. The graphical repre-
sentation of the data obtained captures the tradeoffs between reliability and cost, a concept hard to
view through the analysis. This is important as our analytical upper bounds on convergence time
correspond to worst case scenarios. Here, we present simulations for a variety of parameter com-
binations likely to occur in practice. We have created our own simulation setup by implementing
our mechanism (the master’s and the workers’ algorithms) using the C++ programming language.
We have run our simulations on a PC with an Intel Core 2 Duo, 2.80 GHz CPU, 4 GB of RAM
and Ubuntu 11.04 OS. Each depicted plot value represents the average over 10 executions of the
implementation. The plots of Figure 4 are an exception, and the plotted values represent only 1 exe-
cution of the implementation; the purpose is to illustrate the per round cost of the master. We have
simulated several scenarios for different parameter values (here we present selected results).

5.1. Simulation parameters

We choose sensible parameter values likely to be encountered in real applications; the choice
of the parameters was influenced by statistics obtained from experiments contacted in SETI-like
projects [46–48]. In particular, the number of workers has been set to nine (an odd number to
accommodate majority voting when the master does not audit). In systems such as Seti@home,
typically, each task is assigned to three workers [2]. So, in that context, nine workers seems an
appropriate workforce. The initial cheating probability of each worker i is not known; therefore, we
have experimented with pC i D 0.5, as a reasonable assumption, and with pC i D 1 as an extreme
case. Similarly, we have set pA 2 f0.5, 1g as the master’s initial probability of auditing. The mini-
mum probability of cheating is set to be pmin

A D 0.01 and tolerance � D 0.5, which means that the
master will not tolerate a majority of cheaters. Besides this intuition on the value of tolerance, we
also carried out a set of experiments to understand the effect of this parameter, on which we will
comment later.

The payoffs for the workers are set using WBY 2 f1, 2g as our normalizing parameter, and we
take WPC 2 f0, 1, 2g and WCT D 0.1 as realistic values (within the same order of magnitude as
WBY ) to explore the effects of these choices. The payoffs for the master are set to MCA D 20, a
large value allowing us to notice the impact of auditing, and we take MCY D WBY D 1. We have

13



 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 20 40 60 80 100 120 140

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 20 40 60 80 100 120 140

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b)

Figure 1. Cheating probability for each worker as a function of time (number of rounds) for parameters
pC D pA D 0.5, WBY D 1, WPC D 0, WCT D 0.1 and ai D 0.1. (a) ˛ D 0.01; (b) ˛ D 0.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 200 400 600 800 1000

pA

time

master

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

pA

time

master

Figure 2. Auditing probability for the master as a function of time (number of rounds) for parameters
pC D pA D 0.5, WBY D 1, WPC D 0, WCT D 0.1 and ai D 0.1. Left: ˛ D 0.01; Right: ˛ D 0.1.

set MBR D 0 and MPW D 0 to have a clear view of the master’s cost. In the simulations, unless
otherwise stated, the master covers all workers and not some majority as assumed in the analysis (as
a worst case scenario with respect to the master’s cost).

The aspiration is a parameter defined by the workers in an idiosyncratic manner; for simplicity,
in these simulations, we consider all workers having the same aspiration level ai 2 f0.01, 0.1g. We
have checked that, when values are assigned randomly around some mean, the results are similar
to those presented here, provided the variance is not very large. As for the values for the aspiration
and of the workers’ cost for computing the task WCT , they are such that the necessary conditions of
Theorem 6 are satisfied, and hence, eventual convergence is reached. Finally, we consider the same
learning rate for the master and the workers, that is, ˛ D ˛m D ˛w . For practical reasons [13], it
must be set to a small constant value, so we consider ˛ 2 f0.1, 0.01g.

5.2. Convergence time

Figure 1 shows that convergence can be reached very quickly, even without punishing cheaters and
with small WBY . Note that even if all workers have the same aspiration level and begin with the same
initial cheating probability, their evolution in time may be different from each other as it depends
on the individual realizations of cheating. In Figure 1, we also notice that a slightly higher value
of ˛ can make the convergence time shorter. (As we argued before, the value of ˛ can not be very
high because the learning procedure will become unstable and pC will bounce up and down without
reaching convergence.) Similar conclusions can be drawn from Figure 2, where we can notice how
quickly pA drops to pA D 0.01, and also that pA decreases in the same manner as pC . Notice
however, that pA decreases at a slower rate; intuitively, this is to ensure that workers will not try to
deviate from the desirable behavior.

14



 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 5 10 15 20 25 30 35 40

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 5 10 15 20

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 5 10 15 20

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(c)

Figure 3. Cheating probability for each worker as a function of time (number of rounds) for parameters
pC D pA D 0.5, ˛ D 0.1, ai D 0.1, WBY D 2 and WCT D 0.1. (a) WPC D 0; (b) WPC D 1; (c) WPC D 2.

5.3. Effects of punishment

Notice that in previous simulations only a positive reinforcement is applied to the workers (i.e.,
WPC D 0). Now, from Figure 3, we can notice that the larger the punishment we apply (i.e.,
WPC 2 f1, 2g), the faster the convergence time is. In fact, we may conclude that applying only pun-
ishment is enough to have fast convergence. Comparing Figure 1(b) with Figure 3(a), we observe
that, for a specific set of parameter values, a larger WBY leads to a shorter convergence time. Inter-
estingly, this observation reveals a trade-off between convergence time and the cost the master has
for reaching faster convergence and maintaining it. Thus, the master could choose between different
protocols estimating the cost of the auditing until it reaches convergence. But less auditing leads to
larger convergence times. So it is not clear initially what is going to be optimal.

5.4. Master’s cost

Recall from the simulation parameters that only the cost of auditing and the workers’ payment are
nonzero, and that the master covers all workers (instead of some majority as in the analysis). We
contrasted first a worst case scenario where workers initially cheat with probability pC D 1, against
the case where, given the lack of knowledge about worker’s behavior, we assume that initially
pC D pA D 0.5 (refer to Figure 2).

The first conclusion we can draw from our simulations is that, even in this unfavorable situ-
ation, eventual convergence is still achieved. However, during the process, the master’s auditing
probability reaches 1 for the system to converge. Of course, this has a direct impact on the cost of
convergence, but also on the convergence time. Denote by pA.0/ the master’s initial auditing prob-
ability. Interestingly, from Figure 4(a2), (a3), (b2), and (b3), we observe that, when pA.0/ D 1, the
convergence time decreases by 9%, and that even pA converges to its minimum in 25% less time
yielding also a cost reduction. In fact, during the first 10 rounds of evolution, for pA.0/ D 0.5, the
aggregate cost for the master is 56% smaller (Figure 4(a1)) than when pA.0/ D 1 (Figure 4(b1)).
However, in the subsequent interval between pmin

A < pA < 1, the situation is reversed, and the mas-
ter’s cost for pA.0/ D 1 is 19% smaller than the case pA.0/ D 0.5. These results show that using

15



Figure 4. Top panel, master’s cost as a function of time. Middle panel, master’s auditing probability as a
function of time. Bottom panel, worker’s cheating probability as a function of time. Parameters in all panels,
pC D 1, WCT D 0.1, WPC D 0 and ˛ D 0.1. Left panel, pA D 0.5, ai D 0.1. Middle panel pA D 1,

ai D 0.1. Right panel pA D 1, ai D 0.01.

pA.0/ D 1 does not necessarily increase cost as the intuition might suggest. After convergence is
achieved, Figure 4(a1), (b1), and (c1) show that, once the master’s auditing probability has reached
its minimum value, the master audits roughly once every hundred rounds, which is expected given
that pmin

A D 0.01. This behavior is observed independently of the initial auditing probability, which
is also expected.

Another surprising result, arising from Figure 4(b3) and (c3), is that having workers with larger
aspiration values makes the convergence time decrease by more than a half. The reason being that
the master initially audits with probability one and all workers cheat, so a larger aspiration causes the
workers’ cheating probability to drop at a higher rate. This, in turn, feeds back to the master’s audit-
ing probability and cost, making them decrease faster than the case where workers have a smaller
aspiration.

We have also examined the case where only a majority of workers is covered. Specifically, we
have run analogous simulations to the ones depicted in Figure 4, but now covering only five out
of the nine workers. A first, interesting observation, is that the convergence time for the covered
workers is not affected. An even more interesting observation is that the master’s cost, until pmin

A
was reached, is greater than the case of all covered workers. This is due to the slower rate at which
pA reaches its minimum value. Of course, after this point, the master’s cost is smaller because it
rewards fewer workers.

5.5. Tolerance value

Finally, we have also considered the effect of tolerance for achieving eventual convergence using
three different initial pC 2 f0.3, 0.5, 1g. Choosing 5000 iterations as a value large enough to illus-
trate the problems of convergence for high tolerance (values of the same order of magnitude or
larger give basically the same results), we have found that convergence will always be reached for
the lower values of pC . This is due to the fact that with ‘almost’ honest workers, a majority of them

16



will always compute the answer and will force punishment to the minority of cheaters. However,
when the initial pC equals one and there is no punishment (WPC D 0), the master must respond
to a percentage of cheating workers (due to tolerance) to obtain eventual convergence, and as a
consequence convergence is not achieved for large tolerance values (for this specific set of parame-
ters, when � > 0.9). Interestingly, with nonzero punishment (WPC D 1), the master can tolerate all
workers cheating and still achieve convergence. Therefore, our simulated examples establish that,
based on the rest of the parameter values, the master can appropriately set values for tolerance � ,
(its own) learning rate ˛, punishment WPC and perhaps WBY in such a way that convergence can be
swiftly obtained.

6. CONCLUSIONS AND FUTURE WORK

This work applies reinforcement learning techniques to capture the evolution of Internet-based
master–worker computations. We show that under necessary and sufficient conditions, the mas-
ter reaches a state after which the correct task result is obtained at each round, with minimal cost.
In addition, we show that such state can be reached ‘quickly’. The convergence analysis is comple-
mented with simulations. Our simulation results suggest that when having a positive reinforcement
learning (i.e., WPC D 0) the master can reach fast convergence, while applying punishments (i.e.,
WPC 2 f1, 2g) provides even faster convergence. In fact, we may conclude that applying only pun-
ishment is enough to have fast convergence. Also, our simulations demonstrated that it is plausible,
even if the master begins with an aggressive auditing strategy, to have a smaller cost and convergence
time compared with the case of using a less aggressive auditing policy.

The analysis has provided us with provable guarantees of our approach, and the simulations give
an insightful view that is hard to detect from the analysis. In view of the potential of our approach,
the next logical step is to do real-world experiments, which is the context of our future work. How-
ever, such kind of experiment is nontrivial. We are currently in the stage of designing such real-world
experiments. We expect to obtain interesting results when comparing our current approach with the
observed behavior of real workers. In a follow up work, we additionally consider the presence
of malicious workers that always provide the master with an incorrect answer. This will provide
additional fault tolerance and security to the system.

ACKNOWLEDGEMENTS

We thank Carlos Diuk for useful discussions on reinforcement learning. This work is supported by the
Cyprus Research Promotion Foundation grant TΠE/…ƒHPO/0609(BE)/05, the National Science Founda-
tion (CCF-0937829, CCF-1114930), Comunidad de Madrid grants S2009TIC-1692 and MODELICO-CM,
Spanish PRODIEVO and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National
Natural Science Foundation of China grant 61020106002. Conference version: A preliminary version of this
work, entitled ‘Achieving Reliability in Master–Worker Computing via Evolutionary Dynamics’ appears in
the proceedings of Euro-Par 2012, pages 451–463.

REFERENCES

1. Anderson D. BOINC: a system for public-resource computing and storage. In proc. of GRID 2004; 4–10.
2. Korpela E, Werthimer D, Anderson D, Cobb J, LebofskyM. SETI@home: massively distributed computing for SETI.

Computing in Science and Engineering 2001; 3(1):78–83.
3. Amazon’s Mechanical Turk. https://www.mturk.com.
4. Golle P, Mironov I. Uncheatable distributed computations. In proc. of CT-RSA 2001; 425–440.
5. Heien EM, Anderson DP, Hagihara K. Computing low latency batches with unreliable workers in volunteer

computing environments. Journal of Grid Computing 2009; 7:501–518.
6. Abraham I, Dolev D, Goden R, Halpern JY. Distributed computing meets game theory: robust mechanisms for

rational secret sharing and multiparty computation. In proc. of PODC 2006; 53–62.
7. Shneidman J, Parkes DC. Rationality and self-interest in P2P networks. In Proc. of IPTPS 2003; 139–148.
8. Sarmenta L. Sabotage-tolerance mechanisms for volunteer computing systems. Future Generation Computer Systems

2002; 18(4):561–572.
9. Fernández Anta A, Georgiou C, Mosteiro MA. Designing mechanisms for reliable Internet-based computing. In

proc. of NCA 2008; 315–324.

17



10. Fernández Anta A, Georgiou C, MosteiroMA. Algorithmic mechanisms for Internet-based master-worker computing
with untrusted and selfish workers. In proc. of IPDPS 2010; 1–11.

11. Yurkewych M, Levine BN, Rosenberg AL. On the cost-ineffectiveness of redundancy in commercial P2P computing.
In proc. of CCS 2005; 280–288.

12. Bush RR, Mosteller F. Stochastic Models for Learning. Wiley, 1955.
13. Szepesvári C. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, Morgan & Claypool publishers, 2010.
14. Bendor J, Mookherjee D, Ray D. Aspiration-based reinforcement learning in repeated interaction games: an

overview. International Game Theory Review 2001; 3(2-3):159–174.
15. Camerer CF. Behavioral game theory: experiments in strategic interaction. Roundtable Series in Behavioral

Economics 2003.
16. Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge

University Press, 2010.
17. Gintis MC. Game Theory Evolving. Princeton University Press, 2000.
18. Weibull JW. Evolutionary Game Theory. MIT Press, 1995.
19. Halpern JY. Computer science and game theory: a brief survey. Palgrave Dictionary of Economics 2007.
20. Abraham I, Alvisi L, Halpern J, Y. Distributed computing meets game theory: combining insights from two fields.

ACM SIGACT News: Distributed Computing Column 2011; 42(2):69–76.
21. Nisan N, Roughgarden T, Tardos E, Vazirani VV. Algorithmic Game Theory. Cambridge University Press, 2007.
22. Fernández A, Georgiou C, Lopez L, Santos A. Reliably executing tasks in the presence of untrusted processors. In

proc. of SRDS 2006; 39–50.
23. Konwar KM, Rajasekaran S, Shvartsman AA. Robust network supercomputing with malicious processes. In proc. of

DISC 2006; 474–488.
24. Christodoulou G, Koutsoupias E. Mechanism design for scheduling. Bulletin of the EATCS 2009; 97:39–59.
25. Nisan N, Ronen A. Algorithmic mechanism design. Games and Economic Behavior 2001; 35:166–196.
26. Nash JF. Equilibrium points in n-person games. National Academy of Sciences 1950; 36(1):48–49.
27. Nowak MA. Evolutionary Dynamics. Harvard University Press, 2006.
28. Maynard-Smith J. Evolution and the Theory of Games. Cambridge University Press, 1982.
29. Maynard-Smith J, Price GR. The logic of animal conflict. Nature 1973; 246:15–18.
30. Henrich J, McElreath R. The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and Reviews

12.3, 2003:123–135.
31. Borgers T, Sarin R. Learning through reinforcement and replicator dynamics. Journal of Economic Theory 1997;

77(1):1–14.
32. Samuelson L. Evolutionary Games and Equilibrium Selection. MIT Press, 1998.
33. Bendor J, Mookherjee D, Ray D. Reinforcement learning in repeated interaction games. Advances in Theoretical

Economics 2001; 1(1).
34. Laslier J, Topol R, Walliser B. A behavioral learning process in games. Games and Economic Behavior 2001;

37:340–366.
35. Izquierdo LR, Izquierdo SS. Dynamics of the Bush-Mosteller learning algorithm in 2x2 games. Reinforcement

Learning: Theory and Applications 2008.
36. Phelps S, McBurney P, Parsons S. Evolutionary mechanism design: a review. Journal of Autonomous Agents and

Multi-Agent Systems 2010.
37. Conitzer V, Sandholm T. Incremental mechanism design. In Proc. IJCAI 2007.
38. Babaioff M, Feldman M, Nisan N. Combinatorial agency. In proc. of ACM EC 2006; 18–28.
39. Babaioff M, Feldman M, Nisan N. Mixed strategies in combinatorial agency. In proc. of WINE 2006; 353–364.
40. Eidenbenz R, Schmid S. Combinatorial agency with audits. In proc. of GameNets 2009.
41. Babaioff M, Feldman M, Nisan N. Free riding and free labor in combinatorial agency. In proc. of SAGT 2009.
42. Mass-Colell A, Whinton M, Green J. Microeconomic Theory. Oxford University Press, 1995.
43. Rose D, Willemain TR. The principal-agent problem with evolutionary learning. Computational and Mathematical

Organization Theory 1996; 2:139–162.
44. Taufer M, Anderson D, Cicotti P, Brooks CL. Homogeneous redundancy: a technique to ensure integrity of molecular

simulation results using public computing. In proc. of IPDPS 2005.
45. BOINC Security. http://boinc.berkeley.edu/wiki/BOINC_Security.
46. Einstein@home. http://einstein.phys.uwm.edu.
47. Estrada T, Taufer M, Anderson DP. Performance prediction and analysis of BOINC projects: an empirical study with

EmBOINC. Journal of Grid Computing 2009; 7(4):537–554.
48. WUProp@home. http://wuprop.boinc-af.org/.

18




