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Analyzing runtime adaptability of collaboration patterns
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1Distributed Systems Group, Vienna University of Technology, Vienna, Austria
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SUMMARY

The recent two decades have witnessed the emergence of large-scale, interaction-intensive systems. A
system’s provided user-centric communication and coordination mechanisms have a significant impact on
its runtime management. Beyond a certain size, manual monitoring and management are no longer feasible.
Hence, it is highly important for a system designer to becoming aware of the most suitable interaction
mechanisms and their implications on system adaptability. Specifically, a system designer requires
knowledge on what adaptation primitives are available, whether these are system-driven or user-driven, how
long they will take, what impact do they have on collaboration state, and under what conditions they can be
enacted. These aspects vary considerably across collaboration patterns.

In this paper, we investigate a collaboration structure’s adaptability based on behavior, asynchrony, state,
and execution context. We subsequently discuss seven distinctively different collaboration patterns in terms
of those aspects. Based on a motivating scenario, we ultimately demonstrate how these patterns and insights
into their inherent adaptability may guide design decision impact and trade-off analysis. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past 20 years, we have observed a trend toward ‘social software’ leaving the realm of group
support systems for small-sized or medium-sized teams and entering the dimension of Internet-scale
collaborations. We find collective intelligence and user participation among the main characteristics
of the Web 2.0 [1]. Especially noteworthy is the increasingly blurry boundary between humans and
software. Humans have become both provider and consumer of content and computation. Humans
are no longer just the ‘users’ of a system but an integral part [2]. Their interactions with other
humans and software elements have a significant impact on the system’s runtime management and
thus require dedicated consideration during the system’s design.

A software design team tasked with devising the key architectural decisions for an interaction-
intensive system (e.g., monitoring critical infrastructure) needs to decide on—among other
things—the potential ways the various end users will eventually communicate. Being aware of the
applicable interaction mechanisms’ idiosyncrasies is highly important. First, the appropriate
interaction mechanisms determine the underlying system’s ability to effectively and efficiently
fulfill its purpose by establishing the desired balance between (1) system control over user actions

*Correspondence to: Christoph Dorn, Distributed Systems Group, Vienna University of Technology, Argentinierstrasse
8/184-1, 1040 Vienna, Austria.

†E-mail: dorn@dsg.tuwien.ac.at
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2726 C. DORN AND R. N. TAYLOR

and (2) system-facilitated user action flexibility. Second, they also determine a system’s ability for
adaptation at runtime. Regardless whether a system tends toward rigid control of user actions or
allows a large degree of interaction freedom, once a system acquires a considerably large and com-
plex user base, automatic management capabilities need to be in place. Beyond a certain size, manual
monitoring and management are no longer feasible. Designing such automatic capabilities hence
requires insights into an interaction structure’s runtime adaptability. Crucial properties include what
adaptation primitives are supported, whether these are system-driven or user-driven, how long they
will take to complete, what impact they have on collaboration state, and under what conditions they
can be enacted.

The effects of lacking insight into interaction flexibility, respectively adaptability, are twofold.
First, designers having to choose between two alternative interaction structures remain unaware
of trade-offs. The resulting system ends up brittle as, for example, a rigid interaction mechanism
(e.g., a workflow system) is enhanced with complex features to provide additional flexibility rather
than merely adding restrictions to an intrinsically flexible mechanism (e.g., an instant messaging
system). Second, designers oblivious to a particular interaction structure’s side effects might arrive
at a system design that will not be as adaptable at runtime as expected. For example, having an adap-
tation mechanism requires simultaneous availability of all collaborators for upgrading a conference
call software will remain potentially unavailable for a considerable time.

In our view, one aspect in addressing this shortcoming consists of explicitly modeling and ana-
lyzing user interaction structures. Typical software development activities focus on abstracting
the technical aspects: component and connector architecture view, action sequences, data struc-
tures, data flow, subsystem distribution, and so on. Little effort is spent on abstracting interaction
structures among users (besides the rather limited UML use case diagrams). Especially, design
approaches for runtime adaptation mechanisms have primarily focused only on the software sys-
tem [3] and have taken the implications arising from collaboration interdependencies as static
requirements [4].

Software-centric engineering approaches, however, hold the key to the solution. As repeatedly
pointed out [5, 6], software architecture-based self-management techniques address adaptation on
the right level of abstraction and generality, rather than focusing on language-level or network-
level adaptation. On the architectural level, adaptation actions typically replace components and
reconfigure connectors. To this end, the underlying architectural style determines to a large extent
the effort required to implement runtime changes [7].

We argue that the same holds true for the users’ collaboration structure. In the case of interac-
tions, architecture-inspired adaptation describes changes in terms of who is executing work, who is
coordinating the work, and how to (re)wire the collaborators. Furthermore, collaboration structures
exhibit patterns similar to architectural styles. Taylor, Medvidovic, and Oreizy define architectural
styles as follows [8] p.73:

An architectural style is a named collection of architectural design decisions that (1) are applicable in a
given development context, (2) constrain architectural design decisions that are specific to a particular
system within that context, and (3) elicit beneficial qualities in each resulting system.

Example software architectural styles include Pipe-and-Filter, Blackboard, Representational
State Transfer, and Peer-to-Peer. Collaboration patterns provide the same benefit when designing
user interaction structures. Specifically, collaboration patterns allow the design team to reason about
what aspects change, how long adaptation takes, what the side effects on the collaboration state are,
and which adaptation restrictions exist. The design team can then devise mechanisms that observe
these patterns at runtime for better monitoring, analyzing, and adaptation planning of the over-
all collaboration structure rather than focusing on individual interactions, collaborators, or shared
objects.

This motivates the main contribution of our paper. We focus on analyzing collaboration
adaptability (including interaction flexibility and adaptation control) while leaving the issue of
formally representing collaboration structures to another paper (see e.g., [9]). To this end, we revise
the Behavior, Asynchrony, State, and Execution (BASE) framework [7] (initially contrived for
evaluating runtime adaptability of software architectures) for discussing the adaptability aspects

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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ANALYZING RUNTIME ADAPTABILITY 2727

Figure 1. Collaboration aspects in an infrastructure-monitoring scenario.

of collaboration patterns.‡ We subsequently apply the revised framework to the following seven
collaboration patterns: Shared Artifact (4.1), Publish/Subscribe (4.2), Master/Worker (4.3), Social
Network (4.4), Workflow (4.5), Secretary/Principal (4.6), and Organizational Control (4.7). Our
analysis highlights the fundamental differences in adaptability. Based on a motivating scenario,
we demonstrate how our contribution assists a design team in evaluating trade-offs and arriving at
informed, optimal design decisions.

The remainder of this paper is structured as follows: Section 2 provides a motivating scenario and
outlines a variety of crucial collaboration pattern-centric design decisions. Section 3 describes the
BASE framework and its applicability to collaboration patterns. We subsequently apply the BASE
aspects in Section 4 for discussing the previously listed seven patterns. We demonstrate in Section 5
how these patterns and insights into their inherent adaptability may guide design decision impact
and trade-off analysis. We discuss our findings in Section 6, provide related work in Section 7, and
conclude with an outlook in Section 8.

2. MOTIVATING EXAMPLE

Monitoring and safety systems range in scope from a small security team handling an office building
to thousands of operators in back offices and on site at geographically distributed locations to secure
critical infrastructure. These systems tightly interweave people and software components and hence
need to consider user flexibility within various collaboration structures to maintain overall system
effectiveness and efficiency.

In the building monitoring case (Figure1), back-office operators utilize high-definition video
streams, floor plans, building sensor feeds, occupancy logs, and communication channels with
on-site security personnel. Staff of an earlier shift needs to provide observations, events, and other
data to team members of the next shift without necessarily knowing their exact identity. Collabora-
tion flexibility is also required to seamlessly replace operators, to temporarily bring in experts, or to
reassign members to another subteam on the fly.

When back-office operators investigate suspicious behavior, they have to gather a plethora of
information to assure a certain situation is non-threatening. Analysis of raw data from multiple video
feeds, still images, and voice recordings easily overwhelms a back-office team and thus requires
additional analysts on demand. Teams need to coordinate analyst availability, task assignments, and
task progress tracking.

‡Note that this paper is a considerably extended version of [10] and derives from a technical report [11]. We also briefly
demonstrated the applicability of BASE in the scope of web-scale workflows in an invited IEEE Internet Computing
article [12].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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2728 C. DORN AND R. N. TAYLOR

In the case of a safety critical situation, adequate reaction requires situation awareness. Operators
thus need continuous data about the location, equipment, and activities of their fellow workers as
well as system elements. Individual operators should not be occupied by trying to keeping track
of continuously fluctuating relevant users and system elements that represent information sources
and sinks.

On site, incident response teams need communication mechanisms, which reflect the team’s
organizational structure as well as allow for flexible reaction to unforeseen situation development.
All the while, bidirectional interaction between on-site personnel and back-office operators has to
be ensured.

This scenario highlights some of the complexities arising from the various interaction depen-
dencies that subsequently need management. Merely modeling user collaboration as use cases or
analyzing low-level technical design documents will not assist the design team in apprehending
the implications of the implicitly emerging user interaction protocols. A design team first identifies
suitable patterns, which address the underlying dependency coordination needs. There is no pattern
that adequately supports all types of dependencies such as information flow, control flow, resource
access, and task execution [13], but typically there are several ones that excel at a subset.§ Inves-
tigating and evaluating the applicable collaboration patterns allow system designers to understand
and subsequently answer the following example questions:

� Q1: Which pattern supports an adequate trade-off between control and flexibility when passing
information from on-site personnel to back-office operators? What advantage does a publish–
subscribe-based mechanism offer compared with pre-configured event routing?
� Q2: Which pattern supports information-processing constraints as well as flexible information

collection before passing information between work shifts? Are shared artifacts too flexible or
would workflows be too rigid?
� Q3: According to which pattern should analysts be organized to ensure timely and high-

quality results? Should they work on analysis tasks jointly or rather carry out replicated tasks
individually?
� Q4: Is a hierarchical structure for incidence response teams flexible enough for quick

customization upon deployment?
� Q5: What impact has the deployment of emergency dispatchers (for coordinating on-site

personnel and incident response teams) on flexibility?

In order to answer these questions, knowledge about the patterns’ elements alone is insufficient.
The system designers need a fundamental understanding of the collaboration patterns’ provided
adaptability: what flexible actions a particular system user role may entail and what adaptation
actions the system may execute automatically. Such understanding is also of highest importance
for perceiving the patterns’ limitations. Overall designers need to apprehend what elements can
and cannot (easily) change (behavior), the duration of enacting a change and its effect on the sys-
tem (asynchrony), where collaboration awareness and know-how are captured (state), and under
which conditions a change may be enacted (execution). Only then are the designers in a situation to
make principled decisions and safely evaluate trade-offs among design alternatives. To this end, the
BASE framework (Section 3) provides a structured approach that focuses exactly on those concerns:
Behavior, Asynchrony, State, and Execution.

Without in-depth knowledge on pattern adaptability, the design team might arrive at following
design decisions (Figure 1): (1) implement the Log Book as a Shared Artifact (unaware of its
overly flexible user involvement); (2) manage tasks in a Master/Worker manner (unsure whether
more sophisticated control flow might be required); (3) enable event distribution through Pub-
lish/Subscribe (not knowing where to enforce constraints); (4) organize incident teams peer-to-peer
(not considering the pattern-specific risk for long time-to-team); and (5) introduce emergency dis-
patchers for coordinating teams and incident reporters (unaware which participants may suffer
from rigidity).

§A discussion on which pattern best supports a particular dependency type is outside the scope of this paper.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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Each of these patterns has different idiosyncrasies when it comes to available collaboration-level
primitives for executing adaptation actions, respectively enable user flexibility. We will discuss the
detailed design decision impact and trade-offs in Section 6.

The next sections, however, introduce the BASE framework for analyzing pattern-specific
adaptability, followed by an in-depth discussion of the various patterns’ adaptability.

3. APPROACH

In [13], Malone and Crowston highlight the existence of similar coordination aspects in Economics,
Organizational Theory, and Computer Science. Just as a software architecture represents an abstrac-
tion of the technical system, so does a collaboration pattern describe the high-level structure of a
collaborative effort. The basic elements in a software architecture are components and connectors.
At any given level of abstraction, components are the loci of computation and data management
whereas connectors coordinate the interactions between components. The distinction of connectors
and components is mirrored in collaborations. We can distinguish between humans according to
work-focused and coordination-focused roles. Roles such as managers, team leaders, and secretaries
are rarely described as connectors in real world environments, but they perform a similar task: the
coordination of other humans (i.e., components).

As emphasized in [7], a set of common principles for adaptability can be extracted from the
different architecture styles. The principles highlight enabling replaceability of elements that are
intended to change and controlling interactions with these dynamic elements. Connectors, thus,
are one of the key elements to system adaptability. For example, connectors allow the dynamic
replacement of behavior components in robotic systems without affecting other components [14].

Collaboration Connectors enable similar capabilities among interacting users. One of the main
purposes of a Collaboration Connector is managing the interactions among Human Components.
In the Master/Worker pattern, for example, the task creator (client) and task executer (Worker) com-
prise the human components. Without the Master (a collaboration connector), client and worker
need to be aware of each others’ identity to get in direct contact for the various interaction stages
such as tasks matching, task allocation, progress monitoring, and worker replacement. Here, a col-
laboration connector provides vital management capabilities to simplify those interactions. Note
that a collaboration connector is often a piece of software and thus not necessarily implemented
by a human. Typically, dedicated user roles monitor pure software-implemented connectors. Any
such software, however, resides at the same conceptual level as a collaboration connector. Hence,
we make no distinction between human-initiated and software-initiated actions when discussing a
collaboration pattern.

The scenario demonstrates how complex, interaction-intensive systems combine multiple
collaboration patterns. The system design team thus needs to specify what degree of flexibility,
respectively constraints, the various user roles require in a particular pattern. The design of
user-centric adaptation mechanisms (e.g., recommendations, filtering, and (semi)-automatic recon-
figurations) must build on the underlying pattern’s interaction primitives (e.g., collocating filtering
with collaboration connectors). We thus propose to treat collaborations in terms of human compo-
nents and collaboration connectors and subsequently refashion tools from the software architecture
domain for evaluating a pattern’s adaptability.

3.1. Behavior, asynchrony, state, and execution background

The BASE framework [7] defines four aspects relevant for software runtime adaptation: behavior,
asynchrony, state, and execution context. Analyzing these aspects dispenses with encoding the styles
in a formal language, which simplifies the transition of BASE to collaboration patterns. We revisit
the initial BASE aspects and their significance for runtime software adaptation and then outline how
these properties are equally applicable for analyzing collaboration patterns.

Behavior highlights the scope of supported change, that is, the means for changing a system’s
behavior and the respective level of abstraction such as reconfiguration at code level or at

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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component level. Some styles limit adaptations to compositions of existing behaviors while
others allow the introduction of new behavior. Limitations also include specification of behavior
that must remain unmodified.

Asynchrony addresses the implications that come with the lag between initiating a system’s adap-
tation and its completion. Large-scale distributed systems take potentially longer to update than
compact, central systems and might never reach a completely updated status. This aspect also
includes maintaining system constraints during adaptation and continuous system availability.

State refers to potential adaptation ‘side effects’ in terms of impact on the system’s state. Changing
a data type definition might require updating all current instances to the new definition. Replac-
ing a component potentially involves extracting that component’s state for initializing the new
component before the system can resume.

Execution context raises awareness of constraints that determine whether or not adaptation can
commence. For example, a component currently having control cannot be modified directly.

3.2. Collaboration adaptability aspects

Compositions from Human Components and Collaboration Connectors produce patterns similar to
architecture styles. Given the similarities highlighted previously, the BASE framework applied to
collaborations considers the same runtime adaptability aspects.

Human components and collaboration connectors react to (or even anticipate) changes in the
environment. The environment includes everything a human component or collaboration connec-
tor is capable of observing: the underlying collaboration, system, and its context. They thereby
select actions autonomously, that is, without necessarily being told by someone else what to do
but purely based on their awareness (workspace, process, interaction, context, etc.). Adaptability in
collaborative settings comes in two broad forms:

� flexibility provided to human components (i.e., users) in terms of the available pattern-specific
actions. In the Master/Worker pattern, for example, a client might obtain additional information
rendering some open task irrelevant, which is subsequently canceled. A worker might drop
poorly paid tasks in return for better paid ones;
� control through coordination actions available to connectors (i.e., software and/or particu-

lar users) applied for fulfilling the connector’s purpose (e.g., delivering messages, assigning
tasks, and controlling access) and thus for preserving a pattern’s properties (e.g., publishers
never interact with subscribers directly). In the Master/Worker pattern, for example, the master
observes inconsistent task results and decides to issue additional jobs for improving the quality.
Additionally, the master may no longer assign jobs to unreliable workers.

Hence, throughout this paper, the term ‘adaptation’ signifies both human component flexibility as
well as collaboration connector-centric actions.

Behavior similarly addresses the means for adaptation. Adaptability is not limited to changing
a single user’s involvement. First, there are multiple levels of granularity that allow behavior
adaptation. Replacement of a complete company and team, adding another worker, or acquiring
a required skill all correspond to component-level adaptation in software systems. Second,
behavior distinguishes between component-centric and connector-centric adaptation actions. A
third behavior facet focuses on the component and connector wiring. Who is allowed, respec-
tively empowered, to interact with whom. For example, a news consumer chooses among
multiple news publishers by applying criteria such as accuracy, level of detail, or timeliness.
Finally, the interaction means among users represent significant loci of flexibility and adaptation.
Shared artifacts and messages might enforce a precisely specified structure (e.g., medical records
and insurance claims process) while other forms provide various degrees of flexibility (e.g., an
email and a Wikipedia article).

Asynchrony in collaborations refers to the time required for establishing a (new) team, replacing a
worker, becoming acquainted to another worker, familiarizing with work and becoming produc-
tive, or learning a new skill. Besides changing structural pattern elements, asynchrony highlights
the impact that duration and spread of revising the interaction protocol among users, updating

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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message or document formats, or reallocating resources and privileges might have. Asynchrony
focuses on such immediate changes as well as the temporal side effects on the joint work during
adaptation. It, hence, raises awareness on constraints that need enforcement during the reconfig-
uration. An example constraint might require the continuous availability of at least one former
team member during a team’s replacement phase (rather than exchanging all members at once).

State aspects draw attention to direct and indirect adaptation side effects when altering the means
of communication, the manipulation of shared artifacts, or replacement of workers. The most
knowledgeable form of direct state change is loss of implicit collaboration know-how upon
removing a worker. Handover of such implicit collaboration information between outgoing and
incoming workers needs explicit consideration when adapting the human interaction structure.

Execution context refers to the possibility to adapt during an active collaboration session. Whether
a human may cease work on a particular task or whether it is necessary to wait until task comple-
tion depends on multiple factors such as explicit contracts, cost and time for repeating the task,
or executing compensation actions. The same holds true for the degree of coupling between two
or more workers during an ongoing interaction.

3.3. Human-driven adaptation idiosyncrasies

There are several aspects where software-driven adaptation and human-driven adaptation differ. The
main ones being (1) human autonomy, (2) extensive awareness of one’s surroundings, and (3) human
cognitive capabilities.

Autonomy becomes most apparent when it comes to rewiring (introducing, removing, and
changing connections among components and connectors) a collaboration instance. Software
architecture-centric rewiring assumes control over all involved (i.e., rewired) elements. In collabora-
tive settings, we cannot automatically assume such ‘obedience’ but must rather explicitly elaborate
on which user role (component or connector) initiates a new connection, and whether and who is
involved in completely establishing such a link. Variations in initiation and establishment typically
represent different refinements of the same pattern. Adaptation becomes more complex as the adap-
tation mechanism needs to consider, for example, that recommendations are hardly followed in all
cases. Yet, adaptation still operates within the boundaries of the underlying pattern and thus needs
to obey the pattern’s limitations. A recommendation mechanism breaks the underlying assumptions
in a Workflow by suggesting a worker to interact with the preceding worker. This results in a shared
state no longer managed by the workflow coordinator (human or software).

Software elements are typically constraint and fixed in their perception of their environment.
Humans inevitable will exhibit different levels and types of awareness (workspace, social, task, and
process) and changes thereof across time. Collaborators may obtain significantly more awareness
than expected for their role in a collaboration pattern. Greater awareness has the benefit to enable the
individual to conduct earlier or more efficient local adaptations. On the one hand, this may impede
adaptation at a more global level as awareness implies tighter coupling among collaborators. A
subscriber, for example, may obtain detailed context information on the information sources.
The user subscriber adapts by establishing preferences reflected in her or his desired message
sources. The messaging connector is subsequently unable to transparently filter and reroute mes-
sages without the subscriber noticing. On the other hand, awareness greatly improves adaptability
when made available to those participants in possession of adaptation authority and/or capabilities
(i.e., primarily connectors). Additionally, the awareness type should match the underlying man-
aged dependencies. Task-sequencing dependencies, for example, call for process awareness; data
input/output or resource dependencies call for workspace awareness.

The combined human cognitive capabilities apparent in learning, forgetting, creativity, handling
uncertainty, or conflict avoidance give rise to much more complex behavior than typical software
components exhibit. Hence, it is not surprising that a collaboration mechanism becomes repurposed.
Typical causes are a lack of suitable coordination mechanisms or a lack of sufficient tool proficiency.
This results in a mismatch between the repurposed tool/pattern (e.g., a wikipage) and the actually
desired mechanism (e.g., workflow management). The participants consequently need to manually
manage this mismatch and make every participant aware thereof. Automatic, software-centric

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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adaptation mechanisms are at risk to becoming counterproductive. A vandalism detection mech-
anism, for example, might wrongly lock a wikipage that is repurposed to capture frequently
fluctuating workflow information. Patterns and BASE, however, can help to identify this mismatch
and how to handle it.

At the bottom line, patterns and the BASE framework are (merely) design tools that support
a designer in determining the best coordination means (including trade-offs) for the underlying
collaboration runtime concerns.

3.4. Applying behavior, asynchrony, state, and execution during system design

The BASE framework supports the design team in various development phases and remains inde-
pendent of the underlying software engineering process model (spiral, waterfall, agile, etc.). The
following steps outline how a design team may apply BASE for identifying suitable collaboration
patterns. These steps should not be taken as rigorous, sequential instructions but merely indicate
how to potentially align BASE, collaboration patterns, and system design.

(1) Determine the various coordination needs among users.
(2) Identify patterns that address these coordination needs.
(3) Determine adaptation needs through identifying the sources and situations of uncertainty,

unreliability, inconsistency, and so on.
(4) Further investigate those adaptation needs that are best managed by users (and cannot be

sensibly managed at the software level).
(5) Utilize the BASE terminology for specifying adaptation requirements:

Behavior: Specify who will adapt, what will change, and how often something will
change.

Asynchrony: Specify the constraints that must hold during adaptation.
State: Specify the collaboration context shared among participants (workspace aware-

ness, process awareness, temporal awareness, etc.), how much state they should share,
and what state needs externalization before adaptation.

Execution: Specify how time critical changes are and what an acceptable change
delay is.

(6) Compare the adaptation requirements with each pattern’s BASE properties and select
best match.

(7) Optionally evaluate control/flexibility trade-offs in terms of effort required to restrict flexibil-
ity, respectively relax constraints.

The steps highlight how coordination and adaptation needs (problem domain) are tightly inter-
woven with collaboration patterns (solution domain). They focus exclusively on adaptability.
Trade-offs among patterns will extend beyond adaptability and must consider all design criteria
relevant for the underlying problem. A pattern-based perspective supports such analysis. For exam-
ple, identifying all involved participants and their actions in a pattern provides a basis for further
investigating acceptability issues [15] or security concerns [16].

4. APPLYING BEHAVIOR, ASYNCHRONY, STATE, AND EXECUTION TO
COLLABORATION PATTERNS

Numerous collaboration patterns exist for addressing various management concerns such as coor-
dination of (1) shared resources, (2) producer/consumer relationships, (3) simultaneity constraints,
and (4) task/subtask relations [13]. In this section, we evaluate seven, real world-observed patterns
that we considered in our scenario: Shared Artifact (4.1), Publish/Subscribe (4.2), Master/Worker
(4.3), Social Network (4.4), Workflow (4.5), Secretary/Principal (4.6), and Organizational Control
(4.7). We neither claim that this set is complete nor claim that it includes various refinement forms.
Our main purpose is highlighting the fundamental differences among patterns by describing their
structural elements and by analyzing their exhibited adaptability idiosyncrasies.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
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4.1. Shared artifact

A Shared Artifact describes any type of collaboration object where participants communicate
indirectly through creation, updating, reading, and deleting of a common object. Examples are
shared text documents, source code files, or a discussion board (Figure 2). This pattern achieves
strong decoupling among human components as it inhibits direct interactions. Instead, all commu-
nication is limited to publicly visible manipulations of (parts of) the shared artifact.

Research in the computer-supported cooperative work domain focused early on such capabilities
in the context of shared workspace systems and groupware systems [17]. Several approaches target
also large-scale environments [18]. With the emergence of Wikis [19], Internet-scale collaborative
editing became a universal success: the most prominent example being Wikipedia [20].

Behavior: Adaptation actions consist of adding/removing collaborators to/from artifacts, moving
collaborators between artifacts, improving on the artifact type to convey more coordination-
enabling information, and artifact structuring (splitting/merging/replication). In self-organizing
environments, collaborators may join or leave the workspace at any time. They are free to create
new shared artifacts or manipulate existing ones without requiring a dedicated person collect-
ing, merging, and distributing contributions. Collaboration connectors govern artifact access
privileges and monitor changes, thereby enable detecting, preventing, resolving, or deciding on
change conflicts.

Asynchrony: Adaptation actions that occur on a per artifact basis affect only a subset of all
collaborators. They need instructions on how to deal with the simultaneous existence of old and
new artifact types as shared artifacts are incrementally updated. In contrast, demanding a syn-
chronous schema update of all artifacts at once prevents all collaborators from performing artifact
manipulations for the duration of the complete system adaptation.

State: The shared artifact maintains the collaboration’s state. Collaborators construct their internal
state from the artifact’s history without having to contact all involved participants individually.
Currently active collaborators thus need not transfer state to future collaborators, which may not
be known in advance.

Execution context: When upgrading an existing artifact (e.g., splitting a large document into
individual chapters), all write access requests need to wait while the upgrade takes place. In
return, adaptation actions need to wait for collaborators to complete their artifact manipulation
activities. Small, self-contained changes allow for timely artifact adaptations. Locking mecha-
nisms, however, need to be in place when collaborators tend to update large parts that likely lead
to conflicts.

4.2. Publish/subscribe

In the Publish/Subscribe pattern, publishers and subscribers communicate indirectly by means of
events and are not necessarily aware of each other’s identity [21]. A complex connector (typically
automated and message-oriented) manages event collection and distribution. Subscribers process
the received events and potentially produce new events of their own.

Mailing lists (e.g., Listserv [22]) emerged among the earliest instances of Publish/Subscribe for
delivering information of general interest to a larger audience. This collaboration pattern comes in
different flavors characterized by the anonymity of sender and receivers, the ability of receivers to

Figure 2. Schematic Shared Artifact pattern example.
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DOI: 10.1002/cpe



2734 C. DORN AND R. N. TAYLOR

Figure 3. Schematic Publish/Subscribe pattern example.

reply or post their own message, and whether the list is topic or person-centric (Figure 3). In the
case of mailing lists, the mailing list server obtains the role of the distribution connector.

In recent years, microblogging platforms such as Twitter have become a popular tool for
rapidly disseminating information in large-scale environments [23, 24]. In contrast to purely topic-
centric subscriptions in mailing lists, subscriptions in microblogging environments are mostly
person-centric.

Behavior: With topic-centric lists, publishers and subscribers may dynamically join and leave
while the respective list remains unaffected. The lifetime of a person-centric list usually remains
coupled to the publishing activity of its respective author. Simultaneously, new topics emerge,
and existing topics loose their relevance. Distributor connector replacement is only an option
when published events can be buffered or rerouted. How any state (e.g., subscription status) is
transferred among connectors remains outside this pattern’s scope.

Distributor connector variations differ in their provided control over subscription establish-
ment and release. A connector may automatically approve any requests or obtain a publisher’s
explicit consent. A connector may allow subscriptions to be initiated by a third party, different
from the actual subscriber ultimately receiving the events. A connector may decline unsub-
scribe requests when no other subscriber remains (e.g., monitoring status of elderly people in the
healthcare domain).

Event format changes typically follow two approaches: either all involved elements cease
operations so that they can learn about the new format or the connector becomes format version
aware and knows how to convert events on the fly. The latter approach is particularly helpful to
address situations where subscribers may remain offline for a while and collect multiple events
upon going online (some of which potentially may have occurred before a format update).

Asynchrony: Changes to a list’s subscriber base have no side effects. Single changes are instanta-
neous and require no synchronization with other users. Author removal from person-centric lists
and single-publisher lists may cause receivers to resort to alternative event sources. However,
supporting mechanisms for subscribing to relevant lists is outside the pattern’s scope.

In case the message distribution connector supports a single message format only, intro-
ducing a new format implies a considerable downtime as pausing all publishers, ensure that
all subscribers have received pending notifications, and then updating all publishers and sub-
scriber (i.e., notify them how to handle the new format) takes time. Publishers and subscribers
would only be allowed to join again when having completed the format update to guarantee
correct message interpretation.

State: The collaboration domain defines the requirements for state transfer upon swapping publish-
ers. Distribution connectors maintain state on (1) subscriptions, (2) messages for subscribers that
are allowed to go offline without missing events, and (3) publishers if the connector’s purpose
dictates so (e.g., monitoring whether there are sufficient publishers for a particular topic). Con-
sumers build their internal state as new messages arrive. Most mailing list and microblogging
implementations maintain a history of past messages that enable immediate state reconstruction.

Execution context: Message dispatching and receiving are considered atomic. Hence, independent
unidirectional messages achieve loose coupling and limit restrictions on the replacement of pub-
lishers or subscribers. In special cases, for example, when multiple individual messages from
multiple authors create a discussion thread, the removal of an involved publisher would then
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require others to compensate. Any such coordination among publishers, however, remains out
of the pattern’s scope. Newly joining readers need to build the discussion thread from historical
records or wait for a new discussion to emerge.

Hybrid patterns: Online discussion forums [25, 26], bulletin boards, and blogs [27] populate the
spectrum between Publish/Subscribe and Shared Artifacts. Knowledge is distributed from pro-
ducers to consumers, who in turn raise the message to the level of a shared artifact through
refinement or extension in the form of commentary. Discussion topics and blog entries are thus
more than simple broadcasted messages but at the same time do not offer the full range of
manipulation capabilities that come with shared artifacts.

4.3. Master/worker

The Master/Worker pattern leverages parallel processing and decoupling of task clients and task
executers. Partitioning tasks works particularly well in human collaboration when the resulting work
items can be carried out independently (Figure 4). The client defines a work task and typically
specifies the need for task replication, temporal constraints, and reward. The Master, a collaboration
connector, manages the distribution of tasks in the form of jobs to available workers. Such job
allocation may occur in a push or pull manner. The former procedure has the Master allocate jobs
directly to workers, whereas the latter procedure enables workers to choose which job they prefer
to work on. Depending on the Master’s capabilities and task type, it will reallocate overdue jobs
from unresponsive workers and aggregate the results from replicated jobs before returning them as
task outcome to the client. A most basic Master merely collects the results and relays them back
to the client who then has to aggregate the individual results itself. The large-scale deployment of
the Master/Worker pattern is often referred to as crowdsourcing [28]: the most prominent example
being Amazon Mechanical Turk [29].

Behavior: The client decides upon the number of workers that may work in parallel on copies of the
same task artifact. Alternatively, it specifies quality and temporal constraints, and a sophisticated
Master determines when and how much to replicate jobs. Clients going offline have no impact on
other clients but need to indicate whether the Master should revoke claimed jobs, retain results
for later collection, or redirect results to a replacement client.

In the pull-style assignment, workers choose which tasks to perform and whether to return
a task unfinished. In this case, the Master may remain completely unaware on the number and
skills of available workers, merely maintaining state on open and claimed jobs. In push-style
assignment, workers receive new tasks in their job queue but may still have the option to reject
or delegate a task. Here, the Master immediately notices leaving workers thus gaining the ability
to reason on the impact for completing pending task within time and quality. A Master may thus
better manage workers with scarce skills.

Changing a task’s data format affects only new task instances. Claimed jobs typically require
cancelation and reposting to reflect any updates. On the one hand, when format updates affect
only the task’s description, the Master remains unaffected, and only workers attempting to claim

Figure 4. Schematic Master/Worker pattern example.
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such a job require updating. On the other hand, changes that affect the Master in managing task
(e.g., allocation, replication, and aggregation) require Master replacement or reconfiguration (and
updates of other clients when only a single format is supported) but remain invisible to workers.

Asynchrony: A task artifact completely decouples clients and workers. The client, respectively the
Master (assignment connector), has the option to reassign the task to another worker (respectively
make it available again) when the worker fails to complete the task in a predefined time frame.
The client informs the Master on the number of multiple identical tasks for the sake of reliability
or the issuing of multiple sequential tasks until the desired result quality has been achieved.
Thus, the impact of unreliable workers on quality, cost, and timing highly depends on the chosen
allocation strategy.

Task format updates have little temporal impact as long as they remain specific to the task
descriptions. Hence, only the workers need to learn how to handle the differently specified
job. Format updates to task management related information have a similar impact as event
updates in the Publish/Subscribe pattern. In case of a single valid task format, all clients have
to update for future task request, and the Master had to stop and learn how to handle the new
format. Otherwise, the Master requires version capabilities but nevertheless will be unavailable
during updating.

State: The task artifact contains the complete collaboration state. Replacement of workers has no
side effect on the state. The Master, however, maintains state on which jobs are yet unassigned,
which worker claimed particular jobs and their respective due dates. Master replacement thus
requires the ability for externalizing and handing over such state information.

Execution context: All workers execute their task independently; hence, no synchronization of
results is required. Multiple workers assigned to the same task artifact work on distinct copies
(i.e., jobs) and have no knowledge about each other. They remain similarly unaware of any
replacement of the client. A new worker simply obtains the task description and commences task
execution independently of any previous work done. Replacement or updating of the Master is
non-trivial as this involves transition to a state of quiescence, buffering, or redirecting incoming
requests and results, as well as externalizing state on tasks, jobs, and workers.

4.4. Social network

Social Networks (e.g., Facebook and LinkedIn) are characterized by a large number of participants,
sparse connections among them (i.e., the number of acquaintances is small comparative to the over-
all size of the network), and a lack of centralized control (Figure 5). A social network’s topology
typically exhibits multiple communication paths between any two participants, some of these of
very low hop count [30]. Power-law distribution of links is found throughout most social networks:
a few members are extremely well connected, while the majority exhibits only few links [31]. A
social network’s two main purposes can be best described as keeping acquaintances informed about
oneself and processing ‘service’ requests of any kind (e.g., who knows a good restaurant and who
could help me with . . . ). Processing may include issuing of, filtering of, forwarding of, and replying
to requests.

Figure 5. Schematic Social Network pattern example.
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Social networks provide an adequate substrate from which self-organizing teams without an a
priori specified coordination structure emerge. Instead, individual members collaborate in an ad
hoc fashion to complete a common goal. The flexibility provided by social networks allows indi-
vidual members to become more active whenever they see fit without incurring much coordination
overhead. Newcomers receive briefings from multiple members and thus are quickly brought up-
to-date. Multiple communication paths maintain the information flow in case a member becomes
temporarily or indefinitely unavailable. Many open-source software development efforts build
upon social networks of developers, which allow them to form self-organizing teams [32]. Self-
organization, however, also has its downside as the effect of (flash) mobs demonstrates. Another
challenge poses the mobilization and continuous engagement of sufficiently many participants to
keep the collaborative momentum alive.

Behavior: Regardless whether social network or self-organizing team, every Member is free to
leave abruptly, and new members join spontaneously. A participant remains flexible in deciding
with whom to establish links (unidirectional link) or who to accept as acquaintance (bidirectional
link) and how long to maintain a link. They thus adapt internally when (1) updating their network
view to reflect, for example, unresponsive or exploiting members, as well as (2) on demand when
deciding when to process, who to forward to, and whether to fulfill a particular request.

Without centralized control and self-managing members, no external entity can directly ‘adapt’
individual peers. Where available, the underlying network management platform (e.g., a social
network platform) might analyze user profiles, behavior, and interactions for proposing recom-
mendations on who to interact with or what member updates to display. Each member, however,
remains in complete control over who to contact, who to obtain information from, or who to
maintain in their ‘friend list’.

Collaborative efforts in a social network that require increased levels of coordination (e.g.,
open-source software development) typically experience the emergence of Super Peers. These
are members who have a special interest in the effort, have proven stable within the network,
might possess special resources, and respectively are willing to provide them (e.g., skills or time).
Again, such super peers are not a priori defined but take on these coordination duties on their
own account. Super peers thus exhibit collocated connector and component functionality.

Asynchrony: A social network is never stable. There is always a subset of fluctuating members at
any single point in time. These fluctuations, however, hardly disrupt the underlying social struc-
ture in the presence of sufficiently many members and links. Retirement of super peers potentially
degrades a collaborative effort’s performance until another member assumes the vacant position.

Changes such as updating a participant’s acquaintance list or who will be considered for
requests remain local, limited to the involved participants and thus never require waiting for
the network to stabilize. For the same reason, message specification updates may not occur
simultaneously across the whole network. One of the main benefits of having a single network
management platform lies in the percolation speed when conducting such updates. Members
have to ‘learn’ the new format to continue participating. In distributed platforms, members might
decline and cause a network partition along the old and new message format.

State: Collaboration state is generally spread about multiple members (i.e., those that were involved
in joint activities). Mechanisms for externalizing member state such as shared artifacts or
message history are outside the scope of the pattern. New members gather the required state infor-
mation from existing peers, explicitly by querying them and also implicitly when processing and
forwarding new incoming requests. Super peers assist in rapidly establishing the collaboration
state by recommending relevant existing members to connect to.

Execution context: Members engage in joint activities and are free to leave at any time. In work
intensive efforts such as open-source development, however, they are expected to either complete
their activities before leaving or at least externalize the task-relevant part of their internal state.
Abruptly leaving members may result in lost collaboration know-how. In the ideal case, work
is subsequently picked up by other network members, simultaneously communicating with their
neighbors and super peer for establishing sufficient state before commencing work.
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Figure 6. Schematic Workflow pattern example. Temporal and causal relations among workflow tasks are
internal to the workflow specification and thus not shown.

4.5. Workflow

In a sequential Workflow such as an assembly line, a worker picks up a work item in his or her queue
(e.g., a document and a product part) and manipulates it according to the work description. He then
forwards the work item to the next position in the flow before continuing with the next available item
in his work queue. Interaction between individual workers is mostly determined through the shared
work artifact. Direct communication between workers is limited (if possible at all) to coordination
of load differences and delays between neighboring work stations.

With the emergence of office automation systems [33], nonlinear workflows became prevalent.
Evolved into process management systems, automated coordination of human work [13] resulted
in individual workers becoming increasingly unaware of their preceding or successive work steps.
A central workflow engine dispatches tasks to the various workers, collects their output, and
decides where to route the artifacts next (Figure 6). The focus on the technical coordination
aspects [34] over the last decades resulted in a rigid decoupling of individual workers. Work-
flow description languages dedicated to modeling the human involvement such as Little-JIL [35]
or BPEL4People [36] foresee no explicit communication between workers. We apply BASE only
to the nonlinear workflow pattern, rather than assembly lines, as they are prevalent in modern
interaction-intensive systems.

Behavior: On the one hand, adaptation occurs at the level of the workflow structure (rewiring
of workflow steps) where workers would execute the same task with the same input but in a
different sequence. On the other hand, workers may also be removed from one task and added to
another one. In addition, switching or updating a task’s artifact specification reflects a change in
input/output data. This may entail (1) having to engage a worker with different skills and/or (2)
reflecting the changes in the workflow’s specification.

Any adaptations to the workflow engine (a connector) itself require pausing or completing
all running workflow instances. New instances have to be buffered or redirected to another
available engine.

Asynchrony: In artifact-centric assembly lines, replacement of workers causes work items to
remain longer in the queue as workers switch places. More complex rewiring of work stations
requires feedback to previous workstations to limit their production rate. In information-
centric workflow systems, replacement of a worker is equivalent to moving all unprocessed
tasks from the worker’s in queue to the new worker’s in queue and waiting for the leaving
worker to complete his current task assignment. There is no coordination required between any
human workers.

Restructuring of the overall workflow structure is usually limited to new workflow instances.
Adaptation of ongoing workflow instances requires the affected workflow parts to reach a stable
state (e.g., no active task executions). The same goes for updating task artifacts.
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State: In assembly lines, all state is represented by the progress of the work artifacts. In non-
linear workflows, state is maintained by the workflow engine. Thus, in both cases individual
workers remain stateless with respect to the overall process and can be replaced between two
task instances. As the workflow specification does not foresee explicit communication among
workers, any occurring implicit communication may capture collaboration state. Such state is
prone to loss upon worker replacement as no formal mechanisms are in place for externalization
and handover.

Execution context: Coordination between adjacent workers in an assembly line requires task
completion before the actual worker replacement may be carried out. In workflow systems,
no such communication is foreseen. In both cases, a worker needs to complete his current
assignment before any adaptation can occur. Mechanisms for worker replacement during long-
running task executions are external to this collaboration pattern. Depending on the workflow
engine’s capabilities, any update to the workflow specification is limited to future instances
and thus can be immediately enforced for the upcoming instance, or also for currently running
instances. In the latter case, the engine needs to bring the workflow to a stable state and subse-
quently ensure that the output of all already completed activities is compatible with the updated
specification. Achieving a stable state is equally important when a workflow engine’s adaptation
has to occur during a long-running workflow and cannot wait for its completion. New instances
have to either wait or commence on another workflow engine instance.

4.6. Secretary/principal

In human collaboration, secretaries (or assistants) introduce layering to collaboration. Clients can-
not contact the desired person directly. Instead, they first pass their request for a particular ‘service’
to the secretary who acts as an intermediary between client and principal (Figure 7). In other
words, clients typically require a particular capability or functionality (e.g., authorization, informa-
tion, and calculation) from a principal but do not necessarily require it from a particular principal
instance. A secretary forwards the message to the principal and relays the response back to the
client. Alternatively, a secretary may respond immediately on behalf of the principal. Depending on
the particular collaborative setting, secretaries serve as load-balancing proxies, protection proxies,
caching proxies, or brokers [37].

Behavior: Clients are volatile and expected to contact a secretary unannounced. Secretaries and
principals may be replaced anytime; however, their relation is longer lasting than between
client and secretary. The set of supported message types and artifact types varies for each
secretary and principal instance. Associated secretaries and principals, however, necessarily sup-
port overlapping type sets. A single secretary may be coupled to more than one principal and
vice versa.

Secretaries may be easily replicated as they basically forward requests to the principal. This
allows the client to contact a random secretary (provided they handle the same requests) and
thereby remain unaffected by a particular secretary’s availability (e.g., vacation).

Figure 7. Schematic Secretary/Principal pattern example.
BETTER: with example requests (Req.) and responses (Resp.).
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Figure 8. Schematic Organizational Control pattern example.

Asynchrony: The secretary may decide on how to respond and on how to route the request depend-
ing on the client’s request and the principal’s availability. In case neither the principal nor the
secretary is able to respond, the secretary can ask the client to repeat the request at a later time.
Where supported, the secretary may offer to put the request on hold and notify the client once
the principal becomes available again.

State: Secretaries are initially stateless and build up any required internal state from interactions or
querying the principals for preferences. Having the new secretary temporarily observe the current
secretary enables rapid establishing of state. Alternatively, a secretary can refer clients to another
secretary during replacement.

Execution context: A principal may decide to refuse responding to any requests, forcing
the secretary to reply on behalf or reroute the request to another principal. A secretary
needs to complete all current requests before replacement but can redirect new requests to
other assistants.

4.7. Organizational control

Hierarchical organizations are found in diverse domains: multinational corporations, military,
government, and universities exhibit pyramid-like levels of management. Organization control
comes in two broad forms: behavior control and output control [38]. The supervisor applies
(pro-active) behavior control (i.e., downward requests) to trigger a specific, desired behavior. Output
control describes the manager monitoring work progress (i.e., upward events) to reactively maintain,
or respectively restore, work performance (Figure 8).

In strict hierarchies, a manager issues a request to one of her subordinates on a layer
below her. The subordinate in turn responds to the request and/or issues his own requests to
employees on layers below him. Employees on any layer report on work progress or problems
via events to their supervisors on levels above them. With many layers and strict commu-
nication paths, information remains tightly controlled but also requires considerable time to
spread throughout the organization [39]. Likewise, ad hoc collaboration among leaf elements
in different hierarchy branches is closely impossible or highly discouraged (e.g., especially in
military settings).

While requests and notifications are typically sent directly to specific employees, messages are
bound to roles and functions. Roles imply particular capabilities and thereby enable decoupling of
request addressing from the actual employee executing the request.

Behavior: Organizational charts describe the links between the different roles and the mapping
to actual humans but cannot provide request and event buffering. Adaptation corresponds to
structural updates of the organization chart in terms of reassigning employees to roles and
rewiring role relations. As such, individual employees have little flexibility: they are assigned
to a particular role and must obey specific interaction paths. Replacement and relocation of
employees (i.e., as dictated by organization chart updates) remain centralized at a dedicated
department (e.g., Human Resource) that per se is external to the organizational structure’s
function and purpose.
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Assistants are one form of connectors but are usually not universally implemented (i.e.,
typically only in management). Organization control exhibits similarities to the Secretary/
Principal pattern. The intermediaries, however, are most often applied to management levels
only. The major difference lies in explicit, request-independent upward notifications, which are
absent in the Secretary/Principal pattern.

Asynchrony: When replacing an employee or rewiring a role, lower-level subordinates need to
buffer notifications until adaptation has completed. Likewise, up-level supervisors will not
receive notifications for the adaptation duration and have to refrain from dispatching requests
to the affected employee. With assistants or secretaries in place, responsibility for buffering of
requests and notifications is transferred from employees to those connectors.

State: Individual employees maintain their own state. State transfer is only required between
two switching employees when collaboration know-how remains employee internal and cannot
otherwise be made explicit. New employees can apply the organizational chart to contact
colleagues to retrieve (additional) information necessary for constructing state. Organizations
typically store general purpose state information in corporate ‘data warehouses’ at the lowest
relevant level in the hierarchy. Accounting data, for example, remains high-up at the manage-
ment level, whereas travel guidelines are placed at the bottom of the hierarchy available to
every employee.

Execution context: Any ongoing request needs to be completed before an employee can be
replaced. If an employee becomes unavailable during request execution, the request has to be
addressed again with her substitute employee.

5. USE CASE EVALUATION

Having analyzed the seven patterns’ adaptability properties, we now return to the design concerns
we raised in the motivating scenario. For each question, we discuss how BASE assists in elabo-
rating the adaptation needs and subsequently outline how the various applicable patterns support,
respectively neglect, those requirements.

Q1: Which pattern supports an adequate trade-off between control and flexibility when passing
information from on-site personnel to back-office operators?

On-site personnel needs the freedom to flexibly decide on what information to spread. Like-
wise, back-office operators flexibly need to select information sources. In addition, the selected
information-passing mechanism needs to enable dynamically changing participants (Behavior).
Any such changes (available participants and information flow) need to occur instantaneously
(Execution) without affecting non-involved participants (Asynchrony).

Two patterns emerge as the most suitable candidates for managing information flow depen-
dencies: Publish/Subscribe and Workflow. Publish/Subscribe enables back-office operators to
pull the information they require, dynamically adapting their set of required information sources
and dropping sources that seem irrelevant. In contrast, sequential, Workflow-controlled message
routing pushes events to particular user roles. This pattern allows tight control over the types
and sequences of workers processing the events as all communication paths are predefined.
Simultaneously, it severely restricts operators in selecting information sources, as well as what
information they intend publishing themselves. Adaptation control thus lies with the workflow
connector, leaving little user flexibility.

With Publish/Subscribe, a major concern arises: given too much flexibility, certain parts of the
critical infrastructure might end up unattended. Adding constraints to Publish/Subscribe, how-
ever, is simpler than increasing user flexibility for specifying input/output of individual Workflow
steps. The system designers thus decide on enhancing the publish/subscribe message distribu-
tion connector with default subscriptions linked to particular subscription roles. A sophisticated
connector is role and subscription-aware; thus, it can adapt for ensuring that all areas remain
monitored (e.g., decline unsubscribe requests). All the while, publishers and subscribers remain
strongly decoupled and maintain their flexibility.
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Q2: Which pattern supports information-processing constraints as well as flexible information
collection before passing information between work shifts?

Before the collected information is handed over to the subsequent work shifts (State), it needs
aggregation, brief verification, and finally also anonymization. The design team needs to balance
this requirement with a need for back-office operator flexibility during information collection
(Behavior). This balance implies that changes cannot be enforced at anytime (Execution).

A Shared Artifact seems a flexible, robust choice for aggregating and passing information
between work shifts. It relieves members of the earlier shift of directly knowing which operators
will be accessing the information next. In return, operators in a later shift need not request such
log information from their predecessors directly. An access connector monitoring manipulations
to the log book would observe changes but would neither be able to distinguish among different
forms of manipulations (aggregation, verification, and anonymization) nor roles entrusted with
those manipulations nor be able to enforce temporal ordering of these steps. The Shared Artifact
pattern does not foresee such constraints and subsequently exhibits too much flexibility.

The Workflow pattern presents a suitable alternative when centered around artifacts [40].
Workflow systems enable flexibility [41] through partially relaxing the precise sequence and car-
dinality of certain steps (e.g., allow multiple content aggregation and manipulation as long as no
validation has occurred) while controlling input and output of individual steps and their associ-
ated user roles. Note the difference in flexibility compared with the workflow aspect in Q1: here,
(in Q2) the task sequence remains flexible while the data specification is rigid. In the previous
case, the steps remain fixed, but the input and output specifications required flexibility.

The design team balances worker step selection flexibility with control over the artifact status.
A flexible workflow engine enables user task selections to be immediately applicable and restricts
adaptation effects to the particular, underlying workflow instance. The design team is thus able
to appropriately select the Workflow pattern over the initially chosen Shared Artifact pattern.

Q3: According to which pattern should analysts be organized to ensure timely and high-quality
results?

Monitoring of critical infrastructure requires the ability to rapidly process a plethora of events
when safety critical situations arise. Several patterns coordinate such resource utilization depen-
dencies (here back-office analysts working on tasks). The primary adaptation concerns are,
therefore, high flexibility in involving specific analysts (Behavior), high flexibility in deciding
on the next task (Execution), rapid formation, assignment, and cancelation (Asynchrony), as
well as externalizing task state (State).

Workflow specifications remain too be rigid for ad hoc adaptation as it might not be clear from
the triggering event what subsequent process to instantiate. Organizational control provides a
clear communication structure but lacks information-processing speed and scalability (typically
each function/role is available only in limited quantities). An enterprise Social Network provides
the opportunity for establishing ad hoc teams and thus solving complex analysis problems, but
the formation process requires considerable time.

Eventually, the design team settles on the Master/Worker pattern. Simple tasks can be
rapidly assigned to workers and replicated where required for quality assurance. Task indepen-
dence further allows the straightforward analyst involvement across distributed locations as no
coordination among analysts is foreseen. Simplifying and standardizing analysis tasks further
allow sharing the analyst pool among multiple monitoring stations, further reducing costs and
increasing response time. The Master maintains control over task execution by replicating and
reassigning tasks. The back-office operators (task clients) remain flexible by dynamically chain-
ing different analysis tasks from analyst with the appropriate skills without having to interact
with them directly.

Q4: Is a hierarchical structure for incidence response teams flexible enough for quick customization
upon deployment?

Incidence response teams have to deal with varying situations that cannot be foreseen up-
front and which are subject to rapid changes as the situation unfolds. Fundamentally, this
corresponds to identifying the appropriate resources and subsequent task processing by those
resources. Adaptation needs arise from the uncertain resource available (Behavior) and inability

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2725–2750
DOI: 10.1002/cpe



ANALYZING RUNTIME ADAPTABILITY 2743

to a priori specify optimal communication paths; that is, topology changes need to be with-
out delay (Execution), independent of other participants (Asynchrony), and enforceable by all
participants (Behavior).

Organizational control established precise roles and communication paths but expects cen-
tralized, top-down control for reconfigurations. Given the precise specification of roles and
their responsibilities, this pattern provides high flexibility when selecting appropriate employees
fulfilling those roles but less so for ad hoc adding or removing capabilities.

Taking inspiration from Social Networks and self-organizing teams, the inverse approach to
structuring the incidence response team consists of having the team members establish their links
dynamically as the underlying situation requires. Such a team can identify missing skills more
rapidly and keeps communication paths extremely short. On the downside, self-organizing teams
beyond a certain size cannot guarantee success in safety critical environments.

The design team identifies this threat and subsequently decides upon a team coordination
infrastructure with a small core, hierarchically organized member set, which is empowered to
dynamically add further members as the situation dictates. Those auxiliary members then com-
municate among each other directly while the core team behaves as a composed super peer. This
hybrid structure combines individual member flexibility with controlled adaptation due to the
guaranteed availability of a super peer connector.

Q5: What impact has the deployment of emergency dispatchers (for coordinating on-site personnel
and incident response teams) on flexibility?

Customer requirements force the design team to introduce emergency dispatch personnel for
relaying requests from on-site workers and back-office operators to incident response teams.
Applying the Secretary/Principal pattern comes with a number of advantages such as the ability
for dispatching the closest or most suitable team, keeping other teams informed, and providing
a unified access point for inquiries (State), thus reducing the number of request having to be
forwarded to the actual team.

The design team, nevertheless, needs to understand the implications by having this layer of
indirection. Emergency dispatchers might cause, for example, needless delays when passing on
critical information from on-site workers to members of the incident response team. Introducing
a mechanism for on-site workers to join the incident team in an ad hoc fashion mitigates this
shortcoming (Behavior).

6. DISCUSSION

The seven discussed collaboration patterns exhibit significant adaptability capabilities. Just like
their architectural styles counterpart, they achieve desirable adaptability properties only under
particular conditions. Choosing one pattern over another for a system design, hence, is not a simple
matter of comparing high-level pattern aspects. First, patterns address different dependency man-
agement issues such as control flow versus information flow. There is little point in comparing
Publish/Subscribe with Secretary/Principal when the main dependency concern is information
flow. This also implies that patterns and BASE cannot be sensibly applied independently but
only in combination. Second, each system design has a different adaptation focus and constraints:
whether adaptation control should reside with autonomous participants (e.g., collaborators on a
Shared Artifact) or primarily with dependency coordinators (e.g., the master in Master/Worker).
Third, software support significantly determines the need and scope of adaptation. A workflow
connector implemented entirely in software (i.e., a workflow engine) implies typically more com-
plexity and less adaptability than a human coordinator overseeing and intervening in the workflow
execution. We therefore refrain from assigning qualitative ratings from low to high for each
pattern and individual BASE facet in Table I. We rather discuss pattern traits that give rise
to adaptability.

One of the patterns’ common properties promoting adaptability is strong collaborator decoupling.
The authors of the original BASE framework [7] point out three adaptability-fostering mechanisms
in the context of architecture-driven adaptable software systems. They highlight (1) identifying the
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exchangeable parts and rendering them malleable, (2) managing the interactions involving those
parts, and (3) explicit state management. The same strategies apply well to human collaborations.
Design decisions are thus concerned with

� identifying collaborator roles (in the scope of a particular collaboration pattern), determining
their required level of flexibility, specifying conditions when to restrict such flexibility (i.e.,
adaptation actions), and how to enact adaptation actions (e.g., recommendations versus various
degrees of automatic intervention);
� selecting a collaboration pattern that supports interaction management at the desired level of

control. A Workflow, for example, provides tighter control over user involvement than a Shared
Artifact. Within the selected pattern, a collaboration connector assumes the actual interac-
tion coordination (e.g., routing, buffering, filtering, and preprocessing) and hence becomes the
logical place to place adaptation effectors. Along these lines, the pattern determines applicable
connector capabilities; and
� specifying what collaboration state needs to be made explicit and what pattern supports this

information most naturally (e.g., a shared artifact, workflow progress, subscription information,
and task results).

All patterns (except Social Networks) exhibit loose coupling of collaborators. This enables
adaptation mechanisms to limit the impact of reconfiguration actions (e.g., member replace-
ments, rewiring, and artifact recommendations) to a subset of all collaborating users. In the
scope of our motivating scenario, the patterns enable following example adaptations: recom-
mending undersubscribed information sources without the publishers having to worry about how
many subscribers exist (Publish/Subscribe), substituting an operator taking care of log book
data anonymization without other operators noticing (Workflows), back-office operators (the task
clients) adjusting their work shift cycle without affecting pending analysts’ tasks (Master/Worker),
dynamically introducing additional dispatchers for load balancing without having to inform inci-
dent response teams (Secretary/Principal), and replacing an analyst in the management hierarchy
(Organizational Control).

Social Networks, in contrast, emerge from direct connections among participants by definition. In
the general case, this leads to tight coupling as participants communicate directly (i.e., without any
intermediaries such as connectors). Participants, however, expect their neighbors to be (temporarily)
unresponsive or be unable to process a request. Social networks thus embrace dynamics and high
failure likelihood (per request) and mitigate those shortcomings through promoting a combination of
request replication, multiple communication paths, and ad hoc introduction of super peer connectors.

It can be argued that decoupling users leads to a reduction in communication bandwidth and
subsequently renders the collaboration less efficient. Direct communication among participants,
however, is no longer feasible beyond a certain collaboration size. Decoupling becomes a neces-
sity as it enables specification of roles, responsibilities, communication paths, and dedicated
coordination elements, which in turn increases efficiency.

6.1. Limitations

Patterns per se cannot guarantee a collaboration structure’s adaptability. Human factors such as
social ties, previous interactions, and trust have considerable influence on flexible users’ actions
as well as determining whether any connector-centric adaptation mechanisms will be effective.
Independent of these properties, however, the underlying pattern provides a set of constraints that
determines the scope of adaptation actions. A pattern determines the relevance of particular human
factors. The Master/Worker pattern, for example, emphasizes worker skills and reliability rather than
trust among workers. In contrast, subscribers will trust information from known publishers more
than information from newcomers.

We are well aware of the importance of human factors, and we strongly suggest to consider
them for planning specific adaptation actions (e.g., which particular communication ties to establish,
which user to add, and what artifacts to recommend). We, however, must stress that such factors
cannot be properly exploited without understanding the pattern’s implications. After all, adaptation
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actions are situated within a particular (composite) pattern and thus must work within the limits of
that pattern. Experiments will give insight into these questions. Evaluations of real world systems
also serve to demonstrate our contributions validity beyond analogies with software engineering.
To this end, we applied BASE to Wikipedia, Twitter, and Amazon Mechanical Turk to demonstrate
how adaptability of the generic Shared Artifact, Publish/Subscribe, and Master/Worker patterns,
respectively, may be realized in successful, large-scale systems [10]. We additionally investigated
how to achieve pattern-based adaptation of Wikimedia [9].

6.2. Engineering synergies among software-intensive systems and collaborative systems

Ideas, concepts, and mechanisms from the software architecture domain have inspired and guided
our contribution throughout most of this paper. The distinctions between software components
and connectors reflect in human components and collaboration connectors. The BASE framework
informs us on key aspects that determine adaptability. The benefits of architectural styles motivate
the classification of collaboration structures into patterns. We can subsequently compare patterns
in terms of their admissible user-centric flexibility, respectively the remaining system control: from
mostly self-organizing Social Networks, Shared Artifacts, and Publish/Subscribe, to layered Secre-
tary/Principal and Master/Worker, to tightly managed Workflow and Organizational Control. The
success of Software Architecture Description Languages has encouraged us to investigate a corre-
sponding modeling approach for collaboration topologies. The interested reader finds details on our
human Architecture Description Language in [9].

Luckily, the impact of software architecture research needs not remain one-way only. We
strongly believe that investigating adaptability in collaborative systems can in return influence
research on architecture-centric software adaptation. Ultra-large-scale systems [2], for example,
defy central and hierarchical adaptation managers. In this paper, we highlighted the fundamen-
tal difference between system-initiated control (i.e., enacted through collaboration connectors)
and the flexibility demanded by independent, autonomous user (i.e., human components). It
seems reasonable to expect that adaptation mechanisms addressing human collaborations are
suitable candidates for designing new techniques for managing software system comprising mas-
sive, autonomous, and unreliable components. Individual, self-governing components cannot be
directly manipulated but accept only recommendations. They might follow the recommendations or
choose to ignore them based on internal, unobservable constraints. Subsequently, human-inspired
properties such as trust, reputation, and cooperativity potentially become applicable to software
components. Software entities might take context into account when deciding upon coopera-
tion. In turn, uncooperative components may face resource restrictions or have access limited to
noncritical resources.

7. RELATED WORK

Related research efforts are scattered across multiple scientific fields. Among the few interdisci-
plinary works, Malone and Crowston highlight the existence of similar coordination aspects in
Economics, Organizational Theory, and Computer Science [13].

Software engineering efforts that specifically focus on social or collaborative aspects in
large-scale systems are still rare. Existing work mainly addresses the general idiosyncrasies of
Web 2.0 but remains unaware of specific interaction structures at runtime [42]. Model-driven
Web engineering approaches so far focus primarily on software aspects [43, 44] and do not
go beyond (user) context-centric adaptations [45, 46]. Gregg [47] discusses vital aspects to
enable collective intelligence but does not elaborate beyond general design guidelines. Require-
ments elicitation and specification approaches consider collaboration (e.g., Collaborative Systems
Requirements Modeling Language [48]) or adaptation (e.g., [49]) but omit the effects of patterns on
adaptation flexibility.

Tamburri et al.[50] have investigated the nature of organization social structure of global software
development teams. They uncovered a set of 13 community types ranging from social networks
to Project teams, Work groups, Problem-solving Communities, and Communities of Practice [51].
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They specified a decision tree based on criteria such as Situatedness, Informality, Cohesion, and
Governance for classifying a given collaborative effort [52]. As such, their classification focuses
mostly on the purpose and social relations among members rather than their underlying collabora-
tion patterns. We believe that jointly investigating those communities in more detail will highlight
suitable collaboration patterns that best support a particular community type.

In the domain of collective intelligence, [53] and [54] discuss general aspects of large-scale col-
laboration systems but do not address the corresponding adaptation flexibility. Malone, Laubacher,
and Dellarocas [54] characterize crowdsourcing systems by distinguishing between crowd-based
and hierarchy-based actions, the actions themselves (create or decide), motivation (money, love, or
glory), and propose-generic collaboration forms. In a similar attempt, Doan, Ramakrishnan, and
Halevy [53] analyze whether collaboration is explicit or implicit, relies on existing data and what
users do, and give example real world systems. Yet, to the best of our knowledge, this is the first
attempt to analyze adaptation flexibility across collaboration patterns.

Most research, however, focuses on individual collaboration, respectively coordination, patterns.
Crowdsourcing of human tasks has received significant attention in the last years. Skopik et al.
investigate interaction patterns for trust-based routing of tasks among interconnected experts [55].
Kittur et al. outline how the Map-Reduce architectural style enables crowdsourcing of complex
workflows [56]. Dustdar and Gaedke propose context-dependent selection of collaboration struc-
tures for task delegation [57]. Several research efforts focus on the inverse and aim to extract patterns
from actual interactions. Dustdar and Hoffman provide mining algorithms for collaboration pat-
terns in enterprise settings [37]. Schall et al. propose the Broker Query Description Language to
detect experts that bridge separate communities [58]. Analysis of message flows in twitter exposes
properties of large-scale social Publish/Subscribe systems [23]. Observations of twitter messages
also show how this pattern is applicable to social networking purposes as well as information dis-
semination [59]. Team automata aim to formalize the interactions among multiple participants in
groupware systems [60]. They initially targeted Computer Supported Cooperative Work systems to
rigorously define and enforce collaboration protocols [61]. Their nature, however, lends them more
to the analysis and design of access security mechanisms rather than reasoning about collaboration
adaptivity [16].

These research efforts remain orthogonal to our work as they provide more specific adapta-
tion strategies and mechanisms. Our adaptability framework and analysis provide insight into
the applicability of such work when analyzing these approaches in the scope of their respective
collaboration pattern.

8. CONCLUSIONS

Designing adaptive, interaction-intensive systems is far from trivial. Software engineers need to
identify appropriate interaction structures and evaluate their inherent user flexibility as well as
potential mechanisms for controlling interactions. They need to conduct trade-offs among pat-
tern alternatives and determine the right pattern refinements. Our approach assists the engineers
in this design process by providing a unified approach for evaluating a pattern’s adaptability. To
this end, we demonstrated how concepts and mechanisms from the software architecture domain
may be applied. Specifically, the BASE framework evaluates a collaboration pattern’s adaptabil-
ity by describing how behavior, asynchrony, state, and execution context either promote or inhibit
adaptation. Our application of BASE to seven patterns exemplified the adaptation diversity in
coordination mechanisms.

Investigating collaboration patterns is only a first step toward design support for adaptive,
interaction-intensive systems. There are several open challenges we have only started to address,
and many more remain open. First, engineers need a modeling language in which to specify
interaction structures. We have devised a basic version of the human Architecture Description
Language [9], but further refinements for specifying adaptation authority or flexibility conditions
require considerable additional research efforts. Given that the presented abstractions reside at the
architectural level, investigations in this direction would also further explore the applicability of
lower-level design mechanisms such as polymorphism or object-oriented design patterns. Currently,
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it is unclear whether the applied analogy would remain valid at a more fine-grained level. Second,
design activities need rigorous guidelines under what conditions certain patterns can be composed
and what side effects this may incur. For example, the Master/Worker pattern typically relies on
replicating tasks for quality assurance and thus aims to restrict communication among workers.
Hence, recruiting workers from a Social Network might incur the risk of violating this assump-
tion. Third, a composed pattern needs to undergo analysis for providing assurances to the software
engineer that his or her design will indeed behave within given boundaries as expected. We envi-
sion modifying or extending existing formal specification languages and algorithms for determining
the pattern’s properties such as resource usage, failure likelihood, end-to-end latency, or absence
of bottlenecks.
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