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SUMMARY

We address the solution of large-scale eigenvalue problems that appear in the motion simulation of complex
macromolecules on multithreaded platforms, consisting of (one or more) multicore processors and possibly a
graphics processor (GPU). In particular, we compare specialized implementations of three high-performance
eigensolvers that rely on disk storage and out-of-core (OOC) techniques to tackle the large memory
requirements of these biological problems, which in general do not fit into the main memory of current
desktop machines. Two of the OOC eigensolvers are composed of compute-bounded operations and we
enhance their performance by leveraging hybrid CPU-GPU routines that off-load the arithmetically-intensive
parts of the algorithms to a GPU accelerator. The third OOC eigesolver is a memory-bounded algorithm,
which strongly constrains its performance when the data is on disk. However, this eigensolver exhibits a
much lower arithmetic cost compared with its compute-bounded alternatives for this particular application.
Experimental results on a desktop platform with two Intel Xeon multicore processors and an NVIDIA
“Fermi” GPU, representative of current server technology, illustrate the potential of these methods to address
the simulation of biological activity.
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1. INTRODUCTION

Coarse-grained models (CGM) combined with normal mode analysis (NMA) has recently arisen
as a powerful approach to simulate biological activity at molecular level for extended time
scales [4, 5, 20]. IMOD [14], for example, is a multipurpose tool chest, based on the seminal works
of Go and others [9, 18, 13], that exploits the advantage of NMA formulations in internal coordinates

(ICs), while extending them to cover multi-scale modeling. Despite the reduction in the degrees of
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freedom offered by ICs and reduced approximations, the diagonalization step, and an associated
dense eigenproblem, remains the major computational bottleneck of this approach, especially for
simulations involving large molecules.

In [2] we addressed the solution of generalized symmetric definite eigenproblems arising in the
simulation of collective motions of macromolecular complexes using multicore platforms equipped

with graphics processing units (GPUs), making the following contributions compared to [1, 15, 16]:

e The eigenproblems associated with this particular application involve dense matrices that are,
in general, too large to fit into the memory of the GPU and, sometimes, even the main memory
of the server. In [2] we considered the first case; i.e., we assumed that the problem fitted in the
main memory of the system but not in the accelerator memory. We then designed specialized
algorithms that, by adopting out-of-core (OOC) techniques [22], off-loaded the bulk of their
computations to the GPU while amortizing the cost of data transfers between the GPU and
the main memory with a large number of floating-point arithmetic operations (flops).

e One of our algorithms was the first OOC-GPU implementation to employ spectral divide-
and-conquer (SD&C) based on the polar decomposition [17]. We enhanced this algorithm
with simple yet effective ad-hoc splitting strategies to reduce the number of SD&C iterations
for our particular target application.

e We revisited an implementation of the two-stage reduction to tridiagonal form [7], where the
first stage is also an OOC-GPU code while the subsequent stage operates on a much reduced
compact matrix that fits in-core.

e We compared these two OOC-GPU approaches using relatively large macromolecules [15].

In this paper, we extend our work making the following original contributions with respect to [2]:

e We consider macromolecular complexes that involve matrices that do not fit into the main
memory of the platform and, therefore, require to operate with data on disk.

e For the SD&C and two-stage OOC-GPU algorithms, our results are based on the asymptotic
GFLOPS (i.e., billions of flops/sec.) rates observed for the implementations evaluated in [2].
Following the conclusions from [19], and due to the nature of the operations underlying these
two algorithms (basically, orthogonal factorizations and other simpler level-3 BLAS kernels),
in these two cases we assume that these performance rates can be maintained when the data
is on disk instead of main memory, and estimate the execution time on much larger problems
using these values.

e We implement an OOC eigensolver based on a Krylov subspace iteration that operates
with data on disk. For this memory-bounded method, the disk bandwidth constraints the
performance of the solver, so that the question we address is whether this is compensated
by the much lower computation cost of this approach, even for dense eigensolvers, when the
number of eigenvalues that have to be computed is very small.

e We compare the two OOC-GPU approaches with the OOC Krylov subspace-based algorithm
using several datasets representative of much larger macromolecular complexes [15].

The rest of the paper is structured as follows. In Section 2 we briefly discuss the solution
of generalized eigenproblems. In Section 3 we review the OOC implementation of the Krylov

subspace-based method. The three eigensolvers are evaluated next, in Section 4, using a collection
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of cases from biological sources. Finally, we close the paper in Section 5 with a few concluding
remarks.

2. SYMMETRIC DEFINITE EIGENPROBLEMS

The eigenproblem that has to be solved in the diagonalization step of CGM-NMA is given by
AX = BXA, (1)

where A € R™*" and B € R"*" correspond, respectively, to the Hessian and kinetic matrices
that capture the dynamics of the macromolecular complex, A € R**¢ is a diagonal matrix with
the s sought-after eigenvalues (or modes) of the matrix pair (A4, B), and X € R™"** contains the
corresponding unknown eigenvectors [10]. Furthermore, when dealing with large macromolecules,
A, B are both dense symmetric positive definite, n > 10,000, and typically only the s ~ 100 smallest
eigenpairs (i.e., the eigenvalues and eigenvectors associated with low energy modes) are required.
All the eigensolvers considered next start by explicitly transforming the generalized
eigenproblem (1) into an standard one, to then obtain the eigenpairs of the original problem from
this compact form. Specifically, these methods initially compute the Cholesky factorization B =
UTU, where U € R™ ™ is upper triangular [10], to then tackle the equivalent standard symmetric
eigenproblem
CY=YAN = (U TAUHYUX)=(UX)A, ()

where C' € R™*™ is symmetric and Y € R"**. Here, the standard eigenproblem (2) shares its
eigenvalues with those of (1), while the original eigenvectors can be recovered from the simple back-
transform X := U~'Y. The initial Cholesky factorization, the construction of C := U~TAU!
in (2), and the triangular solve for X are known to deliver high performance on a large variety of
HPC architectures, including multicore processors and GPUs, and their functionality is covered by
current numerical libraries (e.g., LAPACK, 1ibflame, ScaLAPACK, PLAPACK, etc.) including
some OOC extensions (SOLAR, POOCLAPACK).

Among the conventional solvers for the symmetric eigenproblem, in [7] we introduced a practical
OOC-GPU implementation of a two-stage reduction-based eigensolver which first transforms
the matrix C' from dense to band form, to then refine this intermediate matrix to tridiagonal
form, and finally obtain the eigenvalues using the MR? tridiagonal eigensolver [6, 8]. There, we
demonstrated how, by carefully orchestrating the PCI data transfers between host and accelerator,
in-core performance is maintained or even increased for the OOC solution of general large-scale
eigenproblems on hybrid CPU-GPU platforms. Provided the intermediate bandwidth is chosen large
enough, this method casts most of its computations during the reduction to band form in terms
of efficient BLAS-3, at the expense of a higher computational cost. Specifically, 8n3/3 flops are
required to obtain the band matrix and a lower-order amount for the subsequent refinement step.
However, due to this double-step, recovering the original eigenvectors adds 2n? flops to the method.

In [2] we proposed an OOC-GPU implementation of the SD&C method [17], an algorithm with
a much higher computational cost than the two-stage reduction-based approach describer earlier,

but which also consists mainly of matrix-matrix operations that naturally render it as an appealing

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe
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candidate for OOC-GPU strategies/platforms. In particular, the SD&C method roughly requires 6n°
flops per iteration and, for the biological applications studied in [2], 7 iterative steps, which yields a
total approximate cost of 42n> flops. It comes as no surprise then that the general conclusion from
the experiments in [2], from the point of view of performance, is that the OOC-GPU implementation
of the SD&C method is not competitive with its OOC-GPU two-stage counterpart, for moderate-
scale problems that fit into the main memory of the platform but not in the GPU memory.

A third alternative for the solution of symmetric eigenproblems is given by the Krylov subspace-
based methods [10]. This approach employs a Lanczos-based procedure [10] to iteratively construct
an orthogonal basis of the Krylov subspace associated with C. Upon convergence, this procedure
yields a tridiagonal square matrix T, of reduced dimension m > 2s, whose eigenvalues approximate
those of C, and a matrix f/, of conformal dimension, that contains the Krylov vectors. Given that in
practice m < n, obtaining the eigenvalues and eigenvectors from 7" and V adds a minor theoretical
cost to the computations. For symmetric matrices, this process often exhibits fast convergence,
low computational cost per iteration (in general, O(n?) flops) and, moreover, does not require
an appreciable additional storage space. Practical in-core implementations of these methods on
multicore processors clearly outperform the previous two compute-bounded eigensolvers when the
number of desired eigenvalues/eigenvectors is small relative to the problem size [1], even when
the problem is dense and the compute-bounded eigensolvers exploit a hardware accelerator. On the
other hand, from an OOC viewpoint, the major drawback of the Krylov subspace-based methods
is that they cast a significant part of their computations in terms of the matrix-vector product

2 numbers (i.e.,

(MVP). For a matrix of size n x n, this kernel roughly performs 2n? flops on n
a rate of computation to data of only O(1)), so that an implementation that operates with OOC
data is intrinsically limited by data movement (i.e., it is memory-bounded) and will attain very low
performance.

Therefore, the question to investigate is whether the cost advantage of Krylov subspace-based
methods is sufficient to compensate their much lower performance compared to the compute-

bounded eigensolvers when data is stored on disk.

3. IMPLEMENTATION OF THE OOC EIGENSOLVERS

OOC-GPU eigensolvers based on the two-stage and SD&C algorithms were introduced in [7]
and [2], respectively. Both implementations operate with data matrices residing in the main memory,
but which do not fit into the accelerator memory. Adding one more layer in the memory hierarchy of
these eigensolvers, so that the data reside on disk instead of main memory, and are moved back and
forth between there and the GPU, is conceptually equivalent. Furthermore, for compute-bounded
operations alike those present in these two algorithms, in [19] we showed that the disk latency can
be perfectly hidden via a careful organization of the data movements, analogous to that performed
between the GPU and the main memory. Therefore, we can expect that the implementations of
the OOC-GPU eigensolvers maintain their performance when operating with data that effectively
resides on disck.

In this section we present the new OOC implementation of the iterative eigensolver based on the

computation of a Krylov subspace of C, which truly operates with data on disk. Our OOC Krylov
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subspace-based solver computes the main operations of the method using existing OOC libraries
that orchestrate the access to the matrices on secondary storage as well as efficient dense linear
algebra and communication libraries. To that end we leveraged the OOC implementation of the
Cholesky factorization in POOCLAPACK [11], and extended this library with new OOC kernels for
the triangular system solve with multiple right-hand sides (including several algorithmic variants of
this operation), as well as the dense matrix-vector product (for symmetric matrices). Furthermore,
we employed ARPACK for the iterative construction of the Krylov subspace as well as several other
complementary libraries. Figure 1 shows the organization of the different libraries and routines
used/developed to implement our Krylov subspace-based eigensolver.
Implementations of

Krylov-subspace
method

/ \

POOCLAPACK + ARPACK
extensions
\
PLAPACK
/
MPI LAPACK
\
BLAS

Figure 1. Libraries and routines for the construction of the Krylov subspace-based eigensolvers. (red:
message-passing; blue: multithreaded; green: communication). All the OOC functionality is embedded
inside POOCLAPACK and our own extensions to this libraries.

3.1. PLAPACK and POOCLAPACK

PLAPACK is a parallel message passing library for dense linear algebra that includes a collection
of routines to solve linear systems of equations, eigenvalue problems, etc. The library mirrors
sequential dense linear algebra algorithms by adopting an “object-based” approach. Matrices and
vectors are distributed among the processes that communicate using MPI primitives [21], but the
distribution and indexing details are hidden to the user by means of opaque objects.

From the implementation point of view, we introduced several small modifications (patches) in
the contents of PLAPACK (release 3.2) to be able to operate with very large dense matrices, both in-
core and out-of-core. The most significant of these changes was the substitution of a considerable
number of 32-bit integers (int) that were used for indexing purposes internally to the codes by
64-bit numbers (long int).

POOCLAPACK is the OOC extension of PLAPACK to solve linear algebra problems using
algorithm-by-tiles. This kind of algorithms extends the traditional concept of algorithms-by-blocks
used in in-core libraries by defining the tile (a square-like large block) as the unit of transference

between (main) memory and disk. Thus, the library implicitly makes a hierarchical usage of two
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6 J. 1. ALIAGA ET AL.

concepts: a matrix is composed by tiles of dimension ¢ x ¢, with each tile consisting of several
blocks of size b x b (with b < ). Tiles are transferred from/to disk by an algorithm-by-tiles while
computation is performed on the blocks that compose an in-core tile (i.e., a tile that resides in
memory) by an algorithm-by-blocks from PLAPACK.

POOCLAPACK features several OOC routines, including a kernel to obtain the Cholesky
factorization of a symmetric positive definite matrix (routine PLA_OOC_Chol). Additionally, we
applied techniques analogous to those underlying POOCLAPACK to develop OOC kernels for the
symmetric matrix-vector product (PLA_OOC_Symv) and the solution of triangular linear systems
with multiple right-hand sides (PLA_OOC_Trsm), including several algorithmic variants of the
latter.

// Krylov subspacebased eigensolver. Variant with explicit construction of C
// Inputs: Matrix pair (A,B), both of dimension n x n; number of requested eigenvalues s
// Cutputs: eigenvalues in vector d, of length n, and eigenvectors in X of dimension n x s

int ido =0, iter =0, info = 0;
double dtol = 0.0, done = 1.0, dzero = 0.0;
double ~w = NULI, «z = NULL;

[ R Y N S

i)

// 1. Transform the generalized eigenproblem into the corresponding standard case
// 1.1 Factor B = U'T U; overwrite upper triangular part of B with the Cholesky factor U

[ —
N - O

PILA OOC _Chol( “Upper”, sn, B, ... ); // Cholesky factorizatiory n"3/3 flops

S

// 1.2 C :=U-T A U-1; overwrite A with C. Upper triangle of B contains the Cholesky factor

N

PIA OOC Trsm( “Right”, “Upper”, “No_Transpose”, “No.Unit”,

17 en, sn, sdone, B, ..., A, ...); // Triangular solve; n"3 flops
18 PIA 0OC Trsm( “Left”, “Upper”’, “Transpose”, "No.Unit”,
19 en, sn, sdone, B, ..., A, ... ); // Triangular solve; n"3 flops

5]
=]

21| // 2. Krylov subpace iteration for the variant
22| // 2.0 Generate w_0; initial guess returned in WORKD
23

24 dsaupd( ..., &ido, ..., &n, ..., &s, &dtol, ..., sm, Q, ..., IPNITR WORKD, ..., sinfo );
25

26 while (ido 1= 99) ¢

27 // 2.1 Formz k+1 :=Cwk; Cis inA

28

29 w = WORKD + IPNTR[O] - 1;

30 z = WORKD + IPNTR[1] - 1;

31 PIA OOC_Symv( “Upper”,

32 «n, sdone, A, ..., w, ..., «dzero, z, ... ); // Symetric matrisxvector
33 // product; n"2 flops

34

35 // 2.2 z k+1 => w k+1; w and z in WORKD

36

37 dsaupd( ..., &ido, ..., &n, ..., &s, &dtol, ..., sm, Q, ..., WORKD, ..., &info);

38 }

39 // 2.3 5,0 > Lambg Y; S in WORKL, eigenvalues in d, Ritz vectors in X

40

41 dseupd( ..., &s, ..., d, X, ..., &s, sdtol, ..., sm, Q, ..., IPNTR WORKD, ..., sinfo);

42
43| // 3. Backtransform to the generalized eigenproblem solution

44| // 3.1 X :=U"-1 Y. Overwrite Ritz vectors in X with eigenvectors of the problem
45
46 PIA 0OC Trsm( “Left”, “Upper’, "No_Transpose”, “No_Unit”,

47 en, &s, &done, B, ..., X, ... ); // Triangular solve; n"2s flops

Listing 1: Implementation of Krylov subspace-based eigensolver using POOCLAPACK
and ARPACK (simplified).
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3.2. ARPACK

The eigenpairs were computed using ARPACK (ARnoldi PACKage) [12]. Specifically, we applied
the implicit restarted variant of the Lanczos process (implemented by routines dsaupd and
dseupd) in this package. While there exists also a parallel version of this library, PARPACK [3],
the latter uses a data distribution different from that of PLAPACK. Some initial experiments revealed
that the redistribution of data required at each iteration by the interaction between PARPACK and
PLAPACK was quite expensive. On the other hand, for large eigenproblems like those tackled in
this work, the total computational cost of the ARPACK routines is negligible compared with that
of the POOCLAPACK/PLAPACK kernels, so that we decided to use the sequential version of the
ARPACK library. We note that the redistributions involved in the interaction between PLAPACK
and ARPACK were realized using PLAPACK routines. These routines allow us to gather (all-to-
one) and scatter (one-to-all) objects of the library (PLA_Obj) from and to C-style matrices and
vectors, resulting in a negligible cost compared to the rest of the algorithm.

3.3. The Krylov subspace-based eigensolver

A high-level (simplified) description of the eigensolver is given in Listing 1. The code assumes
that the matrix pair (A, B) is passed as two objects (PLA_Ob7j), A and B, initially stored on
disk following the standard data layout for POOCLAPACK. All data movement between disk and
main memory is hidden (performed) inside the OOC routines PLA_OOC_Chol, PLA_OOC_Trsm,
and PLA_OOC_Symv. Internally, these kernels invoke routines from PLAPACK to perform the
appropriate computations on the in-core data (tiles) in parallel.

Paralellism was exploited using two different approaches: pure-MPI and multithreaded. In the
first one, we placed ¢ MPI ranks in the node, with ¢ being the number of physical cores, and set the
number of threads for LAPACK and BLAS to one. In the second, we used a single MPI rank but set
the number of threads for LAPACK and BLAS to c. Our experiments revealed that, for large-scale

cases, the second approach was more efficient, and therefore we will only report results for this one.

4. EXPERIMENTAL RESULTS

All the experiments in this section were performed using IEEE double-precision arithmetic on a
server equipped with two Intel Xeon ES520 quad-core processors (total of 8 cores @ 2.27 GHz),
48 Gbytes of RAM, and connected to an NVIDIA Tesla C2050 GPU (2.6 Gbytes of memory, ECC
on). The local disk used in the computations of OOC routines was an Intel SSD 910 (400 Gbytes of
capacity, 1000MB/s for streamed reads, 750 MB/s for streamed writes). For the compute-bounded
eigensolvers, i.e. SD&C and the two-stage reduction-based algorithm, the results include the cost
of transferring the input data and the results between main memory and GPU (no disk is involved).
For the memory-bounded Krylov subspace-based method, the cost of moving the data to/from disk
is included in the reported results, but there is no movement of data between main memory and the
GPU, because all operations are performed in the multicore processors. In all cases, the codes were
linked to NVIDIA CUBLAS (v5.0) and the BLAS implementation in GotoBLAS2 (v1.13).
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OOC-GPU algorithms on Intel Xeon E5520 (x2) and NVIDIA C2050

SD&C —e—
Two-stage

200 —
9_/-9-9/4

/a/

GFLOPS

50

0
0 5000 10000 15000 20000 25000 30000
Matrix Dimension

Figure 2. GFLOPS rate of the OOC-GPU eigensolvers applied to small to moderate-scale instances of the
MT test case.

4.1. Performance of compute-bounded solvers

The goal of the first experiment is to estimate the performance of the OOC-GPU compute-bounded
eigensolvers. For that purpose, we consider a scalable biological case, MT (see Table I), generated
using IMOD, and tune it to generate problems that do not fit into the GPU but are “small” enough for
the main memory. For matrix decompositions such as the QR factorization and other similar Level-
3 BLAS-based kernels, like those appearing in the compute-bounded eigensolvers, disk latency
can be mostly hidden by overlapping it with computation, even in platforms equipped with GPU
accelerators [19]. Therefore, we expect these results to carry over to an execution where the problem
data matrices are stored on disk, and have to be transferred between secondary storage and the GPU
memory.

Our results in Figure 2 report the asymptotic performance of the OOC-GPU algorithms,
determined as the highest GFLOPS rate when the problem dimension grows to fill the capacity
of the main memory. At this point, it is worth noticing that the higher GFLOPS ratio for SD&C does
not imply a shorter execution time, as this method also exhibits a much higher cost than the two-
stage alternative (see Section 2 and [2]). In any case, the experiment serves its purpose, showing
that the OOC-GPU sD&cC and two-stage implementations deliver, respectively, sustained rates of
201.89 and 49.52 GFLOPS for the largest problem size. More importantly, the trends revealed by
this experiment indicate we can hardly expect a raise in the GFLOPS rate by working with larger
problems (even if they fitted into the main memory) as the performance rates are quite flat for the
largest two problem sizes.

4.2. Comparison of the eigensolvers

We next compare the theoretical execution times of the OOC-GPU eigensolvers, when operating
with much larger cases, against the actual execution time of the OOC Krylov subspace-based solver
with data stored on disk. In particular, we estimate the execution time of the OOC-GPU compute-
bounded eigensolvers from the relation between their theoretical cost (in flops, see Section 2) and the
sustained GFLOPS rates observed earlier as time in seconds = cost in flops/(sustained GFLOPS rate

-10%). On the other hand, for the Krylov subspace method, we report the experimental execution
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Acronym  Name PDB id. n

ER Eucariotic Ribosome™ 2xsy,2xtg 36,488
CCMV Cowpea chlorotic mottle virus ~ Icwp 56,454
VP Vault protein 2z7u0,2zv4,2zv5 119,486
VP4 75,518
VP 119,486
HK97 Hong Kong 97 virus Head 11 2ft1 227,154
HKO97A 100,325
HK97g 149,231
MT Microtubule 13:3 1tub 908,954

Table I. Benchmark of large-scale biological macromolecules. *In this case all heavy atoms were taken into
account in the rest a C, model was used.

Eigensolvers on Intel Xeon E5520 (x2) and NVIDIA C2050 Eigensolvers on Intel Xeon E5520 (x2) and NVIDIA C2050
3
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Figure 3. Estimated and experimental execution times of the eigensolvers applied to scaled instances of
macromolecule VP (left plot) and the benchmark collection of cases (right plot).

time. Based on our experience with the SD&C eigensolver and the testbed considered in [2], we
assume that this method converges in 7 iterations and, therefore, its cost is 42n flops. In all three
cases, the eigensolvers include the cost of the initial transformation into a standard eigenproblem
(Cholesky factorization and two triangular system solves), implemented as OOC algorithms that
operate with data on disk and exploit the multicore processors available in the platform.

Figure 3 reports the performance, in terms of execution time, of the three eigensolvers for scaled
instances of macromolecule VP (left plot) as well as all the cases included in the benchmark
collection (right plot, with logarithmic scale for the y axis): ER, CCMV, VP4, HK97 4, VPp,
and HK97 ; see Table I for details. Both experiments reveal the high performance of the two-stage
solver for several of the cases which, on the other hand, is overcome by the Krylov method for the
largest problems. Interestingly, even though the latter solver operates with data on disk, which limits
its performance to that dictated by the data transfer rate between the disk and the processor floating-
point units, the much lower theoretical cost of the Krylov method (O(n?k) flops, where k denotes
the number of iterations for convergence; see the while loop in lines 26-38 of Listing 1) compared
with that of the two-stage approach (O(n?) flops) determines this result. At this point, we note
that nothing prevents us from being able to tackle much larger macromolecules using our Krylov
eigensolver, in principle, as large as determined by the size of the platform disk. However, given the

constant GFLOPS rate and disk bandwidth for the two-stage and Krylov eigensolvers, respectively,
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10 J. 1. ALIAGA ET AL.

we can only expect an increase in the performance gap in favor of the Krylov subspace-based method
for those much larger cases.

As noted earlier, the performance of the Krylov subspace-based eigensolver depends on the
number of iterations k of the while loop (lines 26-38) in Listing 1 which, in turn, depends on the
clustering of the eigenproblem s smallest eigenvalues (i.e. those that are to be computed).

Figure 4 compares the cost and convergence of the Krylov method with the two-stage eigensolver.
In the left plot we report the number of iterations that result in the Krylov method being as expensive
as the two-stage solver for scaled instances of macromolecule VP. This experiment reveals a steady
and rapid growth in the number of iterations as the problem size is increased (except for the smallest
problem cases). In the right plot of Figure 4 we employ the largest case of this macromolecule and
report the execution time of the Krylov method as the number of iterations grows, showing that the

cross-over point between this method and the two-stage solver occurs around iteration 380.

Eigensolvers on Intel Xeon E5520 (x2) and NVIDIA C2050 Eigensolvers on Intel Xeon E5520 (x2) and NVIDIA C2050
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Figure 4. Relation between convergence rate and cost of the Krylov subspace-based eigensolver and
execution time of the two-stage reduction-based eigensolver.

5. CONCLUDING REMARKS

We have presented a new and competitive OOC eigensolver, based on the computation of Krylov
subspaces, for the solution of generalized symmetric eigenproblems arising in macromolecular
motion simulation. Additionally, we have compared the performance of this implementation against
two OOC-GPU algorithms, based on the two-stage reduction to tridiagonal form and a recent
spectral divide-and-conquer approach for the polar decomposition.

The Krylov subspace-based eigensolver presents a much lower theoretical cost than the OOC-
GPU alternatives, but this method casts most of its computations in terms of a memory-bounded
operation like the (symmetric) matrix-vector product. Therefore, when operating with OOC data this
method cannot benefit e.g. from the use of a hardware accelerator, as its performance is intrinsically
limited by the disk bandwidth. On the other hand, the implementations of the spectral divide-and-
conquer and two-state reduction attain high performance by carefully amortizing the cost of the
PCI data transfers with a large number of floating-point arithmetic operations so that the dimension

of the macromolecular problems that can be tackled is not constrained by the capacity of the GPU
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memory. We believe that this result catries over to an scenario where the problem matrices are stored
on disk.

Our experiments on an desktop platform with two Intel Xeon multicore processors and an
NVIDIA “Fermi” GPU, representative of current server technology, illustrate the potential of all
these methods to address the simulation of biological activity. These results also show the superior
performance of the OOC-GPU two-stage and Krylov approaches over the divide-and-conquer
implementation for all problem sizes, the high correlation between the execution time of the Krylov
subspace-based eigensolver and its convergence rate, and the asymptotic superiority of the Krylov
approach as the problem size increases.

As part of future work, we plan to analyze more advanced Krylov eigensolvers, with faster
convergence, than can turn this method even more competitive with the two-stage eigensolver.
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