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SUMMARY

Alignment is essential in many areas such as biological, chemical and criminal forensics. The well-
known Smith-Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic
time and space complexity. There are several implementations that take advantage of computing
parallelization, such as many-cores, FPGAs or GPUs, in order to reduce the alignment effort. In this
research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform
based on Intel’s Xeon and Xeon Phi coprocessor. SWIMM is a free tool avaliable in a public git
repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread-level
parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon
and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it
is also the most energy demanding. In fact, we also present a trade-off analysis between performance and
power consumption. The greenest configuration is based on an isolated multicore system which exploits
AVX2 instruction set architecture reaching 1.5 GCUPS/Watts.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A fundamental procedure in any biological study is sequence alignment, which compares two or

more biological sequences, for example those found in DNA. The purpose of this procedure is to

deduce which positions within a sequence share a common evolutionary history, which equates to

them being homologous. Alignment is essential in phylogenetic analysis [1], the profiling of genetic

disease [2], the identification and quantification of conserved regions or functional motifs [3, 4] and

ancestral sequence profiling and prediction [5]. Alignment is also important in the development of

new drugs and in criminal forensics, and because of all this there is now a big research effort being

made into this field of bioinformatics.
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Figure 1. Sequence alignment classification.

In order to process the ever increasing quantity of data from high throughput structural genomic

and genome sequencing of thousand of proteins, it is necessary to develop new computational tools

that are capable of accelerating key primitives and fundamental algorithms [6].

The purpose of sequence alignment is to identify regions of similarity between two DNA, RNA

or protein sequences (the query sequence and the subject or database sequence). Pairwise sequence

alignment methods are classified as either global or local, where pairwise means considering only

two sequences at a time.

Global methods, which include dot plot and the Needleman-Wunsch (NW) algorithm [7], aim

to match as many characters as possible, from start to end, between the query sequence (q) and

the database sequence (d). Both are categorized as exact methods (see Figure 1). The difference is

that dot plot is based on a basic search method, whereas NW is based on Dynamic Programming

(DP) [8]. Local methods, which include exact ones such as Smith-Waterman (SW) [9], as well as

heuristics-based approximate methods such as FASTA [10] and Basic Local Alignment Search Tool

(BLAST) [11, 12], identify short stretches of similarity between two sequences. Multiple alignment

methods, such as HMMER [13] and ClustalW [14], are used to discover the similarities between a

group of sequences.

Our main objective in this paper is the acceleration of the classic SW algorithm without heuristics.

Almost all the applications of new sequencing technologies are based on sequence alignment [15]

and SW continues to be a critical and basic primitive in many of these applications. In high-

throughput sequencing, the SW algorithm is frequently used to align sequencing reads to reference

sequences. Identifying the optimal alignment score using SW is however computationally expensive

(linear space complexity and quadratic time complexity) since it performs an exhaustive search to

find the optimal local alignment between two sequences. In spite of this, it does guarantee optimal

alignment, which is essential in some applications, and SW has been the basis for many subsequent

heuristic algorithms.

BLAST is one example of such heuristic algorithms, which increase speed at the cost of lower

sensitivity. This algorithm keeps the position of each k-length subsequence (k-mer) of a query

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-AWARE PERF. ANAL. OF HETEROGENEOUS SYSTEMS BASED ON THE SW ALGORITHM 3

sequence in a hash table (k is usually 11 for a DNA sequence), with the k-mer sequence being

the key, and scans the reference database sequences looking for k-mer identical matches, which

are the so-called seeds. Once these seeds have been identified, BLAST performs seed extensions

and joins (first without gaps), and then refines them using the classic SW algorithm once more.

BLAST has been significantly improved by adding new functionalities, while maintaining the same

seed-and-extend structure: some proposals have enhanced the seeding process, while others have

improved the seed extension [15]. In short, accelerating SW is still a priority even though sequence

alignment operations can also be speeded up using heuristic tools.

Fortunately, the alignment process exhibits inherent parallelism that can be exploited to mitigate

the high cost of SW. Two well-known tools that take advantage of such parallelism for SW

sequence database searches are SWIPE [16] and CUDASW++ [17]. The former focuses on CPUs

with multimedia extensions such as Intel’s SSE, whereas the latter targets CUDA-enabled GPUs

(Graphic Processor Unit) from NVIDIA. The latest version of CUDASW++ (version 3.0) uses

a hybrid implementation that is able to take advantage of both GPUs and CPUs simultaneously.

More recently, Liu and Schmidt have presented SWAPHI, a highly optimized hand-tuned SW

implementation for Intel Xeon Phi accelerators [18]. Moreover, these authors have also recently

developed SWAPHI-LS for long DNA sequences [19]. Additionally, Wang et al. [20] have presented

a novel proposal denoted XSW, which involves using an Intel Xeon Phi as coprocessor whose binary

2.0 version extends this idea to a heterogeneous architecture. There are also other proposals for SW

acceleration on grid architectures [21], cloud-based systems using MapReduce [22], and even FPGA

implementations [23, 24, 25].

For this paper we have used a heterogeneous Intel Xeon server equipped with an Intel Xeon Phi

coprocessor. Unlike previous studies that have focused on exploiting the Xeon Phi coprocessor as far

as possible using low-level optimisations [18], our aim was to evaluate a multithreaded SW code on

a heterogeneous platform with SIMD extensions. Although we are able to outperform some of those

previous tools, in this paper an energy consumption and performance trade-off is also considered.

This paper extends the insights already offered in our previous approach [26], with the following

new contributions:

• Among the main contributions is the creation of a public git repository with source code

used in this paper denoted as SWIMM†‡. SWIMM is a software to accelerate the well-known

Smith-Waterman algorithm on Intel’s multicore and manycores processors. SWIMM exploits

SIMD computing capabilities by means of SSE and AVX2 extensions on the Xeon and the

KNC instruction set on the Xeon Phi. It also exploit the thread-level paralellism in both

platforms.

• We have focused on multicore optimization by means of a lower range integer representation

(8-bit and 16-bit), which enables 16 and 8 vector SIMD lanes exploitation for Intel’s SSE

extensions. We have extended this strategy via the exploitation of Intel’s AVX2 extensions for

the 256-bits (32 vector lanes) available on the latest Haswell microprocessors. To the best of

the authors’ knowledge, it is the first performance study in the Smith-Waterman scenario for

AVX2 extensions that outperforms § by far the well-known SWIPE proposal.

• This idea has been extended to the Xeon Phi accelerator. However, its multimedia ISA

does currently allow packaging 32-bit integer data-type. Additionally, we also make relevant

comparisons with other Xeon Phi-based SW implementations, such as SWAPHI [18].

• An additional performance comparison has been made with another heterogeneous

implementation, namely XSW [20].

• To enrich the discussion, we have carried out a performance comparison with the most

successfully GPUs implementation known as CUDASW++ 3.1, currently the fastest SW

implementation on CUDA-based GPUs.

†

‡SWIMM is available online at https://github.com/enzorucci/SWIMM
§CGS NOTA: modificar frase
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• This paper is not only focused on the performance analysis of a heterogeneous Intel Xeon

server equipped with an Intel Xeon Phi coprocessor, but it also considers energy consumption.

It explores different configurations in order to find the best ratio performance/power, and also

also extrapolates results for new upcoming technologies available on the market during 2015.

The rest of the paper is organized as follows: Section 2 introduces the basic concepts of the Smith-

Waterman algorithm. Section 3 briefly introduces Intel’s Xeon Phi architecture and in Section 4 we

describe our implementation of the SW algorithm. In Section 5 we discuss performance and energy

results and finally in Section 6 we present the main conclusions.

2. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is used to identify the optimal local alignment between two

sequences. It is based on a dynamic programming approach and its high sensitivity comes from

exploring all the possible alignments between two sequences.

The recurrence relations for the SW algorithm with the modifications of Gotoh [27] for handling

multiple sized gap penalties are shown below.

Hi,j = max



















0

Hi−1,j−1 + SM(qi, dj)

Ei,j

Fi,j

(1)

Ei,j = max

{

Hi,j−1 −Goe

Ei,j−1 −Ge

(2)

Fi,j = max

{

Hi−1,j −Goe

Fi−1,j −Ge

(3)

The two sequences to be compared are defined as q = q1q2q3 . . . qm and d = d1d2d3 . . . dn. Hi,j

represents the score for aligning the segments of q and d ending at position i and j, respectively.

Ei,j and Fi,j are the scores of aligning the same segments of q and d but ending with a gap in q and

d, respectively. SM is the substitution matrix which defines the substitution scores for all residue

pairs. In most cases, SM rewards with a positive value when qi and dj are identical, and punishes

with a negative value otherwise. Goe is the sum of gap open and gap extension penalties while Ge is

the gap extension penalty. Hi,j , Ei,j and Fi,j are initialized with 0 when i = 0 or j = 0. The optimal

local alignment score S is the maximal alignment score in the matrix H .

It is important to note that there is a strict order of computation in matrix H due to the data

dependences inherent to this problem. To be able to calculate the value of any cell, the value of

all cells to the left and above have to be computed first, as shown in Figure 2. These dependences

restrict the ways in that H can be computed.

For the sake of clarity, Figure 3 shows the alignment matrix between sequences ADLGRT and

ADLGAVF. The scoring values considered are: SM rewards with 5 for identical residues and

punishes with -3 for different residues, and gap insertion and extension penalties are set to 10 and

2, respectively. For this particular case, the optimal local alignment score achieved is 20.

3. INTEL’S XEON PHI

The adoption of accelerators within the HPC community keeps on growing and it is expected

that new designs from Intel, NVIDIA and AMD will likely dominate most production systems

in the next few years. The Intel Xeon Phi (Phi) is a many-core coprocessor with the MIC (Many
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Figure 2. Data dependences in the alignment
matrix H.

Figure 3. Alignment matrix for sequences
ADLGRT and ADLGAV

Figure 4. Xeon Phi architecture.

Integrated Cores) architecture that derived from the defunct Larrabee project [28] and the Teraflops

Research Chip research project. In its current generation, the Phi features up to 61 x86 pentium

cores with extended vector units (512-bit) and simultaneous multithreading (four hardware threads

per core). Each core integrates an L1 cache (32 KB data + 32 KB instructions) and has an associated

fully coherent L2 cache (512 KB combined data and instructions). As shown in Figure 4, a high-

speed ring interconnect allows data transfer between all the L2 caches of the Phi and the memory

subsystem. The Phi is able to support up to 8 memory controllers, each one with two GDDR5

channels, and is connected to the host server through a PCIe Gen2 bus.

From a programming point of view, one of the pros of this platform is the support of existing

parallel programming models traditionally used on HPC systems such as the OpenMP or MPI

paradigms, which simplifies code development and improves portability over other alternatives

based on accelerator-specific programming languages such as CUDA or OpenCL.

Nevertheless, unlike GPUs, the Xeon Phi can be run as a completely standalone computing

system, which allows running applications using solely the resources of the coprocessor. This is

called the native mode. Building a Xeon Phi native application usually involves minimal code

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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modifications. In fact, many HPC codes written for general purpose processor clusters run in this

mode with ease, just recompiling them for this platform using the -mmic compiler flag. Nevertheless,

the key to Phi performance is the efficient use of the per core vector units and the small cache.

Therefore, high performance may not be achieved after direct portability migration code.

The native mode can be inefficient for applications with high input/output rates or contain mostly

non parallel parts. In those cases, it is advisable to use Phi as a coprocessor device based on offload

mode, which is the Phi’s primary mode of operation. The programming model in this case is similar

to other accelerators such as CUDA-enabled GPUs. The host CPU runs the sequential code of the

application and invokes kernel execution on the Phi.

A code developer with expertise in the OpenMP paradigm will find this model easier to learn

than other GPU-based models such as OpenCL or CUDA. Intel claims this fact to be one of the

advantages over other consolidated accelerators such as GPU and FPGA. Nevertheless, the main

aspects to be addressed in order to achieve high performance are still:

1. how to design the computations to efficiently map the Phi vector units.

2. how to optimally exploit the memory hierarchy, especially when handling large datasets.

Ideally, programmers would only need to introduce some directives to inform the compiler

about pointer disambiguation, data alignment data dependencies and introduce minimal code

modifications to allow automatic vectorization. Nevertheless, in essence, guided auto-vectorization

is not able to achieve the best performance and programmers usually need to make an effort to hand-

tune the codes by means of language intrinsics. Although intrinsics may inhibit other loop-level

optimizations that improve performance, highly optimized hand-tuned codes frequently outperform

their guided counterparts. Indeed, intrinsics are currently the only option for complex applications

which suffer from data dependencies or irregular access patterns that can be hidden using specific

code transformations. Unfortunately, improving performance comes at the expense of losing cross-

platform portability. Most processor families, even from the same vendor, have non-compatible

intrinsics which support different SIMD instruction sets. As a consequence, code developers need

to write many code branches, thus increasing maintenance needs.

4. SW IMPLEMENTATION

In this section we will address the optimisations performed on Intel’s Xeon and Intel’s Xeon Phi

platforms. Before describing them in detail, we would like to point out the algorithm flow which

can be summarised in the following steps:

• Pre-processing stage: preprocessing of the reference database.

• SW stage: SW alignments.

• Sorting stage: sorting the alignment scores in descending order.

4.1. Parallelisation scheme

Alignments are performed as in inter-task parallelism approach [16] where several alignments

are solved concurrently. This parallelisation scheme makes it possible to exploit the small-vector

capabilities available on most modern microprocessors. In contrast to intra-task parallelization

where the parallelisation approach is applied within a single pair of sequences, multiple database

sequences are carried out simultaneously. In particular, database sequences are grouped according

to a vector processing unit’s (VPU) lane size. In order to balance the sequence workload between

VPUs, sequences are sorted by length to be grouped as in [29] work.

4.2. Database preprocessing

In the pre-processing stage, database sequences are sorted and grouped according to the VPU width

of the target platform. In particular, for the Xeon Phi and the heterogeneous hybrid implementations,

the database is divided into chunks that are offloaded to the coprocessor as it becomes idle. The

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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Xeon implementation exploits a finer grain workload in order to avoid unbalance distribution that

produces idle threads. Because this process must be repeated for every search, sequence databases

are preprocessed separately to avoid duplicate work. The databases are read from the FASTA

format¶ and then transformed to an internal binary format which favours faster disk access.

4.3. Multiple parallelism levels

Our implementation employs multiple parallelism levels:

• Data-level parallelism. As mentioned before, SIMD instructions are supported by both Intel’s

Xeon and Xeon Phi through the use of guided compilation or hand-tuned codification with

intrinsic instructions. In this work we have explored two SIMD exploitation approaches:

– Guided vectorization through the use of preprocessor directives. From OpenMP version

4.0, there is a specific directive to express data parallelism: #pragma omp simd enforces

vectorized loop. One of the most important advantages in this type of vectorization is

portability. Although lane size can differ on Intel’s Xeon and Xeon Phi, the compiler can

generate two different versions depending on the target platform.

– Intrinsic vectorization employing the SSE and AVX extensions for the Xeon and the

KNC instruction set for the Xeon Phi.

• Thread-level parallelism. To exploit parallelism across multiple cores, we have implemented

a multi-threaded version of the SW algorithm based on the OpenMP programming model

available on both the CPU and the accelerator device.

Algorithm 1 shows the pseudo-code of our SW implementation using guided-vectorization for the

Xeon Phi. CPU thread-level parallelism is exploited using the OpenMP programming model: one

thread is generated for each coprocessor used. The main loop that iterates over chunks of database

sequences is distributed across threads with the #omp for pragma using a dynamic scheduling

policy. Each CPU thread offloads the assigned chunk of database to the corresponding coprocessor

to compute alignments and then waits for its completion. Inside the Xeon Phi, alignments are

solved in parallel using multi-threading again. The iterations of the parallel loop are distributed

using a dynamic scheduling policy. Despite sorting the reference database, static scheduling does

not perform well, as has been indicated in previous research [18]. When using guided scheduling,

performance tends to be lower. To alleviate the overhead associated with buffer allocation and de-

allocation, all thread buffers are pre-allocated before the SW stage and then reused in the subsequent

offloads. This initial offload is used at the same time to communicate common data to all threads,

like the queries and the substitution matrix. Finally, when all chunks have been processed, all the

alignment scores are sorted in descending order to complete the sorting stage.

It is important to remark that the guided vectorization code for the Intel Xeon is essentially

the same for the Phi, except that #pragma offload directives are not included. As mentioned in

Section 4.2, preprocessed database is kept as one single chunk, so the code for the Intel Xeon is

represented by one invocation of the SW SEARCH function.

Regarding intrinsic vectorization implementations, both Xeon and Xeon Phi codes are structurally

equal to their guided vectorization counterparts, except that #pragma omp simd directives are

not included and implementations of SW CORE function are composed of intrinsic instructions.

Figure 5 shows the different intrinsic implementations of SW CORE. In all cases, the alignment

matrix is processed row by row. vCur is the matrix cell being calculated while vPrev is the previous

one. vH keeps the previously processed row and its values are replaced by the current row as they

are no longer needed. vSub represents the substitution scores for the database sequence residues

against the query residue. vE and vF are the score vectors for alignments ending in a gap in the

query and the database sequence, respectively. vGoe represents the vector for the sum of gap open

and gap extension penalties while vGe is the vector for gap extension penalty. Last, vS keeps the

current optimal alignment score.

¶FASTA format description: http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml


8 E. RUCCI. OTHER

Algorithm 1 SW Phi(Q, vD, SM , Go, Ge, n mics, thmic)

1: ⊲ Q are the query sequences

2: ⊲ vD is the sequences database

3: ⊲ n mics is the number of Xeon Phis

4: ⊲ thmic is the number of Xeon Phi threads

5:

6: #pragma omp parallel num threads(n mics)

7: {
8: #pragma offload target(mic:mic no) in(Q,SM ,Go,Ge)

9: { pre-allocate buffers }
10: #pragma omp for schedule(dynamic)

11: for c ≤ get num chunks(vD) do

12: #pragma offload target(mic:mic no) in(vDc) out(Sc)

13: {Sc = SW SEARCH(Q, vDc, SM,Go, Ge, thmic)}
14: end for

15: #pragma offload target(mic:mic no)

16: { de-allocate buffers }
17: }
18: scores = sort(S)⊲ in descending order

19:

20: function SW SEARCH(Q, vDc, SM,Go, Ge, th)

21:

22: #pragma omp parallel for num threads(th) schedule(dynamic)

23: for k ≤ |Q| ∗ |vDc| do

24: Sk = 0
25: q = get query sequence(Q, k)
26: vd = get database sequence(vDc, k)
27: if score profile then

28: P = build score profile(vd, SM)
29: end if

30: for i ≤ |q| do

31: if query profile then

32: P = build query profile(qi, vd, SM)
33: end if

34: #pragma omp simd

35: for j ≤ |vd| do

36: [Hi,j , Ei,j , Fi,j ] = SW CORE(H,P,E, F,Go , Ge)
37: Sk = get max value(Sk, Hi,j) ⊲ save similarity scores

38: end for

39: end for

40: end for

41: return S

42: end function

4.4. Substitution scores

Our code also implements other well-known optimisations of the SW algorithm that have been

proposed in previous works [30, 17], such as the Query Profile (QP) and Score Profile (SP)

optimisations.

• The QP strategy is based on creating an auxiliary two-dimensional array of size |q| × |E|,
where q is the query sequence and E is the alphabet. Each row of this array contains the

scores of the corresponding query residue against each possible residue in the alphabet. Since

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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SSE AVX2 KNC

vCur = mm adds epi8(vH[j-1], vSub); vCur = mm256 adds epi8(vH[j-1], vSub); vCur = mm512 add epi32(vH[j-1], vSub);

vCur = mm max epi8(vCur, vF[i]); vCur = mm256 max epi8(vCur, vF[i]); vCur = mm512 max epi32(vCur, vF[i]);

vCur = mm max epi8(vCur, vE[j]); vCur = mm256 max epi8(vCur, vE[j]); vCur = mm512 max epi32(vCur, vE[j]);

vCur = mm max epi8(vCur, vZero); vCur = mm256 max epi8(vCur, vZero); vCur = mm512 max epi32(vCur, vZero);

vS = mm max epi8(vS, vCur); vS = mm256 max epi8(vS, vCur); vS = mm512 max epi32(vS, vCur);

vF[i] = mm subs epi8(vF[i], vGe); vF[i] = mm256 subs epi8(vF[i], vGe); vF[i] = mm512 sub epi32(vF[i], vGe);

vE[j] = mm subs epi8(vE[j], vGe); vE[j] = mm256 subs epi8(vE[j], vGe); vE[j] = mm512 sub epi32(vE[j], vGe);

vAux = mm subs epi8(vCur, vGoe); vAux = mm256 subs epi8(vCur, vGoe); vAux = mm512 sub epi32(vCur, vGoe);

vF[i] = mm max epi8(vF[i], vAux); vF[i] = mm256 max epi8(vF[i], vAux); vF[i] = mm512 max epi32(vF[i], vAux);

vE[j] = mm max epi8(vE[j], vAux); vE[j] = mm256 max epi8(vE[j], vAux); vE[j] = mm512 max epi32(vE[j], vAux);

vH[j-1] = vPrev; vH[j-1] = vPrev; vH[j-1] = vPrev;

vPrev = vCur; vPrev = vCur; vPrev = vCur;

Figure 5. Intrinsic implementations of the SW CORE function.

each thread compares the same query residue against different ones from the database, this

optimisation improves data locality. As a consequence it also increases memory requirements,

but this increase is negligible because the size of the database is usually much larger than the

size of the alphabet.

• The SP technique is based on constructing an auxiliary n× L score array, where n is the

length of the database sequence and L is the number of vector lanes. Since each row of the

score profile forms an L-lane score vector, an advantage is that its values can be gathered using

a single vector load. However, the score profile must be re-built for each database sequence,

so its suitability must be evaluated, especially for short queries.

4.5. Integer range selection

Most of alignment scores can be represented using an narrow integer representation. In the case of

Intel’s Xeon, alignments are computed using 8-bit integer operations. Meanwhile SSE2 instruction

set allows to pack 16 element of 8-bit in a single SIMD register, AVX2 extensions doubles upto

32 elements. Additions are performed using saturated arithmetic operations to permit overflow

detection. When an overflow is detected (the alignment score is equal to the maximum value of the

integer representation employed), the alignment is recalculated using the next wider integer range.

Nevertheless, Phi does only support 32-bit integer, so it cannot compute more than 16 alignments

at the same time. This handicap could be solved in the next MIC generation with the incorporation

of an Intel Atom processor with vector capabilities, denoted as AVX-512‖, which is planned to be

available in 2015.

4.6. Data locality

Data locality is one key element to achieve high performance, especially on the Phi, where blocking

is also necessary to reduce the number of cache misses [31]. Furthermore, data structures have also

been aligned to avoid the overhead of misaligned memory accesses (64-byte aligned for the Phi and

32-byte aligned for the Xeon).

4.7. Heterogeneous hybrid implementation

Using the code for both processors, we have developed a heterogeneous hybrid version which takes

advantage of both Intel Xeon and Xeon Phi simultaneously. As shown in Algorithm 2, we just

need to introduce an additional conditional statement to select the chunk to be processed. The

implementation is based on a nested parallel scheme: initially n mics+ 1 threads are requested

(n mics corresponds to the number of accelerators) that invoke the routine SW SEARCH which

creates a nested parallel region (a single thread is cloned as many times as number of cores of

the target platform). The n mics threads are in charge of offloading their database chunks to their

‖AVX-512 Extensions: https://software.intel.com/en-us/blogs/additional-avx-512-instructions
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corresponding coprocessor and solve their alignments, while the last CPU thread only solves the

alignments of its own database chunk.

Algorithm 2 SW het(Q, vD, SM , Go, Ge, n mics, thmic, thcpu)

1: ⊲ thcpu is the number of second level Xeon threads

2:

3: #pragma omp parallel num threads(n mics+ 1)

4: {
5: if mic thread then

6: #pragma offload target(mic:mic no) in(Q,SM ,Go,Ge)

7: { pre-allocate buffers }
8: end if

9: #pragma omp for schedule(dynamic)

10: for c ≤ get num chunks(vD) do

11: if mic thread then

12: #pragma offload target(mic:mic no) in(vDc) out(Sc)

13: {Sc = SW SEARCH(Q, vDc, SM,Go, Ge, thmic)} ⊲ MIC execution

14: else

15: {Sc = SW SEARCH(Q, vDc, SM,Go, Ge, thcpu)} ⊲ host execution

16: end if

17: end for

18: if mic thread then

19: #pragma offload target(mic:mic no)

20: {de-allocate buffers }
21: end if

22: }
23: scores = sort(S)⊲ in descending order

5. EXPERIMENTAL RESULTS

5.1. Experimental environment

All tests have been performed on two heterogeneous architectures running CentOS 6.5:

• The first one is equipped with:

– Two Intel Xeon E5-2670 8-core 2.60GHz CPUs with hyper-threading enabled and 32

GB main memory.

– A single 57-core Xeon Phi 3120P coprocessor card (4 hw thread per core, 228 hw threads

overall) with 6GB dedicated memory.

• The second one is equipped with:

– Two Intel Xeon E5-2695 v3 14-core 2.30GHz CPUs with hyper-threading enabled and

64 GB main memory.

– A single NVIDIA Tesla K20c GPU (2496 CUDA cores) with 5GB dedicated memory

and Compute Capability 3.5.

– A single 57-core Xeon Phi 3120P coprocessor card (4 hw thread per core, 228 hw threads

overall) with 6GB dedicated memory.

We have used Intel’s ICC compiler (version 14.0.2.144) with the -O3 optimization level by

default. Auto-vectorization has been enabled with the -vec compiler flag. OpenMP threads were

binded to processor cores using scatter affinity.

The experiments used to assess performance are similar to those in previous work [16, 29, 32].

We have evaluated our application by searching 20 query protein sequences against two well-known
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databases: Swiss-Prot (release 2013 11)∗∗ and Environmental NR (release 2014 11)††. The Swiss-

Prot database consists of 192480382 amino acid residues in 541561 with the longest sequence

containing 35213 amino acids. The Environmental NR database comprises 1291019045 amino

acid residues in 6552667 sequences, 7557 being the maximum length. The queries have been

extracted from the Swiss-Prot database (accession numbers: P02232, P05013, P14942, P07327,

P01008, P03435, P42357, P21177, Q38941, P27895, P07756, P04775, P19096, P28167, P0C6B8,

P20930, P08519, Q7TMA5, P33450, and Q9UKN1), ranging in length from 144 to 5478. The

scoring matrix selected was BLOSUM62, and gap insertion and extension penalties were set to

10 and 2, respectively. Performance results are in GCUPS.

As mentioned before, this paper considers energy consumption besides performance. We describe

the measurement environment used on hosts and accelerators:

• On Xeon side, Intel has developed Intel PCM‡‡ (Performance Counter Monitor) to take power

measurements on the Intel Xeon processor. We chose PCM because since version 2.0 it is

supported by the Xeon E5 processors used in this work. In particular, Intel processors already

incorporate monitoring capabilities via hardware counters, but it was not obvious to determine

power consumption in this way. The Intel PCM interface allows any programmer to perform

an analysis of CPU resource consumption by means of hardware counters in an easy way.

• On Xeon Phi side, this coprocessor already provides power consumption information via

the Intel SMC (System Management Controller) tool. The SMC tool [33] accesses a

microcontroller located on the circuit board which monitors incoming DC power and thermal

sensors. In this context, a software-based power analyzer developed by Intel makes it easy

to obtain coprocessor power by means of the micsmc utility. Furthermore, the paper [34]

also concludes that the measurements taken by means of Intel SMC are completely reliable,

observing less than 1% deviation from directly measuring consumption through Xeon Phi’s

PCI-e channel power.

• On GPU side, NVIDIA has presented the NVIDIA System Management Interface (nvidia-

smi ∗) utility based on top of the NVIDIA Management Library (NVML) and intended to

help in the management and monitoring of NVIDIA GPU devices. Latest NVIDIA GPUs,

have on-board sensors for querying power consumption at runtime, and this information can

be obtained through the use of the nvidia-smi utility.

We would like to point out that the experiments of sections 5.2 and 5.3 were carried out using the

Swiss-Prot database. However, due to its limited size, the experiments in the heterogeneous system

were performed using the larger Environmental NR database in order to carry out analyses related

with GPU performance comparison and the effect of varying workload distribution on performance

and consumption (sections from 5.4 to 5.7).

Regarding to the system used, subsections 5.2, 5.3, 5.4 and 5.6 are performed on the first system

based on Xeon E5-2670 (except the performance analysis of AVX2 intrinsic). Sections 5.5 and 5.7

are performed on the second one equipped with more powerful Intel Xeon E5-2695 v3 processor.

5.2. Performance results on the Intel Xeon

Figure 6 shows the performance on the system based on Intel Xeon E5-2670 for the different

approaches under evaluation with increasing number of OpenMP threads. Without enabling

vectorization (denoted as no-vec in the figure), our implementation hardly improves performance

from 0.5 to 3 GCUPS. Automatic-vectorization does not only improve performance significantly

(simd label in Figure 6), but it also allows our codes to scale with the number of threads. The

hand-tuned codes based on SSE2 and SSE3 intrinsics (denoted as intrinsic) outperform their guided

vectorization counterparts. The performance gap between the two approaches is noticeable (around

∗∗The Swiss-Prot database is available online at http://web.expasy.org/docs/swiss-prot_guideline.html
††The Environmental NR database is available online at ftp://ftp.ncbi.nih.gov/blast/db/FASTA/env_nr.gz
‡‡Intel Performance Counter Monitor: http://www.intel.com/software/pcm
∗NVIDIA System Management Interface: https://developer.nvidia.com/nvidia-system-management-interface
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2×). Overall, the Score Profile (denoted as SP) performs better than the Query Profile (denoted as

QP). SP achieves almost linear speedup, reaching 113.7 GCUPS with 32 OpenMP threads.

Figure 6. Scalability on the system based on Intel Xeon E5-2670.

We would like to highlight a big difference with respect to previous work [26], in which 32-bit

floating data type and AVX intrinsic vectorization were used. The SW algorithm does not require

a wide range data representation. In this paper, the SW implementation uses a smaller data type as

signed integer representation with 8, 16 or 32 bits. This fact allows a greater level of data parallelism

exploitation, although with smaller SSE intrinsic width, 128-bits in SSE instead of 256-bits in AVX.

In particular, the integer SSE intrinsic could pack 16 elements of 8-bit integers into a vector, 8

elements with 16-bit range or 4 integers for 32-bit. Figure 7 shows the gain achieved using different

data type ranges on the Intel Xeon when varying the number of threads. As expected, the use of

smaller data types increases performance rates significantly, from 29.9 and 57.5 GCUPS for 32-

bits and 16-bits version (denoted as epi32 and epi16 respectively) to 113.7 GCUPS on the 8-bit

implementation (bar labeled as epi8).

The versions using 8-bit and 16-bit score ranges also consider overflow detection, as mentioned

in section 4.5. Saturation arithmetic is used in order to check overflow for a single Hi,j score. When

the saturation value is detected, the alignment is recalculated using the next widest range. It has been

observed that the additional overhead related with alignment re-computation using larger data types

is negligible. Performance is only affected by vector size. In fact, using the Swiss-Prot database,

overflow occurs in only 0.5% of alignments for 8-bit representation and none in 16-bits. Moreover,

similar overflow rates have also been observed in the Environmental NR database (0.75% for 8-bits

and none for 16-bits), so it is worth using 8-bit data in order to exploit data parallelism as much as

possible.

Figure 7. Scalability achieved when varying data type range.

Figure 8 illustrates the performance with queries of varying length using 32 OpenMP threads.

Most implementations do not experience large variations in behavior since our approaches exploit
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inter-task parallelism. However, we observe a gradual drop in performance for shorter queries,

which is more noticeable for the hand-tuned versions. Although SP calculates the substitution

scores for all residues in the database sequence, is more efficient respect to memory access than

the QP variant with longer query sequences. Memory access is the key to achieving satisfactory

performance rates.

Figure 8. Performance on the Intel Xeon with queries of varying length.

Because data level exploitation is critical to achieving satisfactory performance, we have carried

out a performance study using AVX2 in order to take advantage of 256-bit vector capabilities

with integer arithmetic. AVX2 instructions are available on Intel’s latest Haswell microprocessor.

We would like to emphasize that according to the authors’ knowledge, SWIMM is the first SW

implementation using AVX2 extensions. Figure 9 compares the performance rates achieved with

the AVX2 instruction set in comparison with the well-known SWIPE code on a system based on

Intel Xeon E5-2695 v3. Both substitution scores schemes with AVX2 outperform SWIPE, but it is

SP who is far better than this optimised SW version, achieving speed-ups of upto 1.4×. Running

at full system, the SP scheme reaches the impressive performance of 342.3 GCUPS. Moreover, the

acceleration observed with the use of AVX2 extensions with respect to SSE2 is about 2×, as is to

be expected due to the double width vector size in AVX2, so one can expect to find even greater

performance ratios in systems with wider vector capabilities, as in the announced AVX-512†, which

will be available in the next Xeon generation, codenamed Skylake.

†AVX-512 Extensions: https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Figure 9. SWIMM performance on the Intel Xeon E5-2695 v3 using AVX2 vector capabilities in comparison
with SWIPE version.
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5.3. Performance results on the Intel Xeon Phi

Figure 10 shows the performance on the Intel Xeon Phi for the different approaches when varying

the number of threads (from 57 to 228 hardware threads). Phi’s implementation involves a significant

difference with respect to Xeon. The current accelerator incorporates vector capabilities for integer,

but accepted data is limited to 32-bit integers. We can state that this fact radically limits performance,

as has been demonstrated in previous analyses where the exploitation of data-level parallelism is

paramount.

Again, without enabling vectorization, our implementation hardly improves performance. As

with Intel’s Xeon system, the non-vectorized versions barely exhibit performance differences. Both

guided vectorization implementations labeled simd present similar behavior, achieving a maximum

of 12.3 and 14.3 GCUPS for QP and SP, respectively. The hand-tuned codes based on MIC

intrinsics also outperform their guided vectorization counterparts: 38.8 and 43.9 for QP and SP

approaches. However, in this case, the performance gap between the two approaches is slightly

lower (an average of 1.1×). Indeed, for query lengths shorter than 375 residues, QP outperforms

SP. A similar behavior has been observed in previous research for the Xeon Phi [18]. We also

observe that the hand-tuned SP achieves the best performance (43.9 GCUPS with 228 threads),

scaling relatively well with the number of hardware threads. We would like to remark that the use of

integer arithmetic instead of floating-point arithmetic [26] leads to an average acceleration of 1.4×,

although performance would be significantly better with more SIMD capacity.

Figure 10. Scalability on the Intel Xeon Phi.

Figure 11 illustrates the performance with queries of varying length using 228 hardware threads

on the Phi. There is a noticeable drop in performance with queries shorter than 567 residues. This

phenomenon can be explained by the additional overhead incurred by the previous construction of

the SP, which does not compensate for the indexation benefits in shorter queries. In fact, the QP

scheme is more efficient on Phi because the ISA incorporates a single multimedia permutation

operation, while on the Xeon it is conducted with several shuffle instructions. For this reason,

and to avoid the divergences observed depending on the query length, we developed an adaptive

implementation that combines SP and QP approaches depending on query size (denoted in figure as

AP).

As has been mentioned above, SIMD exploitation is the key to achieving satisfactory throughput.

Although 8-bit packing data is not available on Phi yet, its incorporation is expected for the next

Phi’s generation, known as Knights Landing, by means of AVX-512 extensions. Software emulation

could be developed, packing two 16-bit integers into a single 32-bit integer, but the masking

operations necessary to maintain algorithm coherence and the software overflow checking do not

provide any improvement.

Figure12 shows a performance comparison of the binary SWAPHI [18] with our implementation.

As shown, our AP proposal is competitive for medium and large query sizes. As the SWAPHI

source code is not yet available, we cannot determine any reason for the performance drop for small
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Figure 11. Performance on the Intel Xeon Phi with queries of varying length.

Figure 12. Performance comparison between our SWIMM implementation and SWAPHI on Intel Xeon Phi.

queries. However, better performance is expected for the future Knights Landing architecture, in

which many more SIMD options will be available.

Finally, Figure 13 analyzes the impact of the blocking optimizations. We have chosen the most

successful configuration in terms of performance in both systems under study: 32 hardware threads

+ SP approach on Xeon and 228 hardware threads with AP scheme on Phi. The blocking technique

achieves a consistent improvement of 1.7× in performance rates, even for the shorter query lengths

on the Phi. However, blocking benefits are much lower on Xeon (an average of 1.1×), since the

Xeon has a larger cache memory than the Phi.

5.4. Performance results of the hybrid implementation

In this section we analyze the behavior of a hybrid implementation using the Xeon and Phi

simultaneously by means of static workload distribution. The key to achieving better performance

is the workload balance between the two processors. For that reason, we have adapted the hybrid

implementation to support a simple static distribution of database sequences. Figure 14 analyses

workload distribution using our best hand-tuned implementations on both processors: SP on the

Xeon and AP on the Phi. The abscissa focuses on the percentage of the sequence pairs that are

aligned on the Xeon, while the rest are aligned on the Phi. The maximum performance is achieved

with a static workload distribution of 75% on the Xeon and 25% on the Phi. Although a relatively

simple workload distribution scheme is used, the overall performance is upto 160 GCUPS. We

would like to emphasize that this figure almost corresponds to the ideal sum of the individual

performances achieved on the Xeon and Phi (117.8 and 41.9 GCUPS, respectively). Therefore,

the additional overhead caused by a static sequence distribution is almost negligible.
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Figure 13. Performance impact of the blocking optimizations with queries of varying length.

Figure 14. Performance of the hybrid implementation when varying the percentage of sequence pairs that
are aligned on the Xeon.

Figure 15 illustrates a performance comparison of our hybrid approach respect to XSW v2.0 ‡

implementation. As in the previous experiment, SP and AP schemes were used on the Xeon and

the Phi, respectively, but in this case workload distribution is based on the approach described in

section 4.7. Although version XSW v1.0 [20] develops a SW implementation on Xeon Phi in native

mode, there exists a binary v2.0 that extends it to a heterogeneous system. Both experiments were

carried out using all available computational resources: 32 threads on Xeon E5-2670 and 228 on

Phi. As shown, our SWIMM implementation improves §by far XSW implementation for all queries

length considered.

5.5. Performance comparison with other SW implementation

This subsection comparatively analyses the performance achieved by other SW implementations

in comparison with our SWIMM proposal. Regarding to the multicore exploitation, it is chosen

SWIPE [16] implementation already used in previous subsection. Regarding heterogeneous

computing, this comparative study includes CUDASW++ v3.0 [17] and XSW [20]. Whereas

CUDASW++ version 3.1 performs medium and short queries into a GPU card, long queries are

‡XSW v2.0 is available online at http://sdu-hpcl.github.io/XSW/
§CGS NOTA: mejorar estilo
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Figure 15. Performance comparison between our SWIMM implementation and XSW varying queries
length.

Figure 16. Performance comparison between SW implementations varying queries length.

carried out in the host by using the SSE instruction set as in SWIPE approach. Finally, XSW uses a

coprocessor based on Xeon Phi as it was described in previous subsections.

Figure 16 shows the performance achieved in a heterogeneous system equipped by Intel Xeon E5-

2695 v3 as host and two devices based on NVIDIA-K20c card and Xeon Phi 3120P coprocessor. As

was expected, SWIMM implementation achieved the best performance ratios (300-380 GCUPS),

although most of the acceleration comes from the data-level parallelism exploitation by means of

AVX2 (315-360 GCUPS). We would like to note that although the use of heterogeneous computing

expects to report better performance rates, the huge GCUPS difference between the Xeon and the Phi

supposes a serious unbalance workload (CPU-threads are idle) which is translated into a significant

performance detriment.

Moreover, while CUDASW++3.1 achieves an important thoughtput upto 300 GCPUS, SWIPE

gets a peak of 220 GCUPS and XSW reports poor performance ratios. It also observed the limited

performance on Phi coprocessor, just reaching a 50 GCUPS peak.
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Figure 17. Consumption profile of hybrid SW implementation for 128MB and 64MB chunks.

5.6. Power results of the hybrid implementation

Understanding the behaviour of an architecture not only from the angle of performance but

also considering the energy consumption has begun to be a necessary task in the heterogeneous

computing field. In this section we focus on the energy consumption aspect for the SW algorithm

on the systems used in this paper. In the previous section, it was observed that workload balance

between host and accelerator is the key to achieving good performance in a heterogeneous

architecture. Following this premise, the consumption detailed for the heterogeneous system when

searching the largest query sequence against the Environmental NR database is shown in Figure 17.

The algorithm scheduler distributes the workload between host and coprocessor. In particular,

database chunks are sent to each device as soon as it becomes free. Chunk size determines the

workload balance, as is shown in this figure (sizes of 64 MB and 128 MB). Lower granularity

(smaller chunks) means better balancing, which means less execution time. This fact is evident in

the last consumption valley on the host when it is waiting until the accelerator job is completed.

In addition, Figure 17 clearly shows several differentiated execution phases on the Xeon Phi.

Coprocessor consumption falls are related to the in/out data transfers involved in any chunk database

load to be processed. This aspect is not perceptible in the host because there is no job submission as

such, and one can observe a maintained consumption over time. Finally, the last peak consumption

on the host is due to the final sort stage once all the alignments have been processed.

Figure 18 shows the consumption profile measured in Joules when varying workload distribution

between the two processors. Blue bars correspond to the power consumption on the Xeon, while

red ones correspond to Phi. As expected, the consumption profile varies substantially with respect

to the performance observed in Figure 14. The low performance rates achieved on the Phi (in term

of GCUPS) severely penalize its consumption. In fact, the most reasonable configuration is the one

that disables the accelerator, when one can observe not only the minimum energy consumption but

also the best ratio GCUPS/Watts. In particular, a configuration of 100% on the host, which means

the coprocessor is disabled, achieves a ratio of 0.52 GCUPS/Watts, while the best configuration for

the heterogeneous architecture reaches only 0.368 GCUPS/Watts (75% workload is performed on

the host).

5.7. Performance and power summary

Finally, Table I shows a summary of the average performance and consumption achieved on the

different architectures studied. As mentioned above, the use of a heterogeneous architecture based

on Xeon and Xeon Phi processors is not the best approach in terms of consumption, as is reflected

by the worst GCUPS/Watts ratio (Xeon Phi column). However, although this kind of hybrid system

is not appropriate nowadays for aligning sequences using the SW algorithm, this is expected to

change in the next Knights Landing architecture. This poor performance (in terms of GCUPS) is

due to the absence on the Phi of low-range vector capabilities, which will be corrected in the next

generation with the addition of the AVX-512 extensions. In fact, this aspect is key to improving

the GCUPS/Watts ratio, as it is evidenced on the Xeon E5-2695. Higher performance is derived

from the exploitation of wider AVX2 vectors, which stands out as the best system in terms of

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-AWARE PERF. ANAL. OF HETEROGENEOUS SYSTEMS BASED ON THE SW ALGORITHM 19

Figure 18. Overall consumption in hybrid implementation.

GCUPS/Watts, even better than the hybrid CPU-GPU case. The gain in performance by the GPU

incorporation does not compensate the increase in energy consumption. Furthermore, it is observed

that the exploitation of hyper-threading (2 hw threads per core instead of a single thread) is not only

beneficial in performance terms with an extra 15% GCUPS in the AVX2 version, but also in terms

of consumption, with only an 5% power increment.

Table I. Performance and consumption rates summary.

System

Based on Intel E5-2670 Based on Intel E5-2695 v3

2×Xeon
Xeon Phi

3120P

2×Xeon

+ Phi
2×Xeon 1×Xeon

2×Xeon

+ Phi

2×Xeon

+ K20c

Cores 32 228 32 +228 56 28 56 + 228 56 + 2496

Power (Watts) 228.2 268.2 436.5 240 228.2 450.5 328.2

GCUPS 117.8 41.9 160 354.8 309.3 380 298.8

GCUPS/Watts 0.516 0.156 0.367 1.479 1.356 0.844 0.910

6. CONCLUSIONS

The SW algorithm performs an exact local sequence alignment. Nevertheless, in practice, several

parallel implementations are used due to its computational complexity. Moreover, Intel has recently

designed a coprocessor known as Xeon Phi for HPC. Among its main advantages is the ease of

programming, and it is largely compatible with Intel Xeon codes. To obtain successful performance

rates on both devices, two levels of parallelism exploitation are needed: thread-level parallelism by

means of OpenMP and data-level parallelism using SIMD instructions.

The main contributions of this study can be summarized as follows:

• From a performance perspective:

– ¶SIMD exploitation is crucial to achieving competitive performance rates. Guided

vectorization hardly offers performance improvements in comparison with hand-tuned

vectorization. Therefore, the smallest data type (8-bits) is used in order to exploit as

much data level parallelism as possible. In contrast, the Xeon E5-2670 running with

32 threads obtained up to 118 GCUPS using SSE (16×8bit lane vectors), and the

Xeon E5-2695 with 56 threads reaches up to 355 GCUPS using AVX2 (32×8bit lane

vectors). However, the current Xeon Phi includes only 32-bit integer vector capabilities,

¶CGS nota: indicar que es con la base de datos swissprot
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which limits the performance to 44 GCUPS for 228 threads. Intel has announced the

incorporation of AVX-512 that supports 8-bit lane vectors for the second half of 2015. A

notable performance increment is expected by using our methodology. To the best of the

authors’ knowledge, our implementation is the first SW implementation using AVX2,

outperforming the well-known SWIPE by upto 1.4×.

– In the Xeon, the SP strategy outperforms its QP counterpart. In the Phi, the leading

scheme depends on the query length. The AP scheme solves this problem taking the best

of both approaches.

– Regarding scalability, our approach achieves an efficiency of 82% on the Xeon E5-2670

processor with 16 threads and of 80% on the Xeon E5-5695 with 28 threads, which drops

to 32% in the Xeon Phi with 228 threads.

– Our Phi implementation outperforms the current SWAPHI for medium and large query

sizes.

– The impact of blocking optimizations is more significant on Xeon Phi, as the cache size

is small.

• From a heterogeneous perspective:

– Huge GCUPS difference between the Xeon and the Phi can lead to serious unbalanced

workload, which translates into significant performance detriment. The workload

balance is critical in order to achieve successful performance rates. The most successful

configuration achieves up-to 380 GCUPS.

– Our approach also outperforms the XSW implementation.

• From a power consumption perspective:

– Considering energetic efficiency as GCUPS/Watt, heterogeneous computing based on

Xeon and Xeon Phi processors is not the best choice. In fact, according to our power

measurements, is worth disabling Xeon Phi due to its poor performance in its current

architectural version (Knights Corner). It is basically caused by non-supporting vector

capabilities for narrow data types.

– Because GPUs provide low range integer operations, heterogeneous computing using

this kind of accelerators stands as a better option, achieving in this case 0.91

GCUPS/Watts.

– Finally, the most efficient configuration is on the Xeon E5-2695, since it has AVX2

extensions. It obtains 1.479 GCUPS/Watts.
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