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SUMMARY

JavaScript web applications are improving performance mainly thanks to the inclusion of new standards
by HTML5. Among others, Web Workers API allows multithreaded JavaScript web apps to exploit parallel
processors. However, developers have difficulties to determine the minimum number of Web Workers that
provide the highest performance. But even if developers found out this optimal number, it is a static value
configured at the beginning of the execution. Since users tend to execute other applications in background,
the estimated number of Web Workers could be non–optimal, since it may overload or underutilize the
system. In this paper, we propose a solution for highly parallel web apps to dynamically adapt the number
of running Web Workers to the actual available resources, avoiding the hassle to estimate a static optimal
number of threads. The solution consists in the inclusion of a Web Worker pool and a simple management
algorithm in the web app. Even though there are co–running applications, the results show our approach
dynamically enables a number of Web Workers close to the optimal. Our proposal, which is independent
of the web browser, overcomes the lack of knowledge of the underlying processor architecture as well as
dynamic resources availability changes. Copyrightc© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: HTML5, Web Workers, JavaScript, web applications, parallelism, multithreaded

1. INTRODUCTION

Web applications follow the new HTML5 standard developed by the World Wide Web
Consortium [1] to address the requirements of current and future platforms, web contents, and
cloud services. HTML5 provides new HTML elements, libraries extensions, and APIs, paying
special attention to JavaScript support, to take further advantage of the underlying platform through
hardware accelerated browsers, as well as avoiding the need to install third–party plugins. As a
result, current web apps are reducing the performance gap with respect to native applications.

The execution model of a web app depends on the language used. We focus on JavaScript,
that is an interpreted language with event–driven single–thread execution model. Many web apps
show potential speedups of up to 45.5x compared to sequential execution, due to parallelism
exploitation [2]. Parallelism can be extracted from a sequential JavaScript program using Thread–
Level–Speculation, TLS, either in hardware [3,4, 5] or software [6,7, 8].

But, HTML5 brings a new mechanism and API, called Web Workers [9, 10], that allows
JavaScript codes to concurrently run in background threads, from now on workers or worker threads,
in conjunction with the main thread, aka parent thread. Workers are communicated with the parent
thread by message passing. Unlike other approaches that exploit parallel execution, the developers
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2 J. VERDÚ ET AL.

are responsible to extract the parallelism, create threads, and develop a code that properly exploits
the parallelism.

JavaScript web apps, based on Web Workers, use to have the main thread focused on the user
interface (UI) and I/O tasks, since workers cannot do it due to accessconstraints [9]. Thus developers
offload compute intensive tasks to background threads to preserve responsiveness and enhance user
experience. If compute intensive workload would not be offloaded from the main thread, the UI
could eventually be blocked during periods of time. On the one hand, developers can create parallel
web apps with a single background thread. This approach is currently followed by most of the
HTML5 videogames, where physics and/or artificial intelligence engines are executed in a single
worker. On the other hand, highly parallel applications, such as image/video processing, are able
to spawn multiple threads to exploit massively parallel CPUs. In this case, the compute intensive
workload is distributed among multiple Web Workers that can execute at the sametime.

Unfortunately, when using multiple workers, there is no mechanism providedby web browsers
that dynamically manage the number of running workers according to some key performance
metrics. Thus, developers need to find out how many available hardware resources has the computer
to estimate how many workers should be spawned to get the highest performance. Hardware
information can be obtained using recent releases of some web browsers, like Google Chrome,
Safari, and Opera, that include a new attribute or executing a core–estimator benchmark on web
browsers, such as Internet Explorer and Firefox, that do not support it yet. Both of them can provide
the number of logical cores available in the system, but cannot determine howresources are shared.
That is, whether or not cores are hyperthreaded.

Unlike native multithreaded applications, the behavior and performance of JavaScript web apps
are totally dependent on internals of every particular web browser’s virtual machine. Thus, there is
no direct relation between workers and running threads in the browser and the utilization of logical
cores in the processor.

Moreover, most of the web apps run on personal computers with unexpected system workload
variations, since it is very likely users execute other applications while the web app is running. Thus,
even though developers are able to estimate how many logical cores the computer has, they have
no knowledge of how resource availability changes during the execution lifetime. Since the number
of Web Workers to run is usually fixed when the web app starts, several problems may arise. On
the one hand, if the web app spawns as many workers as logical cores, when another application
starts running, applications can significantly collide on shared hardware resources, especially if it is
a multithreaded process, and thus overload the system. On the other hand, ifthe developer shortens
the number of Web Workers just in case there are co–running applications, when they suddenly stop,
resource availability is higher. Then, increasing the number of worker threads could provide higher
performance.

This paper presents the first proposal that dynamically manages a pool of Web Workers for highly
parallel JavaScript web applications. Our approach consists in modifyingthe web apps that execute
multiple workers by embedding a simple algorithm that manages a Web Worker pool. The goal is
twofold: 1) to avoid the hassle to estimate a fixed optimal number of threads, and2) to dynamically
adapt the number of running threads to the really available resources. The algorithm analyzes
performance monitoring. If it is higher than a given threshold the manager activates an additional
thread from the pool of idle Web Workers. Due to this, we also demonstrate that idle worker threads
have a negligible impact on web app performance. The results show that thisbrowser independent
proposal overcomes the lack of knowledge of the underlying processor architecture, such as how
many logical cores and how hardware resources are shared, as wellas dynamic changes on resources
availability due to co–running applications.

The rest of this paper is organized as follows. Section2 introduces different execution models
of Web Workers. Section3 in great details presents the dynamic worker pool manager. Section4
presents the evaluation framework used in our paper. Section5 analyzes the results under different
scenarios. Finally, Section6 describes the related work, and Section7 presents the conclusions.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe



DYNAMIC WEB WORKER POOL MANAGEMENT FOR HIGHLY PARALLEL JAVASCRIPT WEB APPLICATIONS3

2. BACKGROUND

Parallel JavaScript web apps comprise the main thread, responsible of theUI, since workers cannot
do it due to access constraints [9], and background threads for Web Workers aimed at compute
intensive tasks to preserve responsiveness and enhance user experience.

Besides, Web Workers API distinguishes two types of workers: a dedicated worker, aka standard
worker, that is only accessible by the script that spawned it; and a shared worker that is
accessible from any script running in the same domain. Other emerging typesof workers are still
experimental [9].

However, regardless of whether workers can be accessed from one or several scripts, we can
classify parallel web apps based on worker execution models, namely:

• Single worker: all compute intensive tasks are done by a single background thread.
Videogames, for example, need to offload CPU intensive tasks, like AI andphysics, from
the UI thread to sustain responsiveness and frame rate [11]. Web apps that comprise multiple
compute intensive tasks suitable to run in several cooperative threads are candidates to be split
into multiple workers and thus to be reclassified into one of the other categories.

• Multiple asynchronous workers: large/continuous workload is distributed among available
workers to be processed in parallel, like spell checking. These applications have no
synchronization points among workers. As soon as a given worker completes the current task,
it sends a notification message to the parent thread and a new workload is delivered to the
Web Worker for processing. That is, there are no idle workers if thereis pending work.

• Multiple synchronous workers: inherent highly parallel codes, such as image/video
processing, use to have a synchronization point among workers, like presentation of a new
frame. Every new workload, a frame, can be split into multiple jobs, slices, to be processed by
different Web Workers. However, workers cannot directly start processing new frames until
all workers have finished their work. Thus, these applications can present periods of time with
idle workers, even having pending frames.

3. DYNAMIC WEB WORKER POOL MANAGER

Thread pool management has been extensively studied in a variety of areas, such as multithreaded
server applications. Algorithms try to dynamically decide what is the optimal number of active
threads to sustain required high performance. However, proposals that deal with native threads try
to minimize the number of idle threads to reduce management overhead [12, 13].

Our proposal is based on the fact that Web Workers run in a browser’s virtual machine. Therefore,
depending on how idle threads are managed by the virtual machine, the performance impact of idle
workers can be negligible, as we analyze in Section5.2. This Section presents the implementation
of our approach. First, we introduce the proposal. Then, we presentand discuss configuration
parameters and, finally, we describe the algorithm.

3.1. The Proposal

The dynamic Web Worker pool manager consists of an algorithm that makes adecision to activate
threads from the pool of workers according to the comparison of current average performance
with the performance mean at the time of the previous taken decision. To prevent the overhead
of creating additional workers, the developer has to create a pool of idleworkers at the beginning of
the execution. Thus, the manager will determine to activate or not an additional thread of the pool
of workers to start processing in conjunction with other active Web Workers.

Most of the highly parallel JavaScript web apps already have a pool ofworkers. Nevertheless, the
pool has to be modified to create a pool of Web Workers in idle status. That is, the parent thread
creates the Web Workers as usual, using the constructorWorker(), but does not send any message
to the new threads to notify them to start processing.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
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As soon as the execution starts, the approach constantly tracks performance of the web app.
Thus, a FIFO queue has to be created in order to collect measurements to calculate temporary
average performance of the web app. In case the application already includes routines to measure
performance, the code has to be modified to put the performance into the queue.

When the queue is full it means there are enough measurements to calculate a representative
performance mean. Then, the algorithm analyzes performance variationsand decides whether to
increase the number of active Web Workers or not. That is, the parent thread enables a worker to
start processing by sending a message, with the methodpostMessage().

3.2. Configurable Parameters

TableI presents the configurable parameters that will be used to configure the algorithm. We assign
them default values based on experiments done during preliminary phasesof this study. However,
it is out of the scope of this paper to find the optimal parameter setup, since it depends on the goals
and requirements of every particular web app.

Table I. Configurable Parameters

Parameter Value Description
TQLength Limit 4 Maximum length of the queue with performance measurements
α 1.10 Speedup factor threshold
β 0.85 Slowdown factor threshold

TQLength Limit delimits how many performance measurements have to be collected to
calculate a representative average performance. The higher values the less sensitive to unexpected
significant throughput variations. On the contrary, short queue lengthleads to high sensitivity to
sudden throughput variations. According to our experiments running thebenchmarks used in this
paper, a queue length of 4 items is enough to have a representative average performance.

The speedup,α, and slowdown,β, factor thresholds define the performance variation rates to take
a given decision. On the one hand,α denotes a particular speedup threshold that leads to consider
increase the number of active workers. On the other hand,β determines the slowdown threshold
that leads to identify lower resource availability, mainly due to co–running applications. For both
of them, larger values mean the variation has to be more significant. That is, a conservative scaling
setup, since the algorithm only takes a decision when there are important performance variations.
Whereas smaller values lead to eager scaling configuration, because the algorithm takes decisions
even though there are small performance variations. The default valuesof α andβ shown in TableI
are assigned from the analysis of preliminar experiments of this study.

3.3. The Algorithm

Throughout this Section we describe the pseudocode along with a brief explanation of the variables
and their purpose. Figure1 shows our proposed algorithm and TableII presents a brief description
of the variables. The algorithm has to be included in the source code of the web app, specifically in
a given function executed every period of time decided by the developer,for example every second.

Table II. Variables of the Algorithm

Variable Description
PerformanceQueue Queue that holds theQLength Limit recent performance measures
CurAvgPerformance Current average performance
PrevAvgPerformance Average performance in the last taken decision
ActiveWorkers Number of active threads
FakeDecrements Number of fake decrements of active Web Workers

PerformanceQueue is a queue that holds the most recent performance measurements using the
current configuration of Web Workers. That is, the current number of active threads. The length of
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the queue is defined by theTQLength Limit parameter that specifies how many measurements are
required to calculate representative average performance. While the queue is not full, the algorithm
is not executed, but thePerformanceQueue is updated, using FIFO policy, to include the latest
performance measurement. Once the queue is full,CurAvgPerformance is updated with the
performance mean, calculated from the measurements collected in the queue,and the algorithm
is executed.

Firstly, the algorithm comparesCurAvgPerformance with PrevAvgPerformance, the
average performance calculated at the time of the last taken decision. If thecurrent mean is higher
than a given speedup threshold, theα parameter, the algorithm activates one of the idle workers
by increasing theActiveWorkers counter. The parent thread uses this variable to identify active
workers in order to distribute new workload.

On the contrary, ifCurAvgPerformance shows a slowdown of at leastβ compared with
PrevAvgPerformance, the manager simulates to decrement the number of active workers. That
is, instead of disabling an active worker, to be again an idle thread, the algorithm counts the number
of fake decrements with theFakeDecrements counter. The purpose of this variable is to prevent
the activation of additional workers as long asFakeDecrements is greater than 0, as shown in
lines2– 6 in Figure1. In this case, the algorithm reduces the number ofFakeDecrements instead
of increasingActiveWorkers counter.

The Operating System (OS) performs load balancing to distribute the CPU usage among the
running applications, paying special attention when they collide in shared hardware resources, the
logical cores. According to our experiments, if the number of active workers actually decrements,
the OS reduces the CPU usage rate assigned to the web app, since the OS identifies lower CPU
demanding of this application. As a result, the web app performance is much lower. However, with
the use of fake decrements we prevent that the OS reduces CPU assignment to the web application,
as well as we also prevent to overload the system with too many threads.

When the manager makes a decision, it also performs two actions, namely: update the
PrevAvgPerformance, since it will be used for speedup and slowdown comparison in subsequent
executions of the algorithm; and flush thePerformanceQueue, since the queue has to collect
performance measurements of the new configuration of Web Workers. Otherwise, new performance
mean would be deviated by the measurements obtained with an obsolete configuration, the previous
number of active threads.

Algorithm: Dynamic Web Worker Pool Manager
Require: CurAvgPerformance← Avg(PerformanceQueue)

1: if CurAvgPerformance > (PrevAvgPerformance ∗ α) then
2: if FakeDecrements == 0 then
3: ActiveWorkers++
4: else
5: FakeDecrements−−

6: end if
7: PrevAvgPerformance← CurAvgPerformance

8: Flush(PerformanceQueue)
9: else if CurAvgPerformance < (PrevAvgPerformance ∗ β) then

10: FakeDecrements++
11: PrevAvgPerformance← CurAvgPerformance

12: Flush(PerformanceQueue)
13: end if

Figure 1. Pseudocode of the Dynamic Management Algorithm ofa Web Worker Pool

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
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4. EVALUATION FRAMEWORK

4.1. Platform

We use a personal computer with an IntelR© Core
TM

i7-3960X processor at 3,3GHz consisted of 6
hyperthreaded cores, for a total of 12 logical cores, with 16GB DDRAM-III and a NvidiaR© GTX560
videocard. The machine has two partitions with MicrosoftR© Windows

TM
Server 2008 R2 and Ubuntu

14.04 LTS. All non–critical services and applications have been disabledto prevent as much as
possible any deviation in the measurements.

We use Process Explorer v15.21 [14], by the use of Set Affinity, in Windows and the command
tasksetin Ubuntu to configure the available logical cores from the point of view of the web browsers
executed to mimic a particular CPU. The configured CPU consists of 8 threadsdistributed along 4
hyperthreaded cores. On the one hand, the selected logical cores onlyexecute the web browsers,
whereas the non–selected logical cores execute critical services and applications. Thus, we reduce
even more the deviation in the measurements. On the other hand, 8 logical cores, in the form of 4
hyperthreaded cores, can mimic the behavior of a multithreaded processorthat is representative of
the currently latest generation of IntelR© Core

TM
i7 family processors.

We employ updated releases of the three most used web browsers [15]: Google Chrome
v42.0.2311.90m, Mozilla Firefox v37.0.2, and Microsoft Internet Explorer v11.0.9600.16476, from
now on Chrome, Firefox, and IE, respectively.

4.2. Benchmarks

There are no standard JavaScript benchmarks comprising Web Workers. Several well known web
apps and web browsers portals provide parallel JavaScript demos, likeDemo Studio Mozilla
Developer Network. Most of the demos are implemented with dedicated workers. In fact, our
analysis is independent of whether workers are dedicated or shared,but it is focused on the execution
model of web apps with multiple workers (see Section2). We have run several web apps that have
no human interaction requirements. This paper delves into the analysis of two case studies. Even
though particular performance numbers of other web apps may differ, thetrends shown in this paper
are the same:

• Multiple asynchronous workers: Hash Bruteforcer [16], HashApp from now on, is a web
app that computes MD5 hashes. We use the default configuration and datasets. From a
given 128-bit MD5 encoded input, the application uses a brute force attack to get the plain
text. Thus, the workers perform continuous CPU intensive workload withno synchronization
barriers among threads. The main thread sends messages to every particular Web Worker to
notify the next piece of work, while waits for receiving messages from them. Additionally, it
is also responsible to measure performance and execute our proposal every second.

• Multiple synchronous workers: The raytracer web app [17], RayApp from now on, performs
highly CPU intensive mathematical calculations to simulate components of the scene, like
ambient lights and shadows, to render every frame. We use the default configuration, but
enlarging the default canvas size up to 300x300 pixels in order to generate representative
number of workload to be executed on a CPU with 8 logical cores. The scene is split into
a number of slices that depends on the canvas size. Thus, in our experiments every frame
rendering consists of 15 slices distributed along a configurable size of workers pool. We have
done experiments with others canvas sizes, showing different performance numbers, but with
similar trends. Unlike HashApp, the main thread has more work to do, since it is also in
charged of capturing and sketching the image on the canvas. That is, it draws the data of a
given image onto the bitmap to show a new frame, because Web Workers cannot use functions
for the canvas [9].

We properly modify the source code of both benchmarks to include our proposal described in
Section3. Since the original source code has static pool of Web Workers, configured by parameter,
we change it to be dynamically managed by our proposed algorithm. For this end, we include

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
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additional data structures and configuration parameters. The algorithm has been implemented to
be executed every second. In particular, we modify HashApp to implement the algorithm in the
method that updates the performance statistics,App.prototype.updateStats, whereas we develop
the algorithm in thecamera.onFinishedmethod, called after rendering a new frame in RayApp.

Even though the original benchmarks already have functions to measure performance, we modify
the source code to use the most accurate mechanism for JavaScript time measurement. The WebAPI
Performance.now()returns a DOM High Resolution TimeStamp accurate to microseconds [18], and
it is available in current releases of major web browsers.

The benchmarks have been configured to spawn from 1 to 20 Web Workers. We fix this limit
since it is the maximum number of workers that Firefox supports. Nevertheless, experiments with
more workers running on others browsers show no performance improvements.

The benchmarks provide a toggle button to start and finish execution. We take average results from
ten runs of every experiment running 30 seconds each, time enough to reach steady performance.

5. EXPERIMENTAL RESULTS

This Section analyzes the results obtained following few steps. Firstly, we present the performance
scalability for assessed web browsers in Windows and Linux. The resultswill determine what is the
optimal number of Web Workers in every case. Then, we study the impact ofidle Web Workers on
the performance of running workers. Finally, Sections5.3 and5.4 evaluate our proposal when the
benchmarks run alone and with co–running applications, respectively.

5.1. Performance Scalability
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Figure 2. Performance Scalability of HashApp running on a CPU with 8 logical cores

Due to the lack of reference measurements, we present the performancescalability of HashApp
and RayApp in Figure2 and Figure3, respectively, for Chrome, Firefox, and Internet Explorer.
The Y–axes indicate performance metrics, in terms of completed work per unitof time, and the
horizontal axes show the number of running workers. Finally, left charts depict results in Windows,
whereas the right graphs denote measurements using Ubuntu.

In spite of the diversity of absolute performance measurements, the resultsconfirm that scalability
trends along with the number of Web Workers are significantly different among browsers and OSes.
This difference is highly evident for HashApp in Windows, Figure2(a), and in Linux, Figure2(b).
Whereas in Ubuntu, Firefox presents important performance degradation using large number of
workers, there are no negative effects in Windows for any web browser.

Besides, Chrome and Firefox, in Windows, show an almost linear performance improvement up to
3-4 workers, but then it reaches a stable point. The main reason behind this behavior is that running
more threads increase collision on shared hardware resources. Thatis, running more threads do not
provide significant performance improvements.
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Figure 3. Performance Scalability of RayApp running on a CPUwith 8 logical cores

The benchmark with synchronous workers, Figure3, shows slight performance degradation using
large number of threads. In fact, if the number of threads is larger than optimal, there are two
drawbacks. Firstly, every worker execute less number of work, slicesof a frame. In a scenario where
there are more threads than pieces of work, only a subset of the threadshave work to be done. Thus,
no further performance scaling is obtained by increasing the number of threads beyond the optimal.
Secondly, the contention on shared hardware resources increases during the processing, since there
are more threads that collide. Therefore, there is a point where performance is even downgraded.

Finally, the results also show that IE presents reduced performance scalability in both
benchmarks. In fact, it is lower than linear in the best case.

These results lead to three main insights: 1) browsers show different performance scalability
trends; 2) the behavior of synchronous versus asynchronous workers directly impact on performance
scalability; and 3) even if the CPU has a large number of logical cores, mostof the runs reach the
highest performance using less number of workers than available logicalcores, that can also be
different for every web browser. As a result, it is not straightforward to fix a single generic number
of Web Workers that involves the optimal tradeoff between number of workers and performance.

5.2. Idle Workers Impact

Thread pool management, especially on network servers, is sensitive to the overhead of managing
large idle thread pools [13, 12]. As our proposal requires a pool of Web Workers that are dynamically
enabled, we need to previously analyze the impact of idle workers on active threads. In fact, when
a Web Worker is created, it is idle. Since JavaScript is an event–driven programming model, the
thread waits until it receives an event. As soon as this event happens, by the reception of a message
from the parent thread, the Web Worker is activated and starts processing.
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Figure 4. Impact of idle workers on performance of processing workers in Windows
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Figure 5. Impact of idle workers on performance of processing workers in Linux

Figures4 and Figure5 depict the performance for both benchmarks and web browsers running in
Windows and Linux, respectively. Left Y–axis, SPS metric, is followed byHashApp, while RayApp
uses the right Y–axis, FPS metric. Both web apps are configured to comprise “N-M” worker threads,
where N stands for the number of active workers, while M denotes the number of idle workers.
Both number of Web Workers are fixed at the beginning of the execution. Black bars represent the
executions with 8 and 1 active threads, but with no idle workers left and right Figures, respectively.
Grey bars denote measurements using the configuration with the same number of active workers,
but with 12 and 19 idle workers, respectively. Both setups have a maximum of 20 workers, because
it is the upper limit that Firefox has. Chrome and Internet Explorer have nowell known upper limits
on the number of worker threads handling.

Figure 4(a) and Figure5(a) show results using 8 logical cores. Thus, 8 worker threads may
collide in shared hardware resources even there are no idle workers.The performance degradation
is negligible, from 0.45% to 0.06% for HashApp, and from 0.42% to 0.09% forRayApp. That is,
even if the JavaScript virtual machine needs to manage the idle worker threads, it has almost no
impact on the performance.

In Figure4(b) and Figure5(b) we totally stress a single hyperthreaded core, two logical cores.
In this case, the UI thread, the active Web Worker, and 19 idle worker threads are bound to the
same core. That is, it is more likely that the management of a larger number of idle workers can
disturb to either the active worker or the UI thread. Even though this is a worse scenario, the impact
of managing 19 idle workers ranges from 1.36% to 0.71% and from 2.81% to 0.22% performance
degradation running HashApp and RayApp, respectively.

These results demonstrate that developers can create a large pool of Web Workers when the web
app is launched, with negligible impact on the performance, and then dynamically decide how many
of them are suitable to do efficient work to get the optimal performance.

5.3. Automatic Web Worker Scaling

Figure6 presents the performance scalability of the benchmarks properly modified toinclude our
proposal. The Y–axes denote performance, whereas the horizontal axes represent the timeline in
seconds. Every shape in the lines is a performance measurement put into thePerformanceQueue.
Dashed circles indicate the pool manager decides an additional Web Worker has to be enabled, since
there is an average performance higher than the configured speedup threshold,α = 1.10. Numbers
close to the circles mean the new number of running workers. Finally, the steady performance as
well as the final number of running workers of these charts have to be compared to the performance
scalability graphs in Figure2 and Figure3.

It is important to remark that both benchmarks run a long execution. Therefore, there can be
differences among performance measurements taken at different instants. On the one hand, the
benchmark processes diverse pieces of work at every instant with slight different characteristics. On
the other hand, the more threads running the more likelihood to present performance variations since
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collision on shared hardware resources may differ. Besides, the internals of the JavaScript virtual
machine, like runtime optimizations and garbage collector, can eventually alter theperformance at
different moments.

The algorithm is able to find the optimal number of workers for both benchmarks when running on
IE. The manager is also able to find a close to optimal configuration executing RayApp in Firefox for
both OSes. However, for the asynchronous benchmark the algorithm scales the number of running
workers up to almost optimal configuration. Thus, performance difference with respect to the actual
optimal setup is under 4% in the worse case. The reason why the algorithm has not scaled the
number of threads is that the performance improvements are lower thanα when the configuration
reaches a stable performance scaling point. That is, increasing the number of workers slightly scale
or just sustain the performance.
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Figure 6. Performance scalability using the Dynamic Web Worker Pool Management

Chrome has similar results for both benchmarks. That is, the algorithm is not able to identify the
need to increase the number of running workers when the web app executes 5 and 4 workers for
HashApp and RayApp, respectively. Therefore, ifα would had a lower speedup factor, the algorithm
would detect the required performance speedup that leads to enable an additional Web Worker. The
difference of average performance between our configuration and the optimal setup on Chrome is
less than 7.36% and 2.23% for HashApp and RayApp, respectively.

5.4. Execution with Co–Running Applications

This Section presents the results of running the web app in conjunction with co–running
applications. Figure7 and Figure8 present the results of running the benchmarks in Windows and
Linux, respectively. Vertical axes indicate performance, whereas theX–axes denote the timeline in
seconds.

The co–running applications are two different web browsers executingthe original HashApp,
without our proposal, running 4 Web Workers. We select these co–running applications as case
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Figure 7. Web app performance with co–running applicationsin Windows on Chrome (Figures (a) and (b)),
Firefox (Figures (c) and (d)), and Internet Explorer (Figures (e) and (f))

study of representative workload, since they are multithreaded CPU intensive applications. That is,
the execution of both of them consume nearly 100% of the total of 8 logical cores available in the
CPU. We use the two web browsers that are not studied for the particular experiment. For example,
if we analyze the performance on Chrome, the co–running applications areFirefox and IE, both of
them running HashApp.

The timeline is divided into four slots labeled with “A”, “B”, “C”, and “D”. Every slot takes 30
seconds and identifies a particular status of the system workload. In the first slot, “A”, there is a single
co–running application and thus only half of the resource availability is theoretically available.
When slot “B” starts, the second co–running application initiates execution.Therefore, the OS has to
manage three multithreaded CPU intensive applications that demand more hardware resources than
available in the system. At the beginning of slot “C” the second co–running application finishes and
there is similar resource availability than the slot “A”. Finally, the remaining co–running application
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Figure 8. Web app performance with co–running applicationsin Linux on Chrome (Figures (a) and (b)), and
Firefox (Figures (c) and (d))

stops when the slot “D” starts. Therefore, all hardware resources are available to the benchmark,
since the web app is running alone in the last slot.

The Figure also shows three different configurations for each benchmark, namely: Naive Setup,
spawns as many workers as logical cores comprised in the CPU; Optimal Setup, runs the number
of workers that provide the highest performance from the analysis of performance scalability in
Section5.1; and Web Worker Pool Manager, includes our proposal. When the pool manager decides
to increment the number of running workers, a circle denotes the decision timeas well as a number
indicating the new number of running threads.

On the one hand, we can see that due to lower resource availability, slots withco–running
applications, specially the slot “B”, present significantly lower web app performance. Therefore,
in those cases, running large number of workers can overload the system and downgrade the
performance of all applications. The OS manages all processes to properly schedule them to use
the logical cores. Thus, the more threads that intensively demand CPU the lower CPU usage for
every thread and the lower performance of every application, since the system is at performance
degradation phase due to overloading. Nevertheless, we can observethat the impact of two co–
running applications, slot “B”, is different on every browser.

We can see the three configurations provide similar performance, but using diverse number
of worker threads. This difference is accentuated on HashApp charts, Figures7(a), (c), and (d),
that remark difference among the three web browsers on performance and optimal Web Worker
configuration. The Optimal Setup is different on every browser, namely:8, 6, and 4 threads on
Chrome, Firefox, and IE, respectively. Nevertheless, our proposal finds out an number of running
Web Workers close to the optimal. In all experiments that there are co–running applications, except
HashApp on IE, Figure7(e), that runs an additional worker than the optimal configuration, our
proposal enables the minimum number of workers, equal or even lower than the Optimal Setup,
but provides similar performance than the other configurations. Our approach alleviates the system
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by reducing the contention on shared hardware resources, since there are less CPU intensively
demanding threads.

Although there are significant performance variations when co–runningapplications start or finish
the execution, our approach is able to detect whether it is advisable to increase the current number of
running threads. For example, from slot “B” to “C”, there is an important performance improvement,
but the manager detects that it previously simulated to reduce the number of active workers, with
theFakeDecrements counter. That is, the performance was lower than the configured slowdown
threshold,β = 0.85. Therefore, the manager only enables an additional Web Worker when actually
improves the performance with respect to the previous highest average performance.

With our default configuration of the parameters the algorithm provides good results on the
three web browsers. That is, JavaScript developers can implement optimal highly parallel web
apps, browser independent, without the hassle to do complex estimations. However, the main
problems come from running on IE. The reason behind this is that the performance is slow and
with our default configuration, slight performance increments result in speedups higher than 1.10x.
Therefore, although the resulting number of Web Workers is between the Optimal and the Naive
setups, the manager could be improved using lower values ofα andβ. Nevertheless, deep analysis
of tuning the configuration parameters is out of the scope of this paper.

Figure8 shows similar results for Linux. With the default configuration of the parameters the
manager properly detects performance improvement to increase the numberof Web Workers. The
only case that presents significantly lower performance than the optimal configuration is running
HashApp on Firefox8(c). Due to co–running applications the manager wrongly decides to increase
the number of workers more than the optimal number. Thus, the performanceis about 15% lower
than the optimal configuration. Nevertheless, it is higher than the Naive setup.

6. RELATED WORK

Some authors propose fine grain parallelization of JavaScript codes. Fortuna et al. [2] analyze the
potential speedup limit of parallelizing events and tasks, such as functions and loops. Martinsen
et al. [19] though propose Thread–Level–Speculation for browsers’ JavaScript engines to take
advantage of multicore multithreaded CPUs. Other authors propose a technique to parallelize
interactive JavaScript animations using Web Workers [11]. But there is no study of threads scaling.

None of these works are focused on either analyze the performance scalability of workers based
web apps or related differences among major web browsers. Besides, according to our knowledge,
there is no proposal to dynamically manage a pool of Web Workers to sustainefficient computing.

Even if this is the first proposal that manages a pool of Web Workers forJavaScript web apps
running on personal computers, thread pool systems have been commonlyadopted in other areas,
like grid computing and server applications.

Grid computing present, among others, problems of scheduling and allocatingresources to jobs.
In this sense, our proposal present some similarities with previous research of this area. The resource
allocation is a process of task scheduling to available resources, code and data transferring, and
monitoring of available resources and application performance. There is alarge list of Grid resource
allocation mechanisms [20]. Although our proposal also presents dynamic resource allocation based
on an algorithm to optimize performance and aware of variations on available resources, we focus
our work on a significantly different scenario. Grid systems deal with distributed computers with
different number of resources and have to take into account requirements significantly different
to ours, such as communication overhead. However, our manager only monitors performance
variations in order to activate a new thread.

In the area of server applications, like Apache and Microsoft IIS, Xu et al. [12] propose dynamic
thread pool management for server applications. Although their algorithm isslightly similar to our
approach, the management is substantially different. They are focused on server environments and
thus performance is not disturbed by unknown applications that suddenlystart running. Besides,
studies that directly deal with threads, instead of Web Workers, take into account the overhead
of managing large pools of threads. Ling et al. [13] characterize costs related to the thread pool
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management in order to analytically estimate the optimal thread pool size for network servers to
respond larger number of simultaneous service requests. However, our results show that, due to
the internals of the JavaScript virtual machines, the impact of many idle worker threads on the
performance is negligible.

Unlike all these works, our goal is focused on providing a simple and generic approach that
overcomes the difficulties of JavaScript developers to implement highly parallel web applications
making an efficient thread scaling in most circumstances as well as independent of the browser.

7. CONCLUSIONS

Developers of highly parallel JavaScript web applications have many difficulties to develop
applications with a generic configuration that spawns the minimum number of threads that provide
the highest performance. The lack of information of the underlying processor architecture, such as
how many cores are available and how resources are shared, as well as web browser internals, such
as how the JavaScript virtual machine optimizes codes and scales the performance along with Web
Workers, lead to very difficult estimation of the optimal number of workers. This problem becomes
more accentuated taking into account that most of the web app users execute other background
applications that constantly change the hardware resource availability. Thus, it is very likely that
the number of Web Workers estimated could be non–optimal, since it may overload the system,
degrading the performance of all applications, or underutilize the availableresources.

In this paper we propose to modify highly parallel JavaScript web apps to include a pool of
idle Web Workers and a simple algorithm. The goal of our approach is to dynamically manage the
number of running threads to the actual available resources and to prevent the difficulties to estimate
a fixed optimal number of running threads. To do this, we have also demonstrated that parallel web
apps do not suffer significant performance degradation when there are many idle Web Workers. The
results confirm that our browser independent proposal enables similarnumber of threads than the
optimal setup for any of the three major web browsers in the market. Even though there are co–
running applications that start or finish execution during the lifetime of the webapp, the behavior
of the manager is sustained.

Our evaluation concludes that with this proposal developers do not needhardly reachable details
of every particular underlying platform to efficiently exploit the available resources, since the
spawning degree is automatically determined by the dynamic manager.
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