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SUMMARY

In the road to the Exascale computing, it is known that the target is not only to increase the performance, but
also to achieve an affordable level of power drained by such kind of systems. The energy issue needs to be
tackled at different levels, from the system level to the processor level. There are studies that show that the
processor itself is the component of the system that is responsible for most of the energy consumed.
Performance tools will play an important role to make the applications take benefit of the performance of
these systems. These tools can be extended to provide power metrics and thus report for each region of code
its energy consumed in addition to the performance achieved. We present in this paper a performance tool
that takes advantge of recent processor capabilities to measure its own power consumption. The results of the
tool are passed to a mechanism called folding that produces detailed metrics and source code references by
using coarse grain sampling. We have used the tool with multiple serial benchmarks and also with some MPI
applications to demonstrate its usefulness by locating hotspots in terms of performance and power drained.
Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Supercomputers have improved their performance in every new generation, but as supercomputers
grow, so does their energy consumption [1, 2]. This tendency will continue in the road to the
Exascale computing during the forthcoming years [3, 4]. While in the past the supercomputer
community has mainly targeted to increase the performance efficiency to reduce the amount of time
needed to execute the applications, now they are focusing also on the power efficiency. In either
the performance or power context, it is important to have a mechanism to measure the efficiency
of a system before having any possibility of improving it. Some experiments [5] have shown that
the CPU is responsible for half of the power needed by the whole system. Thus, as it happened
in the performance analysis area, it is important to observe the evolution of the power in order to
ultimately reduce it [6].

In the performance context, performance tools are pieces of software to assist in the optimization
of applications by giving comprehensive details of their inefficiencies. These tools use different
techniques to inject monitors into the application so as to get information as the application
runs. The monitors are responsible for gathering performance metrics (including time, number of
occurrences, hardware counters) so as to allow a subsequent analysis that correlates the metrics with
the application region of code. Tools like Scalasca [7], Vampir [8], HPCToolkit [9], TAU [10] and
Paraver [11] have not only proven useful by providing different levels of insights that lead the user
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2 H. S. ANDOTHERS

to understand and even improve the performance of their application, but also gather information of
the application in a simple fashion without excessive overhead.

Opposite to the performance monitoring, power monitoring is rather more complex. There are
several methods to evaluate the power consumption: by attaching a powermeter that samples the
consumed power to the power supply unit by the whole system or by individual components
[12, 13, 14, 15], by simulating and estimating the CPU power consumption by using low-level
simulators [16, 17, 18, 19], or by using power models derived from the performance counters
[20, 21, 22]. In order to provide detailed performance and power measurements, adding a device
to each node of a in production supercomputer is not a feasible approachbecause most of the
supercomputers have the physical access restricted and it would resultinto a costly solution.
Using low-level simulators is not feasible either because they cannot handle whole executions of
applications, and when the execution is reduced, they need long executiontimes to provide the
results. Finally, power models derived from the performance counters need several performance
counters to be read simultaneously, a capability that cannot be always be fulfilled by the processor,
and also the power model may vary between different versions of the sameprocessor. To alleviate
such problem, Intel has recently introduced into their SandyBridge processors the Running Average
Power Limit (RAPL) infrastructure [23, 24]. RAPL offers a mechanism to limit, control and
monitor of the power and energy usage of a single processor socket and PAPI [25] has added a
component† that interfaces the RAPL monitors thus offering a seamless integration to performance
tools that already use PAPI. The inclusion of this component into PAPI, allows the aforementioned
performance tools to integrate the power and energy metrics without any modification and gain a
correlation between the power consumption with other performance metrics oreven the application
source code.

In this paper we present a performance tool that uses the RAPL infrastruscture to measure the
energy consumption. We demonstrate that power and energy consumption can be studied in a similar
way to performance when analyzing full application executions in production environments. Here
we show and analyze the energy consumption and efficiency of multiple benchmarks and parallel
applications in different execution conditions. While most of the tools typically provide average
performance information at application or routine level, our work focus onproviding instantaneous
metrics of the energy and performance behavior along the application code. To do so, we take the
advantage of one existing performance tool, named folding [26], that finely describes the behavior
of the performance of the application and we adapt it to use the energy metrics. We will present the
instantaneous power consumption of these applications compared to the application performance
and activity and will also analyze the results. We will also study whether the Dynamic Voltage and
Frequency Scaling (DVFS) mechanism impacts the overall performance and energy behavior of the
applications, and also the effects of using the multiple cores available in the socket.

The rest of the paper is structured as follows. In the following section, webriefly review the
related work. In section3 we introduce the RAPL mechanism as described by Intel which is used
to gather the power and energy usage. In section4 we present the mechanism used to extremely
detail the evolution of both power and performance in a region of code by using coarse grain
sampling and we also present the modifications applied to the mechanism to accommodate the
counters offered by RAPL. We continue by doing a thorough study of thepower and performance
of different benchmarks and parallel applications in Section5. Finally, we draw some conclusions
in Section6.

2. RELATED WORK

We present in this section different approaches to generate reports ofpower consumption. As we
mentioned, there are several methods to analyze the power consumption of asystem, but contrary
to our solution, none of them report instantaneous performance and power measurements for full

†Available in their GIT repository when this paper was writtenand it will be publicly available in PAPI version 5.0.
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application runs in production conditions. Here we select and summarize someof the work that use
each of these methods and we compare them with our work.

PowerMon [12] is a device intended to produce accurate, fine-grained power measurements in
computing systems. The device interfaces directly with most computing systems using the standard
ATX pin configuration and provides fine measurement by using sampling (witha frequency up to
1024 Hz). It can monitor disks, graphical processing units (GPUs) andother peripherals, as opposite
to RAPL. RAPL, however, does not need neither need to plug any deviceinto the computer nor
using a special piece of software. The usage of PAPI to access the RAPL infrastructure allows an
easy mechanism to gather RAPL instead of requiring physical access as needed by PowerMon.
We combine performance and power metrics so as to study their possible correlations in order to
mitigate the overall energy consumption. Our solution uses the folding mechanism, which converts
the performance and power data gathered using sampling into a continuous function of time,
allowing us to provide much more finer details, even at microsecond level.

Wattch [18] is a cycle-level architectural simulator that estimates CPU power consumptionof
every component of the socket by applying power consumption models. This type of simulation
requires full instrumentation of the application, making the power estimation of thefull execution
unmanageable, not only because the data size to be gathered, but also because the time needed
to produce the results. The solution we propose takes advantage of current performance tools, to
integrate the power consumption into their available metrics. These performance tools typically
show small or negligible overhead, giving the user or the analyst the possibility to analyze the full
execution.

Bertran and others presented in [20] a methodology for producing power models based on
performance monitoring counters. They focus on the responsivenessof the model,i.e. a model that
rapidly adapts to power changes. The inputs of the model proposed are component activity ratios,
which summed up results in a power estimation of the whole system. The work we propose takes
advantage of a component of the CPU that works as a powermeter by estimating the power and
energy consumption based on the processor execution. This componentsaves us using additional
performance counters, which would end up in implementing a multiplexing algorithmto gather all
the performance counters needed with the consequent accuracy loss,and also avoids the need to
generate and, specially, to validate a power model for each processor.In our work we do rely on the
monitors provided by the chip manufacturer.

The work described in [15] combines a self designed and implemented power meter that is
attached to the computer with the Paraver performance analysis tool. The attached device emits
at a frequency that range from 25 to 100 Hz the power consumption of thesystem. The resulting
combination allows the authors to enrich the traces that contain information with power information,
giving the analyst the chance to correlate the source code and the parallel runtime calls with power
metering reads. Their method of work consists on getting accumulated power measurements at
node level by using low sampling rates for previously instrumented regions of code. Their work
requires that all the cores have to execute one of the instrumented regions. While the work we
propose tackles the same problem, our work is aimed at generating extremely detailed power and
performance results by combining instrumentation and sampling information. In our approach, we
do only need to instrument the entry and exit points of a region and by smartly combining the
sampling and instrumentation information we are able to present the temporal evolution of the
power and performance metrics along the instrumented region. Also, the work described here, use
a component embedded into the processor, thus removing the need of attaching a device into the
system to obtain power measurements.

Other performance tools like Scalasca, Vampir, HPCToolkit and TAU, amongothers, provide
performance information based on the processor hardware counters by using the PAPI interface.
These tools provide performance metrics for different sections of the application code. Although
these tools would benefit from using the RAPL component from PAPI to supply energy consumption
for the application code, to our knowledge our mechanism is the first one to use the integrated
mechanism to report the processor power usage.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(0000)
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4 H. S. ANDOTHERS

3. TRACKING POWER CONSUMPTION

The Intel® SandyBridge processors introduce a new infrastructure within the chip named Running
Average Power Limit (RAPL). The RAPL infrastructure is responsible for running within user-
given (or system-given) power constrains. The functional part thatis in charge for such feature is
called Package Control Unit (PCU) and is a combination of dedicated hardware state machines and
an integrated controller. The PCU is connected to power management agentswhich are responsible
for collecting information such as power consumption and temperature, and also, for controlling
transitions between processor performance states (P-states) and processor operating states (C-
states). To predict the socket’s active power consumption, the PCU collects events from the cores,
the I/O and the integrated GPU and weights them with energy factors that depend on the processor
itself. The resulting power consumption is scaled accordingly with operation conditions such as
voltage and frequency of execution.

The RAPL infrastructure is accessible through the processor model specific registers‡ (MSR).
Although the usage of MSR is restricted to be accessed only from the kernel mode, a regular user
can read them in the Linux operating system if the/dev/cpu/*/msr files have the appropriate
read flags. The RAPL interface exposes several domains of power distributed for every processor
socket and each can be monitored and limited in an independent way. The RAPL domains consist
of package domain (i.e. the whole socket), the basic power plane (i.e. the cores of a single processor
socket), memory domain (i.e. the directly-attached DRAM), and, optionally, an additional power
plane (i.e. typically assigned to the integrated GPU).

As noted earlier, RAPL allows gathering information about energy consumption of every
RAPL domain through its power metering interface. According to the Intel manual, the energy
consumption information is updated at a frequency rate of 1 KHz, and by default, the processor
socket reports the energy measurements in multiples of 15.2 nJoules. Also, itis important to note
that, opposite to the performance counters which count events for a particular process, the RAPL
component sums up all the energy used by the entire socket. Although the frequency rate seems
high, we will discuss in the following section how to convert the energy measurements into a almost
continuous function so as to provide finer information for a region of code.

4. FOLDING

There are two mechanisms a performance tool can use to gather metrics froman application:
sampling and instrumentation. Whereas the former is meant to gather metrics by issuing probes
periodical and independently from the application source code, the latter refers to inject probes
at specific application points. To give more insights of the application behavior, the performance
tool may increase the sampling frequency or instrument other application points. But, no matter
what mechanism a tool uses, the more detailed results requested, the more overhead the application
suffers during execution.

To alleviate the problem, the folding mechanism [26] combines performance information
(including callstack references and performance counters) gatheredfrom both instrumentation
and sampling points to describe the performance evolution in a synthetic region. The folding
mechanism takes advantage of the repetitive patterns found in many applications to provide very
detailed progression of the application performance even using coarse grain sampling. It has been
demonstrated in [27] that, the longer the application run, the lesser difference between the results of
fine grain-sampling and those obtained by the combination of coarse grain sampling and folding (up
to a difference of 5%). Thus the usage of coarse grain sampling and the folding mechanism brings
the analyst detailed application performance data without incurring a negligible overhead during the
application run.

‡For further reference, seeIntel® 64 and IA-32 Architectures Software Developers’ Manual: Volume 3 (3A, 3B & 3C):
System Programming Guide.
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Figure 1. The top figure shows the actual execution of the application with the data gathered at sampling
(through flags) and instrumentation points. The bottom figure represents the folded results and where the

flags are colored and indexed according to the original iteration they come from.
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annotated into the source code using GVim

Figure 2. Folding results for the main time-step function (adi) in the NAS BT benchmark.

Folding works by projecting the performance data associated to each sampleinto synthetic
representative instances of a computation region that has been delimited by instrumentation. The
folding uses the instrumented and the sampled information for two different objectives. While
the instrumented data delimits the duration and the aggregate performance counter, the sampled
information tracks the progression of the performance counter and the call-site references within
the region. More precisely, the folding maps every sample found within a computation region into
their respective synthetic region by preserving their relative time. As a result of doing this for
every sample, the synthetic regions get populated with performance metrics that depict the internal
evolution of the computing region as depicted in Figure1.

In Figure 2(a) we illustrate the results of the folding mechanism applied to the executed
instructions counter when applied to the NAS bt.B [28] time-step function (adi). The set of red
crosses are shown on the left Y-axis and describes the cumulative of theinstructions executed since
the beginning ofadi. That is, a cross at position(X,Y ) represents a sample that occurred at time
X within adi and that has executedY instructions since the beginning of the routine (at(0, 0)).
Once the samples are mapped into the synthetic region we apply a contouring algorithm which will
report a continuous evolution of the aggregated metric within the region. By using this continuous
evolution we calculate the instantaneous counter rate by calculating the derivative of the contoured
results. We show the instantaneous rate by using a blue line that traverses the region using the right
Y-axis. We do notice that, although the progression of the samples does notexhibit a clear variance
across time, the derivative is capable of showing differences. In fact,the instantaneous metric
(Millions of Instructions Per Second or MIPS, in this example) shows thatx solve, y solve
andz solve runs uniformly at 6300, 5800 and 5600 MIPS, respectively. And also shows that
compute rhs does not have uniform behavior, and the metric ranges from 5600 to 6300 MIPS.

The folding is also capable of attributing the performance to the source codeto allow the user to
correlate the performance and the source code when looking for hot and cold spots. In Figure2(b)

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(0000)
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Figure 3. Filtering applied in the folding mechanism. The green line refers to the curve fitting result when
using with the samples (µ) and the grey color shows the area (ranging betweenµ ± Xσ). Those samples that
have to be taken into account are shown in red whereas the samples that can be ignored are colored in black.

we show a capture of the GVim editor showing three different parts of therhs.f file from the bt.B
benchmark and the performance achieved by each by using a color gradient that ranges from green
(meaning low) to blue (meaning high). In this Figure, the first section (between lines 24 and 29)
refers to the lowest performing code ofrhs.f which is at the very beginning of2(b). The latter
section of the code (which involves the loop ranging from line 385 to line 393)is related to the
rightmost part of thecompute rhs function depicted in2(b) and is executed by the processor at
approximately 6000 MIPS.

4.1. Folding improvements to accommodate power measurements

As we have discussed before, the folding mechanism mainly consists on building a curve fitting for
all the samples gathered during the execution. To generate such curve fitting, the folding mechanism
has a pre-filter mechanism that removes the instances that are too different in terms of duration in
respect of the mean duration. This pre-filter step allows ignoring those instances that have suffered
from any sort of perturbation (for instance, the application performs a checkpoint, there network is
congested or the node is overloaded). By applying the pre-filter the resulting folding signal becomes
less noisier and allows applying a more much strict curve fitting parameters.

By using such pre-filter step, the folding mechanism has proven useful toreflect the evolution
of the performance hardware counters. However, the performance counters and the energy counters
differ in their update frequency and also in their granularity. While the performance counters are
updated at every processor cycle and report the events occurred for a particular thread of the
application, the energy counters are updated at every millisecond by the PCU in factors of 15.2
nJoules and report the whole socket energy consumption. As a result, the curve fitting results follows
the energy counters and shows staggered results.

To address this issue, we have improved the folding mechanism in two different ways. First, we
have added an additional filter step based on the distance to the curve fitting result. To apply this
filter, the folding interpolates all the samples and constructs a curve fitting, asit occurred normally.
The folding does not stop at this point, but calculates the distance from the samples to the curve
fitting and keeps only those samples that lie within[µ − X ∗ σ, µ + X ∗ σ], as shown in Figure3,
beingµ the interpolation point andσ the standard deviation of the distance to the curve fitting. The
value ofX defaults to 2.0, which means that the range includes about 95% of the samples, but it can
be modified by the user.

The second modification relies on adapting the fitting parameter of the interpolation algorithm
to the counter being used. The fitting parameter determines how strict is the resulting interpolation.
Thus the fitting parameter acts as a low-pass filter in the sense that the smaller theparameter, the
more fitted and noisier the results. When applying the curve fitting to the folded results of the
processor performance counters we set the fitting parameter to10−6. However, if we apply the same
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Figure 4. Folding results using different fitting parameters for the consumed energy of the main time-step
function (adi) in the NAS BT benchmark.

value to the fitting parameter when doing the curve fitting of the energy counters the results are much
more noisier, as depicted in Figure4(a). The plot in Figure4(b)shows a smoother result by using the
same data as in the previous example, but using a more relaxed fitting parameter(10−4). We consider
that, although producing smoother results, the relaxed parameter gives a good understanding of the
power consumption evolution across time and thus will be the default value forthe power and energy
counters.

5. EXPERIMENTS

We have designed a twofold experiment to demonstrate the usefulness of adopting this new
mechanism to capture the power consumption from the processor itself. Thefirst experiment is
aimed at studying the performance and power consumption in a single socketby using widely-
known serial benchmarks. To address this experiment we have used a set of serial benchmarks
that use iterative methods from different benchmarks suites, including SPEC CPU 2006 [29], NAS
Parallel Benchmarks, and also the Stream [30] and Lulesh [31] benchmarks. We also evaluate
the impact of changing the processor frequency in terms of performanceand power. The second
experiment focuses on analyzing the performance and power consumption in a parallel environment
by using three MPI applications.

We have executed all the experiments inAltamira. This supercomputer consists of 160 nodes,
each containing two Intel® Xeon® CPU E5-2670 (SandyBridge-EP) 8-core processors running
at a nominal frequency of 2.60 GHz with maximum thermal design power (TDP)of 115 Watts.
The system runs Linux kernel 2.6.32 and allows changing the processorfrequency between 1.2
and 2.6 GHz in 0.2 GHz steps. The Intel® Turbo Boost, which can acceleratethe Xeon E5-2670
processor up to 3.3 GHz incurring in additional power consumption, has been disabled from BIOS
to perform all the tests at a uniform frequency. We have used the GNU compiler suite version 4.4.6
with -O3 -g as compile flags and OpenMPI version 1.6 for the parallel applications. We have
used the Extrae [32] instrumentation package to gather performance and power metrics by usingits
sampling and instrumentation capabilities. In reference to the sampling resolution, we have set the
sampling frequency to 50 Hz, which is the same sampling frequency used by default by the gprof
profiler [33]. So as to use the RAPL power counters, we compiled Extrae against a PAPI library
with the RAPL component enabled. Finally, in every execution we have pinned the processes to a
particular core so as to disallow process migration, which would affect the application performance
and its consumption. For the serial benchmarks, we have executed them sequentially and we have
pinned them to the first core of the socket. For the parallel applications, thepinning depends upon

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(0000)
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Benchmark Suite Name Time-step code region

SPEC CPU 2006

434.zeusmp src/zeusmp.F 675-709
435.gromacs src/md.c 413-820
436.cactusADM src/PUGH/Evolve.c 96-147
437.leslie3d src/tml.f 330-435
444.namd src/spec namd.C 184-225
465.tonto src/mol.F90 13617-13629
470.lbm src/main.c 44-58
481.wrf src/module integrate.F90 274-288

NPB 3.3

bt.B BT/adi.f 8-20
ft.B FT/appft.f 62-72
is.C IS/is.c 446-641
lu.B LU/ssor.f 102-232
mg.B MG/mg.f 255-264

Stream stream stream.c 220-262
Lulesh lulesh full/lulesh.cc 2893-2904

Table I. Benchmarks used for the experiments and the location of the begin and end points for the iterative
part of the application.

the execution configuration applied in therms of processes per socket but we granted that each core
executes a single process.

5.1. Analysis of serial benchmarks

The selected benchmarks are listed in TableI. The Table illustrates the subset of benchmarks and
also shows the location within the source code where a time-step begins and ends. The placement of
the begin and end points of the time-stepper region of code determines the instrumentation points.

The plots shown in Figure5 describe time-step routine of the benchmarks listed in TableI by
using performance and power metrics. In each plot, the instantaneous MIPS (Million of Instructions
Per Second) is shown in black and it is referred to the left Y-axis. In respect to the power metrics,
they are referred to the right Y-axis and are colored in blue, green andred for the DRAM, the cores
and the total of the package, respectively. From these plots we observethat despite the performance
achieved by the application, the cores consume essentially the same (between16 and 18 Watts).
437.leslie3d (5(d)), 481.wrf (5(h)) and ft.B (5(j)) show the largest difference in MIPS within the
time-stepper region (from 1000 to 7500, 3000 to 9000, and from 2500 to 7000, respectively) with
small variation of the core power consumption. Not only this, but we note at the end of lu.B (5(l))
and ft.B (5(j)), that the more MIPS achieved the lesser power drained. The reader mayalso observe
that the power consumption of the DRAM is mostly uncorrelated with the performance in all
executions but in 437.leslie3d (5(d)), 481.wrf(5(h)) and is.C (5(k)) where the high peak performance
results in higher consumption of the DRAM. Regarding the total power consumption, we note that
the DRAM and core do not sum up for the total consumption of the package.Our guess is that,
although the processors of the system we have used do not have any integrated GPU on their power
plane, there would be some power drain, possibly in the I/O, that sums up forthe total. Finally, and
although the package wattage follows the core wattage shape, the results shown in lu.B (5(l)), ft.B
(5(j)), 434.zeusmp (5(f)) and 437.leslie3d (5(d)) reflect that the power consumed by the DRAM is
underweighted in terms of energy factors by the PCU when summing up for thetotal consumption
of the package.

5.2. Application of the DVFS techniques to the serial benchmarks

The power dissipated by a processor using the current CMOS technology is divided in two parts,
the static and the dynamic power, being the latter the main source of power consumption. Dynamic
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Figure 5. Comparison of the performance and power consumption of the main iteration of several
benchmarks when the processor runs at 2.6 GHz. The MIPS performance (in black) is referred to the left
Y-axis, whereas the power consumption (red for package, green for chip and blue for DRAM) are referred

to the right Y-axis.

power is the power needed to commute the transistors of the circuit and it is equal to

Pdynamic = αCV 2f (1)
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whereα is the proportion of activity in a clock cycle (which is related to the application executed),
C refers to the capacitance of the chip,V is the voltage andf is the frequency. Current operating
systems increase or reduce the frequency of the processor (f ) depending on the load of the
system using a technique called Dynamic Voltage and Frequency Scaling (DVFS). There are two
possibilities to reduce the energy consumption, by reducing the processorvoltage or by reducing
the processor frequency. While the former cannot be usually tackled bythe user in a production
environment, the latter can still be applied. In order to reduce the energy consumption, the
operating system lowers the processor frequency when the system becomes idle and reestablishes
the processor frequency when the system gets loaded. Others, like [34] and [35] have used such
technique to reduce the energy consumption on parallel applications that present load unbalance by
decreasing the processor frequency on the processors with less work. Here we will detail the effects
of applying the DVFS to the previous serial benchmarks.

In Figure6 we show the impact of different execution frequencies on the power andperformance
metrics in a subset of benchmarks. In the plots shown, we first notice that neither the power nor the
performance shape of the benchmarks change when modifying the core frequency, but the amplitude
of the signal. For instance, the highest and lowest peak in the is.C benchmark which are depicted
in Figures6(m), 6(n) and6(o) range from 1100-5000, 900-4000 and 600-2400 MIPS, and, 16.4-
18.3, 10.6-11.9 and 4.9-5.8 Watts, respectively in terms of performance and power usage. These
plots illustrate that the highest the core frequency, the highest amplitude exists in both performance
and power metrics, and hence the more room for energy and performance improvements can be
reached in highest frequencies, as it would be expected by Equation1. And as we noted earlier,
although the power consumption may be directly related to the processor performance, as it occurs
in 437.leslie3d, 481.wrf and is.C, sometimes the power consumption runs independent from the
performance achieved, as it can be seen in ft.B and lu.B.

The plots also show that the reduction factor observed in the power usageis higher than the
reduction factor of the clock rate. For instance, while lu.B at 2.6 GHz consumes about 18 Watts,
when decreasing the clock rate to 1.2 GHz we would expect according to1 a consumption about
9 Watts. However, we observe that the power consumption does not reach 6 Watts. This means that
at constant capacitance (C) and activity rate (α), the processor also lowers its voltage (V ) when
lowering its frequency (f ).

To summarize all the results of the executions, we tabulate them in TableV and TableVI at the
end of the document. TableV shows the average duration, the core consumption and the whole-
socket consumption of the main iteration of benchmark when run at one of theselected processor
frequencies (2.6, 2.0, 1.6 and 1.2 GHz). In this Table, we observe that the energy needed by the
cores to execute the time-stepper function decreases as the frequency decreases but at lesser scale.
Although reducing the processor frequency from 2.6 to 1.2 GHz makes theapplication run more
than two times slower, the energy drained by the cores does not reduce accordingly. We can also
note that the total energy consumed by the whole package increases as thefrequency of the processor
decreases. This may occur because reducing the operative frequency increases the time needed to
finish the task and thus the energy dissipated. These results agrees with theresults of a group of
experiments done by Le Sueur and Heise in [36].

In Table VI we provide the average number of instructions, and the average number of L1D,
L2 and Last Level Cache (LLC) cache misses of the main iteration of the benchmark. Also in
this Table, we show additional performance and power metrics derived from the aforementioned
data. We present the average MIPS and the average MIPJ per core (MIPJC) and per package
(MIPJP ) (analogously to MIPS, MIPJ stands for Millions of Instructions per Joule) achieved by
each benchmark. The results in the latter Table show that if we considerMIPJC as the power
efficiency metric, the lowest frequency provides the best results in terms of instructions per Joule
achieved. However, if we considerMIPJP as the power efficiency metric, then the most fruitful
frequency ranges between 2.6 and 2.0 GHz. In this case, using the highest frequencies allows the
application to finish, and thus stop consuming energy, earlier. Four of the slowest benchmarks
(434.zeusmp, 470.lbm, is.C and Stream) achieve the bestMIPJP (114.51, 92.45, 61.26 and 108.69)
running at 2.0 GHz, while the rest of the benchmarks show betterMIPJP when running at 2.6 GHz.
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Figure 6. Performance and power progression of five benchmarks when run at three different core
frequencies (2.6, 2.0 and 1.2 GHz). The black line is referred to the instantaneous MIPS on the left Y-axis

and the green line is referred to the instantaneous power on the right Y-axis.

These four benchmarks show high L1D, L2 and LLC miss rates, which would indicate that the
applications are memory bound. According to these results, a naive approach to select the most
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effective frequency in terms ofMIPJP would depend on the ratio between the executed instructions
and the LLC misses.

5.3. Analysis of parallel applications

We have used three MPI applications to analyze the performance and power consumption in
a parallel environment. The first application is HydroC, which is a a proxy benchmark of the
RAMSES [37] application. This application solves a large scale structure and galaxy formation
problem using a rectangular 2D space domain split in blocks. The second application is Mr. Genesis
[38], which employs a finite volume approach in order to evolve the Relativistic Euler equations
combined with a Constrained Transport scheme to account for the divergence free evolution of
the dynamically included magnetic field. The last application is SIESTA [39], which implements a
self consistent density functional method using standard norm-conserving pseudopotentials and a
flexible, numerical linear combination of atomic orbitals basis set.

We have executed Mr. Genesis and HydroC using 8 MPI processes to evaluate their performance
and power consumption when using different socket occupancy rates. For these experiments we
have used combinations of MPI processes per socket (MPIpps) that sum up 8 MPI processes (i.e.
1, 2, 4 and 8 MPIpps using 8, 4, 2 and 1 sockets, respectively). We also evaluate these executions
changing the processor frequencies at four different speeds (1.2, 1.6, 2.0 and 2.6 GHz). Regarding
SIESTA, we have studied its scalability by executing it from 16 to 256 MPI processes, thus using
multiple nodes using all the 16 cores available on the node.

We show different performance and energy metrics for these executions. More precisely, to
evaluate the performance, we show the time required to execute the application. To evaluate the
energy and power usage we provide results of the folding process detailing the instantaneous power
consumption, the overall energy consumed, and also the Energy Delay Product (EDP). The EDP is
a metric that represents a compromise between the application performance, typically measured by
the application execution time, and its dissipated energy. From the folding results we also derive
the energy footprint of the application. Such footprint shows the percentage of time in a particular
power consumption rate and the duration of the most power consuming regions of code.

5.3.1. HydroCWe show in TableII the timing, the energy consumption and the EDP results for
the HydroC application. Note that time of the full execution of the application notonly increases
when decreasing the processor frequency, but also when increasing the occupancy of the processor
because of the sharing of the resources. Also, the more processes executing in a socket, the lesser
energy consumed at a given frequency. From the results shown in the table we can extract some
guidance depending on the metric to minimize. To reduce the overall execution timeof HydroC,
we should use a single processor per socket at maximum frequency. However, to reduce the overall
energy drained by HydroC,we should use all the processors available ina socket at 1.6 GHz. The
best trade-off between the performance and energy consumption (EDP), is achieved by using half
of the processors of the socket at full speed.

Figure7 shows the temporal evolution of the power consumption of the DRAM at socket level
and the LLC cache misses per core within the time-stepper routine when using one MPIpps and
eight processes per socket running at 2.6 GHz. We observe a tight correlation between the rate of
LLC misses and the power consumed by the DRAM. This occurs because theLLC misses involve
accessing into the memory, thus increasing its energy consumption. This is expected, as high miss
rates involve big amounts of data movement, which is one of the important components of system
power. This effect is most noticeable when using all the eight cores because the power consumption
counter reflects the accumulated energy consumption by the whole socket and the signal presents a
wider amplitude.

By using the source code referencing capabilities, we have delimited in the plots the routines
that were executed across time and we have labelled the regions by adding the routine names.
Comparing the two subfigures (7(a) and 7(b)), we first note the increase on the DRAM power
consumption which is below 10 Watts in routinestrace andqleftright when using one MPI
process per socket, and increases to more than 20 Watts when using eightprocesses per socket.
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2.6 GHz 2.0 GHz 1.6 GHz 1.2 GHz
Time Energy EDP Time Energy EDP Time Energy EDP Time Energy EDP

1MPIpps 49 144 7101 61 147 8984 75 158 11855 103 186 19184
2MPIpps 50 98 4923 62 89 5557 76 96 7359 100 104 10484
4MPIpps 52 64 3369 65 59 3868 78 59 4676 101 65 6622
8MPIpps 72 65 4720 83 53 4457 96 49 4795 122 50 6137

Table II. Duration (in seconds), energy consumption (in KJoules) and the Energy Delay Product for the
HydroC application when using combinations of MPI processes per socket and processor frequencies.

Optimal values for each metric is highlighted in bold font.
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Figure 7. Temporal evolution of the time-stepper routine ofHydroC by using a different numbers of MPIpps.

These results mean that even multiplying by eight the number of cores accessing to memory, the
power consumption by the DRAM gets only multiplied by a factor between 2 and 3.Theriemann
routine shows better power scalability when moving from one process per socket to eight processes
per socket. In this routine, while the DRAM consumes about 5 Watts in 1 MPIpps, it turns only into
8 Watts when running in 8 MPIpps.

In terms of performance, when the socket is fully utilized the execution takeslonger to compute
(313.37 ms) in comparison to when the processor socket is under utilized (225.81 ms). We can
observe that the rate of LLC misses decrease when using all the eight cores of the socket, although
the shape for the LLC miss rate is rather similar in both cases. We observe thatthe proportion of
theqleftright increases in the case when using eight cores per socket and its relativeduration
increases from 8% to 12%, which represents an increase of from 18 to 37.5 milliseconds. The
riemann routine also increases its duration, from 95 to 113 milliseconds, although its weight
decreases, from 42% to 36%. According to the performance data gathered, the total number of
LLC misses per core increases with respect to the execution with a single MPIpps socket by 2%,
6.2% and 12.5% when using two, four and eight processes per socket, respectively. This effect is
reasonable because the LLC is a shared resource among cores within thesocket and cannot sustain
its performance per core with the increased number of LLC misses experienced by the application.

We also illustrate the socket energy consumption by using the aforementionedcombination of
processes per socket and executing frequencies in Figure8. We observe in the Figure that the
shape for the different plots are likely the same but in the amplitude, which varies according to the
processor frequency. When the system is fully occupied and its clock rate operates at 2.6 GHz, the
power dissipated because the execution of HydroC presents two modes, 80, 70 Watts, which means
that the processor consumes about 70% of its maximum TDP (115 Watts). In the same Figure
we observe that the power consumption does not increase linearly with respect of the number of
executing cores. This is explained because the remaining cores in the executions with 1, 2 and 4
MPIpps are still consuming energy because they are not completely halted,but idle.
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Figure 8. Progress of the main time-stepper routine power consumption of HydroC by using different
combinations of MPIpps and processor frequencies on a single socket.

(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 9. Energy footprint for the execution of HydroC when using 8 MPIpps running at 2.6 GHz.

Finally, we present in Figure9 the energy footprint of the application for the whole socket. The
Figure9(a)shows the amount of time that the application has been consuming a certain amount of
power. For instance, we observe that the application used up to 80 Watts about half of the execution
and that only 10% of the whole execution needed more than 84 Watts. We illustrate on the Figure
9(b) the longest execution time with a given sustained consumption. From this Figurewe observe
that those regions of the application consuming more than 84 Watts take less than25 milliseconds
to execute.

5.3.2. Mr. GenesisWe show in TableII the timing and energy consumption results for Mr. Genesis
when it is executed with 8 tasks and using a combination of 1, 2, 4 and 8 MPI processes per
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2.6 GHz 2.0 GHz 1.6 GHz 1.2 GHz
Time Energy EDP Time Energy EDP Time Energy EDP Time Energy EDP

1MPIpps 190 608 115562 249 636 158484 309 691 213634 412 813 335049
2MPIpps 192 374 71901 249 373 92969 310 395 122603 418 456 190919
4MPIpps 193 256 49548 249 261 65016 314 246 77368 416 330 137542
8MPIpps 197 204 40299 255 186 47552 317 179 56899 422 183 77571

Table III. Duration (in seconds), energy consumption (in KJoules) and Energy Delay Product of the
Mr. Genesis application when using combinations of MPI processes per socket and processor frequencies.

Optimal values for each metric is highlighted in bold font.

socket and at four different processor frequencies (1.2, 1.6, 2.0and 2.6 GHz). In contrast with
the previous observations on HydroC, the performance of Mr. Genesiswhen using all the cores
shows an overhead less than 4% in the worst case. Again, to obtain the best performance and reduce
the time needed to execute the application, we should execute the application placing every MPI
process into a different socket. In therms of energy consumption, we observe, as in Hydro, that
the best combination involves using all the cores of the socket and runningat 1.6 GHz. Finally, to
minimize the EDP metric we would use all the resources available in the socket at full speed.

In Figure10 we show the performance evolution of two metrics (MIPS and LLC miss rate) for
the main time-step section of code in the best case in energy terms (i.e. 8 MPIpps at 2.6 GHz).
Regarding the performance, the application has two important routines in termsof timing,sweepx
andsweepy. On the one hand, the routinesweepx has a uniform performance in terms of MIPS
(4000) and LLC miss rate (less than 1 million per second), but at the end thatshows a slight increase
of performance. On the other hand,sweepy presents different phases in terms of performance
which are related to three parts of the code enumerated with A, B, and C that achieve 500, 4500 and
1800 MIPS, respectively. Focusing on the sections that achieve lowestperformance, we observe that
phase A refers to the loop in lines 419-435 of file sweepsweep.f. This loop performs performs
multiple operations similar to matrix transpositions in the loop body except that the data is read from
two 3D matrices and stored into multiple 2D matrices. Each cell of these 3D matrices points to five-
field structures which translates into a sequential access to each field of thestructure thus exploiting
spatial locality. This phase reaches up to 20 millions of LLC misses per secondper core, and at such
moment the DRAM consumption per socket reaches the 12 Watts. Phase C, involves the execution
of the loop in lines 556-564 of the filesweep.f which partially undoes the work done in Phase
A by applying another matrix transposition. In this phase, the LLC miss rate increases again to 20
millions of LLC misses per second, but at this phase the power consumed increases to 17 Watts.
Finally, at the very end of the time-step we also found that the performance starts at a low MIPS
rate (1500) and increases to 4500, and also the LLC miss rate and the DRAMpower consumption
decreases. We have identified two loops for such region: a four-nested loop in step.f ranging
from lines 151 to 163 that does multiple mathematical operations including floating point divisions,
and a call to the routinegetprfq3.

We show in Figure11 the energy footprint of the application. The reader can see that the 60% of
the total execution time of Mr. Genesis, the socket is draining up to 80 Watts. Then the consumption
rapidly goes down, and less than 10% of time the processor drained more than 81.5 Watts. It is
interesting also to note that the longest duration sustained in 81.5 Watts by the whole socket lasts
less than 40 milliseconds. Such values could be useful for the accelerationmechanism that speeds
up the processor frequency in two directions. First, the processor could increase the frequency in the
regions with lesser power consumption in a safe manner without surpassingthe TDP. These results
also means that limiting the power consumption to 81.5 Watts would only affect less than 10%
of the application. Finally, if such power limit is enabled but the processor supports acceleration
mechanisms that allow it to drain more than 81.5 Watts, the required time for such acceleration
would be less than 40 milliseconds.
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Figure 10. Performance and energy footprint for Mr. Genesiswhen running with 8 MPIpps at 2.6 GHz.

(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 11. Performance and energy footprint for SIESTA whenrunning with 128 MPI processes at 2.6 GHz.

number of tasks Energy Duration Speedup Parallel EfficiencyEDP
16 8205 51824 1 - 425220
32 8296 27375 1.89 0.96 227123
64 9885 16252 3.19 0.80 160660
128 13373 10883 4.76 0.60 145546
256 25610 11001 4.71 0.29 281766

Table IV. Scalability of SIESTA. Energy is shown in KJoules,Duration is shown in seconds and EDP is
shown inMJoules ∗ seconds

5.3.3. SIESTAWe have studied the scalability of SIESTA in terms of performance and energy
efficiency, through the time, the energy consumed and the EDP metrics with executions ranging
from 16 to 256 processes at 2.6 GHz and using the two sockets of each node. TableIV shows the
behavior of the application when using different number of MPI processes. We observe that the
application does not even scale linearly, but the application takes longer to execute when using 256
processes showing a speedup of 4.71 compared to the execution of 16 tasks, resulting in a parallel
efficiency about 0.29. In terms of performance, the execution that used128 processes shows the best
performance, although its parallel efficiency could be considered low (0.60). For these experiment,
we conclude that lowering the number of processes results in better resource utilization and also
in less energy consumption. However, the execution that uses 128 processes results in the best
execution in terms of EDP.

Regarding to the energy footprint, if we consider the best case of SIESTA in terms of EDP, we
obtain the plots shown in Figure12. As it occurred in the previous studies within this section, the
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(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 12. Performance and energy footprint for Mr. Genesiswhen running with 8 MPIpps at 2.6 GHz.

processor does not typically consume more than 80 Watts (about 70% of theTDP) when running the
application. For this particular case, we also observe that those regions of code that drain more than
80 Watts do not last more than 25 seconds. This shows, again, that the processor typically drains
an amount of power, and only for some small periods of time it requires consuming more power.
More precisely, if we consider the same 81.5 Watts limit as in the previous example, we observe
that SIESTA would require surpassing this limit for 7 seconds approximately.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown the usefulness of using the novel Intel RAPL infrastructure to obtain
power and energy metrics combined with performance counters and the usage of the folding
mechanism. By combining them, we have been able to study, with high level of details, the
evolution of both the performance and the power in a wide variety of benchmarks and also in
parallel applications executed in many different scenarios of a production scenario. We believe
that having tools that easily correlate performance and power measurements, and source code are
useful to understand the behavior of any application and also allows the continuous development of
supercomputing systems and improve their usage. In fact, we have seen witha high level of details
that both performance and energy consumption are related and also influenced by similar factors
(like the application executed, the processor frequency, the occupancy of the socket). Depending on
the metric to optimize, the suggestions to the analyst can be completely different.

In respect to the power and performance analysis, although we have shown many results with
small variance in power consumption, there is space for improvement on the power consumption.
This is particularly true for the DRAM power consumption because it is heavilyrelated to the
memory accesses and a better memory access patterns would result in less power consumption. In
this sense, the overall effort to reduce the execution time of an application by improving the source
code will also result in a reduction of the energy consumption. As a result, the usage of performance
tools to improve the system utilization will result in benefits on the performance efficiency of the
application, but also on its energy efficiency.

Not only we are confident that having the Intel RAPL infrastructure will easily accommodate the
power measurement into the existing performance tools, but we think that the power measurements
could also help the RAPL and the Intel® TurboBoost acceleration mechanismto adjust itself to the
load and power conditions. In particular, we have seen that most of the executions does not reach
the maximum TDP of the processor. The energy footprints we have shown can be used either to
enable the acceleration in phases of low-consumption and also limit the acceleration for a certain
duration of the execution. We think that applying the RAPL infrastructure to limitthe power usage
and comparing it to the DVFS techniques would be also interesting to be studied.
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Benchmark 2.6 GHz 2.0 GHz 1.6 GHz 1.2 GHz
Time† Core Package Time Core Package Time Core Package Time Core Package

434.zeusmp 3647 63405 113983 4571 52371 113458 5570 46535 121589 7253 37537 135152
435.gromacs 85 1455 2626 111 1221 2714 139 1133 2989 186 932 3417
436.cactusADM 766 13857 24426 977 11482 24670 1177 10221 26008 1586 8542 29810
437.leslie3d 175 3168 5671 226 2646 5782 279 2402 6235 370 1985 7043
444.namd 13528 232393 417330 17600 194785 430706 22043 180532 474418 29414 148442 541220
465.tonto 70151 1182319 2130323 90937 1033436 2252233 114428 964800 2489647 152462 793420 2828812
470.lbm 140 2484 4468 171 2070 4457 205 1838 4669 263 1609 5218
481.wrf 2039 34147 62090 2638 29518 65262 3285 27192 71354 4383 24845 83751
bt.B 1383 25322 44361 1789 21440 45560 2215 19566 49366 2953 16458 56119
ft.B 2954 55938 97097 3798 46666 98251 4777 43094 107667 6338 35884 121350
is.C 1817 30417 55683 2215 23935 53971 2646 21433 57157 3379 17270 62810
lu.B 912 16443 29073 1174 13600 29451 1457 12577 32176 1946 10453 36606
mg.B 481 8866 15742 618 7328 15891 766 6803 17325 1015 5597 19455
Stream 310 6226 11136 382 5224 11056 461 4675 11560 596 3861 12563
Lulesh 106 1853 3315 137 1657 3526 169 1403 3686 225 1350 4371

Table V. Time and energy consumption for the selected benchmarks executing at different frequencies.

Benchmark Instructions‡ L1D L2 LLC 2.6 GHz 2.0 GHz 1.6 GHz 1.2 GHz
MIPS MIPJC MIPJP MIPS MIPJC MIPJP MIPS MIPJC MIPJP MIPS MIPJC MIPJP

434.zeusmp 12988177 2.2% 0.4% 0.2% 3561.09 204.84 113.95 2842.25 252.91 114.51 2333.02 279.30 106.89 1792.89 346.45 96.22
435.gromacs 278947 1.2% <0.1% <0.01% 3250.90 191.63 106.19 2507.00 228.52 102.80 2005.34 246.31 93.41 1502.00 299.57 81.77
436.cactusADM 2603516 0.9% 0.4% 0.1% 3398.03 187.87 106.58 2665.62 226.83 105.57 2213.30 254.90 100.18 1643.96 305.25 87.47
437.leslie3d 716501 3.0% 0.8% <0.01% 4087.98 226.16 126.33 3171.41 270.82 123.95 2567.19 298.44 114.98 1934.65 361.39 101.86
444.namd 60102000 1.1% <0.1% <0.01% 4442.78 258.62 144.02 3415.88 306.65 139.59 2728.36 333.14 126.77 2045.81 126.77 111.19
465.tonto 52627913 1.3% 0.4% <0.01% 4501.21 267.07 148.23 3473.47 305.65 140.25 2761.39 327.51 126.92 2073.73 398.48 111.77
470.lbm 411983 5.2% 0.9% 0.2% 2926.22 165.82 92.19 2401.60 199.05 92.45 2003.26 224.28 88.29 1564.68 256.34 79.05
481.wrf 9132508 1.0% 0.2% <0.01% 4478.79 267.44 147.08 3462.06 309.48 139.98 2781.50 336.08 128.07 2085.93 368.04 109.18
bt.B 8099479 1.9% 0.2% <0.01% 5853.10 319.86 182.58 4528.40 377.84 177.81 3656.86 414.14 164.14 2745.20 492.54 144.46
ft.B 18206181 3.6% 0.9% <0.01% 6161.94 325.47 187.50 4794.32 390.22 185.34 3812.30 422.67 169.18 2875.04 507.80 150.16
is.C 3304812 3.3% 0.5% 0.4% 1818.81 108.46 59.35 1492.38 138.04 61.26 1250.23 154.36 57.88 980.00 191.76 52.73
lu.B 4329609 2.1% 0.4% 0.1% 4742.97 263.30 148.92 3687.77 318.43 147.05 2971.76 344.45 134.64 2226.43 414.62 118.41
mg.B 3106833 1.7% 0.4% 0.1% 6454.72 350.39 197.36 5022.88 424.01 195.55 4052.77 456.82 179.40 3061.46 555.45 159.82
Stream 1201408 5.2% 4.2% 0.9% 3871.06 192.94 107.88 3141.75 230.00 108.69 2601.96 257.10 103.98 2016.33 311.49 95.73
Lulesh 472003 1.4% 0.3% 0.2% 4443.30 254.67 142.34 3426.91 284.07 133.50 2790.35 336.61 128.12 2095.19 349.98 108.10

Table VI. Performance and energy metrics for the selected benchmarks using different processor frequencies.

†Time refers to the average duration of the time-stepper function in milliseconds. Core and Chip refers to the energy used in Joulesby all the cores and the whole socket, respectively.
‡Instructions is shown in millions. L1D, L2 and LLC refer to the ratio of L1, L2 and LLC with respect to the instructions executed.MIPS, MIPJC andMIPJP stand for, Millions of
Instructions per Second, Millions of Instructions per Joule (using the core or the package energy counter, respectively).

C
opyright©

0000
John

W
iley

&
S

ons,Ltd.
C

o
n

cu
rre

n
cy

C
o

m
p

u
ta

t.:
P

ra
ct.

E
xp

e
r.

(0000)
P

re
p

a
re

d
u

sin
gcpeauth.cls

D
O

I:10.1002/cpe


	1 Introduction
	2 Related Work
	3 Tracking power consumption
	4 Folding
	4.1 Folding improvements to accommodate power measurements

	5 Experiments
	5.1 Analysis of serial benchmarks
	5.2 Application of the DVFS techniques to the serial benchmarks
	5.3 Analysis of parallel applications
	5.3.1 HydroC
	5.3.2 Mr. Genesis
	5.3.3 SIESTA


	6 Conclusions and future work

