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SUMMARY

JavaScript web applications are improving performance mainly thanks to the inclusion of new standards
by HTML5. Among others, Web Workers API allows multithreaded JavaScript web apps to exploit parallel
processors. However, developers have difficulties to determine the minimum number of Web Workers that
provide the highest performance. But even if developers found out this optimal number, it is a static value
configured at the beginning of the execution. Since users tend to execute other applications in background,
the estimated number of Web Workers could be non—optimal, since it may overload or underutilize the
system. In this paper, we propose a solution for highly parallel web apps to dynamically adapt the number
of running Web Workers to the actual available resources, avoiding the hassle to estimate a static optimal
number of threads. The solution consists in the inclusion of a Web Worker pool and a simple management
algorithm in the web app. Even though there are co—running applications, the results show our approach
dynamically enables a number of Web Workers close to the optimal. Our proposal, which is independent
of the web browser, overcomes the lack of knowledge of the underlying processor architecture as well as
dynamic resources availability changes. Copyrigh2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Web applications follow the new HTML5 standard developed by the World Wide Web
Consortium [1] to address the requirements of current and future platforms, web contents, and
cloud services. HTML5 provides new HTML elements, libraries extensions, and APIs, paying
special attention to JavaScript support, to take further advantage of the underlying platform through
hardware accelerated browsers, as well as avoiding the need to install third—party plugins. As a
result, current web apps are reducing the performance gap with respect to native applications.

The execution model of a web app depends on the language used. We focus on JavaScript,
that is an interpreted language with event—driven single—thread execution model. Many web apps
show potential speedups of up to 45.5x compared to sequential execution, due to parallelism
exploitation P]. Parallelism can be extracted from a sequential JavaScript program using Thread—
Level-Speculation, TLS, either in hardware 435] or software [6,7, 8].

But, HTML5 brings a new mechanism and API, called Web Worké&s1[], that allows
JavaScript codes to concurrently run in background threads, from now on workers or worker threads,
in conjunction with the main thread, aka parent thread. Workers are communicated with the parent
thread by message passing. Unlike other approaches that exploit parallel execution, the developers
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2 J. VERDU ET AL.

are responsible to extract the parallelism, create threads, and develdp that properly exploits
the parallelism.

JavaScript web apps, based on Web Workers, use to have the maid fibcaaed on the user
interface (Ul) and I/O tasks, since workers cannot do it due to acoessraints$]. Thus developers
offload compute intensive tasks to background threads to presepansageness and enhance user
experience. If compute intensive workload would not be offloadech fite main thread, the Ul
could eventually be blocked during periods of time. On the one hand, gersloan create parallel
web apps with a single background thread. This approach is curretityvéal by most of the
HTML5 videogames, where physics and/or artificial intelligence enginegxecuted in a single
worker. On the other hand, highly parallel applications, such as image/yideessing, are able
to spawn multiple threads to exploit massively parallel CPUs. In this casepthpute intensive
workload is distributed among multiple Web Workers that can execute at thetsaee

Unfortunately, when using multiple workers, there is no mechanism provigledeb browsers
that dynamically manage the number of running workers according to soyn@etéormance
metrics. Thus, developers need to find out how many available hardeserces has the computer
to estimate how many workers should be spawned to get the highest pertantdardware
information can be obtained using recent releases of some web brovlilser§oogle Chrome,
Safari, and Opera, that include a new attribute or executing a core—estipesichmark on web
browsers, such as Internet Explorer and Firefox, that do notsujyet. Both of them can provide
the number of logical cores available in the system, but cannot determineskowrces are shared.
That is, whether or not cores are hyperthreaded.

Unlike native multithreaded applications, the behavior and performancavaSaript web apps
are totally dependent on internals of every particular web browsetisaVyimachine. Thus, there is
no direct relation between workers and running threads in the browdedha utilization of logical
cores in the processor.

Moreover, most of the web apps run on personal computers with ucdsystem workload
variations, since it is very likely users execute other applications while theapeis running. Thus,
even though developers are able to estimate how many logical cores theteoimas; they have
no knowledge of how resource availability changes during the executaiimiié. Since the number
of Web Workers to run is usually fixed when the web app starts, seveyblgms may arise. On
the one hand, if the web app spawns as many workers as logical cdres,amother application
starts running, applications can significantly collide on shared hardwsoeirces, especially if it is
a multithreaded process, and thus overload the system. On the other hheadjéfeloper shortens
the number of Web Workers just in case there are co—running applicatibesa they suddenly stop,
resource availability is higher. Then, increasing the number of workeattsr could provide higher
performance.

This paper presents the first proposal that dynamically manages affywebdNorkers for highly
parallel JavaScript web applications. Our approach consists in modifyéngeb apps that execute
multiple workers by embedding a simple algorithm that manages a Web WorkkrTaogoal is
twofold: 1) to avoid the hassle to estimate a fixed optimal number of thread®) andlynamically
adapt the number of running threads to the really available resourcesal@brithm analyzes
performance monitoring. If it is higher than a given threshold the manageates an additional
thread from the pool of idle Web Workers. Due to this, we also demonsttélth worker threads
have a negligible impact on web app performance. The results show thhtdhiser independent
proposal overcomes the lack of knowledge of the underlying processhitecture, such as how
many logical cores and how hardware resources are shared, as\dghamic changes on resources
availability due to co—running applications.

The rest of this paper is organized as follows. Secfiantroduces different execution models
of Web Workers. Sectio3 in great details presents the dynamic worker pool manager. Settion
presents the evaluation framework used in our paper. Sestémalyzes the results under different
scenarios. Finally, Sectighdescribes the related work, and Sectigoresents the conclusions.
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2. BACKGROUND

Parallel JavaScript web apps comprise the main thread, responsibleldif 8iece workers cannot
do it due to access constrain®,[and background threads for Web Workers aimed at compute
intensive tasks to preserve responsiveness and enhance USee _e@.

Besides, Web Workers API distinguishes two types of workers: a dediegorker, aka standard
worker, that is only accessible by the script that spawned it; and a dshaoeker that is
accessible from any script running in the same domain. Other emergingdf/peskers are still
experimental 9.

However, regardless of whether workers can be accessed frenoroseveral scripts, we can
classify parallel web apps based on worker execution models, namely:

e Single worker: all compute intensive tasks are done by a single background thread.
Videogames, for example, need to offload CPU intensive tasks, like Alpagsics, from
the Ul thread to sustain responsiveness and frame Tale\WWeb apps that comprise multiple
compute intensive tasks suitable to run in several cooperative threacsratidates to be split
into multiple workers and thus to be reclassified into one of the other categories

e Multiple asynchronous workers: large/continuous workload is distributed among available
workers to be processed in parallel, like spell checking. These applisatiave no
synchronization points among workers. As soon as a given workerletesfghe current task,
it sends a notification message to the parent thread and a new worklodi/ésedieto the
Web Worker for processing. That is, there are no idle workers if tisgpending work.

e Multiple synchronous workers: inherent highly parallel codes, such as image/video
processing, use to have a synchronization point among workers, Beemation of a new
frame. Every new workload, a frame, can be split into multiple jobs, sliceg fdcessed by
different Web Workers. However, workers cannot directly staocpssing new frames until
all workers have finished their work. Thus, these applications caemptrpsriods of time with
idle workers, even having pending frames.

3. DYNAMIC WEB WORKER POOL MANAGER

Thread pool management has been extensively studied in a varietyasf ateh as multithreaded
server applications. Algorithms try to dynamically decide what is the optimal nuwbactive
threads to sustain required high performance. However, proposaldetalawith native threads try
to minimize the number of idle threads to reduce management overhgad].

Our proposal is based on the fact that Web Workers run in a braswgeial machine. Therefore,
depending on how idle threads are managed by the virtual machine, thenpanice impact of idle
workers can be negligible, as we analyze in Secidh This Section presents the implementation
of our approach. First, we introduce the proposal. Then, we presahtdiscuss configuration
parameters and, finally, we describe the algorithm.

3.1. The Proposal

The dynamic Web Worker pool manager consists of an algorithm that madession to activate
threads from the pool of workers according to the comparison of cuaeerage performance
with the performance mean at the time of the previous taken decision. Tonpréeeoverhead
of creating additional workers, the developer has to create a pool ofatleers at the beginning of
the execution. Thus, the manager will determine to activate or not an addlitivead of the pool
of workers to start processing in conjunction with other active Web Werke

Most of the highly parallel JavaScript web apps already have a pawbdéers. Nevertheless, the
pool has to be modified to create a pool of Web Workers in idle status. Thhaeiparent thread
creates the Web Workers as usual, using the constricteter (), but does not send any message
to the new threads to notify them to start processing.
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4 J. VERDU ET AL.

As soon as the execution starts, the approach constantly tracks peréermagithe web app.
Thus, a FIFO queue has to be created in order to collect measurementsuiateatemporary
average performance of the web app. In case the application alreddgléagoutines to measure
performance, the code has to be modified to put the performance into the.que

When the queue is full it means there are enough measurements to calcutpiesentative
performance mean. Then, the algorithm analyzes performance variatidndecides whether to
increase the number of active Web Workers or not. That is, the pameridtienables a worker to
start processing by sending a message, with the meihwad/ essage().

3.2. Configurable Parameters

Tablel presents the configurable parameters that will be used to configure tritaty We assign
them default values based on experiments done during preliminary pbfatbés study. However,
it is out of the scope of this paper to find the optimal parameter setup, sinegahds on the goals
and requirements of every particular web app.

Table I. Configurable Parameters

| Parameter | Value | Description
TQLength_Limit 4 Maximum length of the queue with performance measurements
« 1.10 | Speedup factor threshold
15} 0.85 | Slowdown factor threshold

TQLength_Limit delimits how many performance measurements have to be collected to
calculate a representative average performance. The higher vatulesshsensitive to unexpected
significant throughput variations. On the contrary, short queue ldegtls to high sensitivity to
sudden throughput variations. According to our experiments runningeghehmarks used in this
paper, a queue length of 4 items is enough to have a representativgeaperéormance.

The speedupy, and slowdownp, factor thresholds define the performance variation rates to take
a given decision. On the one hanrddenotes a particular speedup threshold that leads to consider
increase the number of active workers. On the other hadrdktermines the slowdown threshold
that leads to identify lower resource availability, mainly due to co—runnindicgtipns. For both
of them, larger values mean the variation has to be more significant. Thatissareative scaling
setup, since the algorithm only takes a decision when there are importéonpence variations.
Whereas smaller values lead to eager scaling configuration, becaudgdtinia takes decisions
even though there are small performance variations. The default \&fluesnd s shown in Tablé
are assigned from the analysis of preliminar experiments of this study.

3.3. The Algorithm

Throughout this Section we describe the pseudocode along with a bpiehation of the variables
and their purpose. Figureshows our proposed algorithm and Tablgresents a brief description
of the variables. The algorithm has to be included in the source code ofethepp, specifically in

a given function executed every period of time decided by the develiopexxample every second.

Table II. Variables of the Algorithm

| Variable | Description |
Per formanceQueue Queue that holds th@ Length_Limit recent performance measurgs
CurAvgPer formance | Current average performance

PrevAvgPer formance | Average performance in the last taken decision
ActiveW orkers Number of active threads

FakeDecrements Number of fake decrements of active Web Workers

Per formanceQueue is a queue that holds the most recent performance measurements using the
current configuration of Web Workers. That is, the current numbactive threads. The length of
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the queue is defined by thH&) Length_Limit parameter that specifies how many measurements are
required to calculate representative average performance. Whileele ¢ginot full, the algorithm

is not executed, but thBer formanceQueue is updated, using FIFO policy, to include the latest
performance measurement. Once the queue is dull; AvgPer formance is updated with the
performance mean, calculated from the measurements collected in the godubge algorithm

is executed.

Firstly, the algorithm compare€'urAvgPer formance with PrevAvgPer formance, the
average performance calculated at the time of the last taken decisionclirttemt mean is higher
than a given speedup threshold, thearameter, the algorithm activates one of the idle workers
by increasing thedctiveW orkers counter. The parent thread uses this variable to identify active
workers in order to distribute new workload.

On the contrary, ifCurAvgPer formance shows a slowdown of at leagt compared with
PrevAvgPer formance, the manager simulates to decrement the number of active workers. That
is, instead of disabling an active worker, to be again an idle thread, thethigaounts the number
of fake decrements with thEBake Decrements counter. The purpose of this variable is to prevent
the activation of additional workers as long BskeDecrements is greater than 0, as shown in
lines2— 6 in Figurel. In this case, the algorithm reduces the numbeF @fec Decrements instead
of increasingActiveWorkers counter.

The Operating System (OS) performs load balancing to distribute the CRi¢ asaong the
running applications, paying special attention when they collide in sharedvhee resources, the
logical cores. According to our experiments, if the number of active amrlactually decrements,
the OS reduces the CPU usage rate assigned to the web app, since then@@i®sdewer CPU
demanding of this application. As a result, the web app performance is mueh ldawever, with
the use of fake decrements we prevent that the OS reduces CPU astigmthe web application,
as well as we also prevent to overload the system with too many threads.

When the manager makes a decision, it also performs two actions, namelste ughek
PrevAvgPer formance, since it will be used for speedup and slowdown comparison in subseque
executions of the algorithm; and flush tiiRer formanceQueue, since the queue has to collect
performance measurements of the new configuration of Web Workemsi@se, new performance
mean would be deviated by the measurements obtained with an obsolete @titfigihe previous
number of active threads.

Algorithm: Dynamic Web Worker Pool Manager

Require: CurAvgPer formance < Avg(Per formanceQueue)
1. if CurAvgPer formance > (PrevAvgPer formance x «) then

2: if FakeDecrements == 0 then

3: ActiveWorker s++

4: else

5: FakeDecrements — —

6: end if

7: PrevAvgPer formance < CurAvgPer formance

8: Flush(Per formanceQueue)

9: elseif CurAvgPer formance < (PrevAvgPer formance x 3) then
10: FakeDecrements + +
11: PrevAvgPer formance < CurAvgPer formance
12: Flush(Per formanceQueue)
13: end if

Figure 1. Pseudocode of the Dynamic Management Algorithen\web Worker Pool
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4. EVALUATION FRAMEWORK

4.1. Platform

We use a personal computer with an IfteCore" i7-3960X processor at 3,3GHz consisted of 6
hyperthreaded cores, for a total of 12 logical cores, with 16GB DDRAMNd a Nvidig® GTX560
videocard. The machine has two partitions with Micro8ofindows" Server 2008 R2 and Ubuntu
14.04 LTS. All non—critical services and applications have been disdblgdevent as much as
possible any deviation in the measurements.

We use Process Explorer v15.214], by the use of Set Affinity, in Windows and the command
tasksein Ubuntu to configure the available logical cores from the point of view @ftkeb browsers
executed to mimic a particular CPU. The configured CPU consists of 8 thaéstdbuted along 4
hyperthreaded cores. On the one hand, the selected logical coresxegclyte the web browsers,
whereas the non-selected logical cores execute critical servicepplchtions. Thus, we reduce
even more the deviation in the measurements. On the other hand, 8 logicalindtes form of 4
hyperthreaded cores, can mimic the behavior of a multithreaded protkas representative of
the currently latest generation of InfeCore" i7 family processors.

We employ updated releases of the three most used web browigrsGoogle Chrome
v42.0.2311.90m, Mozilla Firefox v37.0.2, and Microsoft Internet Explodel.0.9600.16476, from
now on Chrome, Firefox, and IE, respectively.

4.2. Benchmarks

There are no standard JavaScript benchmarks comprising Web Wo8evreral well known web
apps and web browsers portals provide parallel JavaScript demosDdikeo Studio Mozilla
Developer Network. Most of the demos are implemented with dedicated vgorkeifact, our
analysis is independent of whether workers are dedicated or shatéids focused on the execution
model of web apps with multiple workers (see SectipnWe have run several web apps that have
no human interaction requirements. This paper delves into the analysis ohtecstudies. Even
though particular performance numbers of other web apps may diffdrgties shown in this paper
are the same:

e Multiple asynchronous workers: Hash Bruteforcer16], HashApp from now on, is a web
app that computes MD5 hashes. We use the default configuration andetata~rom a
given 128-bit MD5 encoded input, the application uses a brute forcekatiaget the plain
text. Thus, the workers perform continuous CPU intensive workloadmatslynchronization
barriers among threads. The main thread sends messages to everygranen Worker to
notify the next piece of work, while waits for receiving messages froomth&dditionally, it
is also responsible to measure performance and execute our proparyadecond.

e Multiplesynchronousworkers: The raytracer web ap@if], RayApp from now on, performs
highly CPU intensive mathematical calculations to simulate components of the, $&ene
ambient lights and shadows, to render every frame. We use the defafitjuzation, but
enlarging the default canvas size up to 300x300 pixels in order to genearesentative
number of workload to be executed on a CPU with 8 logical cores. Theedsesplit into
a number of slices that depends on the canvas size. Thus, in our expisrievery frame
rendering consists of 15 slices distributed along a configurable sizer&&vagpool. We have
done experiments with others canvas sizes, showing different perioenmumbers, but with
similar trends. Unlike HashApp, the main thread has more work to do, since lgdsira
charged of capturing and sketching the image on the canvas. That iawi$ thhe data of a
given image onto the bitmap to show a new frame, because Web Workert cgerfunctions
for the canvasq].

We properly modify the source code of both benchmarks to include oyopab described in
Section3. Since the original source code has static pool of Web Workers, coafidy parameter,
we change it to be dynamically managed by our proposed algorithm. For tthjsaseninclude
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additional data structures and configuration parameters. The algorithrbeem implemented to
be executed every second. In particular, we modify HashApp to implemerdlg¢forithm in the

method that updates the performance statiséig.prototypeupdateStatswhereas we develop
the algorithm in thecamera.onFinishedhethod, called after rendering a new frame in RayApp.

Even though the original benchmarks already have functions to meastdioerpance, we modify
the source code to use the most accurate mechanism for JavaScript tinueenmesasg. The WebAPI
Performance.now(eturns a DOM High Resolution TimeStamp accurate to microsecdigfisaind
it is available in current releases of major web browsers.

The benchmarks have been configured to spawn from 1 to 20 Web Wokke fix this limit
since it is the maximum number of workers that Firefox supports. Nevesthedeperiments with
more workers running on others browsers show no performance iepeEs.

The benchmarks provide a toggle button to start and finish execution. ¥ewakage results from
ten runs of every experiment running 30 seconds each, time enougictoseady performance.

5. EXPERIMENTAL RESULTS

This Section analyzes the results obtained following few steps. Firstly, @sptthe performance
scalability for assessed web browsers in Windows and Linux. The resillldetermine what is the
optimal number of Web Workers in every case. Then, we study the impéadiedfVeb Workers on
the performance of running workers. Finally, Secti@n3and5.4 evaluate our proposal when the
benchmarks run alone and with co—running applications, respectively.

5.1. Performance Scalability
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Figure 2. Performance Scalability of HashApp running on &@#th 8 logical cores

Due to the lack of reference measurements, we present the perforstiability of HashApp
and RayApp in Figure and Figure3, respectively, for Chrome, Firefox, and Internet Explorer.
The Y-axes indicate performance metrics, in terms of completed work peofutiihe, and the
horizontal axes show the number of running workers. Finally, lefttshadepict results in Windows,
whereas the right graphs denote measurements using Ubuntu.

In spite of the diversity of absolute performance measurements, the emfitsn that scalability
trends along with the number of Web Workers are significantly differentnanboowsers and OSes.
This difference is highly evident for HashApp in Windows, Fig@(a), and in Linux, Figure(b).
Whereas in Ubuntu, Firefox presents important performance degradagiog large number of
workers, there are no negative effects in Windows for any web l@ows

Besides, Chrome and Firefox, in Windows, show an almost linear perfa@improvement up to
3-4 workers, but then it reaches a stable point. The main reason belsittiavior is that running
more threads increase collision on shared hardware resourcess,Toaining more threads do not
provide significant performance improvements.
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Figure 3. Performance Scalability of RayApp running on a G#th 8 logical cores

The benchmark with synchronous workers, FigBirehows slight performance degradation using
large number of threads. In fact, if the number of threads is larger thamalp there are two
drawbacks. Firstly, every worker execute less number of work, shiceaérame. In a scenario where
there are more threads than pieces of work, only a subset of the thraazle/ork to be done. Thus,
no further performance scaling is obtained by increasing the numbereaidsibeyond the optimal.
Secondly, the contention on shared hardware resources increasesttie processing, since there
are more threads that collide. Therefore, there is a point where pefme is even downgraded.

Finally, the results also show that IE presents reduced performandabiiba in both
benchmarks. In fact, it is lower than linear in the best case.

These results lead to three main insights: 1) browsers show differefarpance scalability
trends; 2) the behavior of synchronous versus asynchronokegatirectly impact on performance
scalability; and 3) even if the CPU has a large number of logical cores, ahtis¢ runs reach the
highest performance using less number of workers than available lagoas, that can also be
different for every web browser. As a result, it is not straightfoMarfix a single generic number
of Web Workers that involves the optimal tradeoff between number of ever&nd performance.

5.2. Idle Workers Impact

Thread pool management, especially on network servers, is sensitive tog¢thead of managing
large idle thread poold3, 12]. As our proposal requires a pool of Web Workers that are dyndiyica
enabled, we need to previously analyze the impact of idle workers oredhtigads. In fact, when
a Web Worker is created, it is idle. Since JavaScript is an event—driegrgmming model, the
thread waits until it receives an event. As soon as this event happeti® teception of a message
from the parent thread, the Web Worker is activated and starts pnogess
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Figure 4. Impact of idle workers on performance of procegsinrkers in Windows
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Figure 5. Impact of idle workers on performance of procegsinrkers in Linux

Figures4 and Figures depict the performance for both benchmarks and web browsers giimin
Windows and Linux, respectively. Left Y—axis, SPS metric, is followedHaghApp, while RayApp
uses the right Y=axis, FPS metric. Both web apps are configured to cemigrigl” worker threads,
where N stands for the number of active workers, while M denotes the ewuaihdle workers.
Both number of Web Workers are fixed at the beginning of the executiackBars represent the
executions with 8 and 1 active threads, but with no idle workers left aind Figlures, respectively.
Grey bars denote measurements using the configuration with the same ndrabéveoworkers,
but with 12 and 19 idle workers, respectively. Both setups have a maxirh@thworkers, because
it is the upper limit that Firefox has. Chrome and Internet Explorer haweatidknown upper limits
on the number of worker threads handling.

Figure 4(a) and Figures(a) show results using 8 logical cores. Thus, 8 worker threads may
collide in shared hardware resources even there are no idle workergerformance degradation
is negligible, from 0.45% to 0.06% for HashApp, and from 0.42% to 0.09%RByApp. That is,
even if the JavaScript virtual machine needs to manage the idle workedshieaas almost no
impact on the performance.

In Figure4(b) and Figures(b) we totally stress a single hyperthreaded core, two logical cores.
In this case, the Ul thread, the active Web Worker, and 19 idle workerdsrare bound to the
same core. That is, it is more likely that the management of a larger numbde afiddkers can
disturb to either the active worker or the Ul thread. Even though this is sexgmrenario, the impact
of managing 19 idle workers ranges from 1.36% to 0.71% and from 2.81%2#8@®performance
degradation running HashApp and RayApp, respectively.

These results demonstrate that developers can create a large podi Woklers when the web
app is launched, with negligible impact on the performance, and then dyryrdiecside how many
of them are suitable to do efficient work to get the optimal performance.

5.3. Automatic Web Worker Scaling

Figure6 presents the performance scalability of the benchmarks properly modifiaditide our
proposal. The Y-axes denote performance, whereas the horizaetarepresent the timeline in
seconds. Every shape in the lines is a performance measurement pugibto flormanceQueue.
Dashed circles indicate the pool manager decides an additional WebMiaske be enabled, since
there is an average performance higher than the configured speeésipatid,c. = 1.10. Numbers
close to the circles mean the new number of running workers. Finally, théyspesiformance as
well as the final number of running workers of these charts have torbpa@d to the performance
scalability graphs in Figur2 and Figure3.

It is important to remark that both benchmarks run a long execution. Tdretethere can be
differences among performance measurements taken at differentting®anthe one hand, the
benchmark processes diverse pieces of work at every instant with giffgrent characteristics. On
the other hand, the more threads running the more likelihood to presentrparfce variations since
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collision on shared hardware resources may differ. Besides, theatgevhthe JavaScript virtual
machine, like runtime optimizations and garbage collector, can eventually alteetftemance at
different moments.

The algorithm is able to find the optimal number of workers for both benchswelnken running on
IE. The manager is also able to find a close to optimal configuration execuy®ydp in Firefox for
both OSes. However, for the asynchronous benchmark the algoritdesdbe number of running
workers up to almost optimal configuration. Thus, performance diféerevith respect to the actual
optimal setup is under 4% in the worse case. The reason why the algorithmohacaled the
number of threads is that the performance improvements are lowentidnen the configuration
reaches a stable performance scaling point. That is, increasing the nofmia@kers slightly scale
or just sustain the performance.

1200 1200
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W Firefox
1000 { 4 1000 2.
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Figure 6. Performance scalability using the Dynamic WebRk&bPool Management

Chrome has similar results for both benchmarks. That is, the algorithm ibleotcaidentify the
need to increase the number of running workers when the web apptesdécand 4 workers for
HashApp and RayApp, respectively. Thereforey Would had a lower speedup factor, the algorithm
would detect the required performance speedup that leads to enaluditoreal \Web Worker. The
difference of average performance between our configuration andptimal setup on Chrome is
less than 7.36% and 2.23% for HashApp and RayApp, respectively.

5.4. Execution with Co—Running Applications

This Section presents the results of running the web app in conjunction witturoaing
applications. Figur& and Figures present the results of running the benchmarks in Windows and
Linux, respectively. Vertical axes indicate performance, whereaX-tages denote the timeline in
seconds.

The co-running applications are two different web browsers execthimgriginal HashApp,
without our proposal, running 4 Web Workers. We select these caingrapplications as case
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Figure 7. Web app performance with co—running applicatiowindows on Chrome (Figures (a) and (b)),
Firefox (Figures (c) and (d)), and Internet Explorer (Figite) and (f))

study of representative workload, since they are multithreaded CPU ivgeapplications. That is,
the execution of both of them consume nearly 100% of the total of 8 logicak@vailable in the
CPU. We use the two web browsers that are not studied for the particyleriment. For example,
if we analyze the performance on Chrome, the co—running applicatioriSrafex and IE, both of
them running HashApp.

The timeline is divided into four slots labeled with “A’, “B”, “C”, and “D”. Evg slot takes 30
seconds and identifies a particular status of the system workload. Irditeddi; “A”, there is a single
co—running application and thus only half of the resource availability is #tieaily available.
When slot “B” starts, the second co—running application initiates execttr@refore, the OS has to
manage three multithreaded CPU intensive applications that demand moreterdsources than
available in the system. At the beginning of slot “C” the second co—runmiptication finishes and
there is similar resource availability than the slot “A’. Finally, the remaining @oring application
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Figure 8. Web app performance with co-running applicatiohsnux on Chrome (Figures (a) and (b)), and
Firefox (Figures (c) and (d))

stops when the slot “D” starts. Therefore, all hardware resouneea\ailable to the benchmark,
since the web app is running alone in the last slot.

The Figure also shows three different configurations for each Ieaudty namely: Naive Setup,
spawns as many workers as logical cores comprised in the CPU; Optimal 8ats the number
of workers that provide the highest performance from the analysiedbpnance scalability in
Section5.1; and Web Worker Pool Manager, includes our proposal. When thenpanmager decides
to increment the number of running workers, a circle denotes the decisioasimell as a number
indicating the new number of running threads.

On the one hand, we can see that due to lower resource availability, slotcavtbnning
applications, specially the slot “B”, present significantly lower web apfiop@mance. Therefore,
in those cases, running large number of workers can overload tharsygstd downgrade the
performance of all applications. The OS manages all processes talgrepeedule them to use
the logical cores. Thus, the more threads that intensively demand CPUwbe GPU usage for
every thread and the lower performance of every application, sinceysitens is at performance
degradation phase due to overloading. Nevertheless, we can olbisatwibe impact of two co—
running applications, slot “B”, is different on every browser.

We can see the three configurations provide similar performance, bug dsiarse number
of worker threads. This difference is accentuated on HashApp c¢hagsres7(a), (c), and (d),
that remark difference among the three web browsers on performacepiimal Web Worker
configuration. The Optimal Setup is different on every browser, nan&lg, and 4 threads on
Chrome, Firefox, and IE, respectively. Nevertheless, our progioss out an number of running
Web Workers close to the optimal. In all experiments that there are co—guapplications, except
HashApp on IE, Figuré&(e), that runs an additional worker than the optimal configuration, our
proposal enables the minimum number of workers, equal or even lowerttieaOptimal Setup,
but provides similar performance than the other configurations. Oupagipralleviates the system
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by reducing the contention on shared hardware resources, sineedtefess CPU intensively
demanding threads.

Although there are significant performance variations when co—rumpplications start or finish
the execution, our approach is able to detect whether it is advisable tasediee current number of
running threads. For example, from slot “B” to “C”, there is an importamnfgrmance improvement,
but the manager detects that it previously simulated to reduce the numbdivefyaarkers, with
the FakeDecrements counter. That is, the performance was lower than the configured shawdo
threshold,s = 0.85. Therefore, the manager only enables an additional Web WoHer actually
improves the performance with respect to the previous highest avesgigerpance.

With our default configuration of the parameters the algorithm providesl gesults on the
three web browsers. That is, JavaScript developers can implement bpighéy parallel web
apps, browser independent, without the hassle to do complex estimatiowsvétp the main
problems come from running on IE. The reason behind this is that therpenfce is slow and
with our default configuration, slight performance increments resulteéedpps higher than 1.10x.
Therefore, although the resulting number of Web Workers is between ilim& and the Naive
setups, the manager could be improved using lower valuesaoid 5. Nevertheless, deep analysis
of tuning the configuration parameters is out of the scope of this paper.

Figure 8 shows similar results for Linux. With the default configuration of the pararaete
manager properly detects performance improvement to increase the noinvideb Workers. The
only case that presents significantly lower performance than the optimiidjei@iion is running
HashApp on Firefoy8(c). Due to co—running applications the manager wrongly decides to s&rea
the number of workers more than the optimal number. Thus, the perfornmabeut 15% lower
than the optimal configuration. Nevertheless, it is higher than the Naivp.setu

6. RELATED WORK

Some authors propose fine grain parallelization of JavaScript codean&eet al. ] analyze the
potential speedup limit of parallelizing events and tasks, such as functmhkbaps. Martinsen
et al. [19] though propose Thread—Level-Speculation for browsers’ JayaSengines to take
advantage of multicore multithreaded CPUs. Other authors propose a teehoigparallelize
interactive JavaScript animations using Web Work&@$. [But there is no study of threads scaling.

None of these works are focused on either analyze the performaaleditity of workers based
web apps or related differences among major web browsers. Besidesdiag to our knowledge,
there is no proposal to dynamically manage a pool of Web Workers to sesfi@ient computing.

Even if this is the first proposal that manages a pool of Web WorkerddeaScript web apps
running on personal computers, thread pool systems have been comexophgd in other areas,
like grid computing and server applications.

Grid computing present, among others, problems of scheduling and allocasimigrces to jobs.
In this sense, our proposal present some similarities with previous cesgdhis area. The resource
allocation is a process of task scheduling to available resources, cdddagatransferring, and
monitoring of available resources and application performance. Thetargedist of Grid resource
allocation mechanismg()]. Although our proposal also presents dynamic resource allocati@abas
on an algorithm to optimize performance and aware of variations on avaikdences, we focus
our work on a significantly different scenario. Grid systems deal withidiggd computers with
different number of resources and have to take into account requiteragnificantly different
to ours, such as communication overhead. However, our manager onlgorsoperformance
variations in order to activate a new thread.

In the area of server applications, like Apache and Microsoft IS, tal.4d12] propose dynamic
thread pool management for server applications. Although their algoritistigigly similar to our
approach, the management is substantially different. They are focusszheer environments and
thus performance is not disturbed by unknown applications that sudd&tyrunning. Besides,
studies that directly deal with threads, instead of Web Workers, take ictwuat the overhead
of managing large pools of threads. Ling et dl3][characterize costs related to the thread pool
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management in order to analytically estimate the optimal thread pool size forrketervers to
respond larger number of simultaneous service requests. Howeveresuits show that, due to
the internals of the JavaScript virtual machines, the impact of many idle wirkeads on the
performance is negligible.

Unlike all these works, our goal is focused on providing a simple andrgeapproach that
overcomes the difficulties of JavaScript developers to implement highlyiglareeb applications
making an efficient thread scaling in most circumstances as well as indagesfdhe browser.

7. CONCLUSIONS

Developers of highly parallel JavaScript web applications have manycudifés to develop
applications with a generic configuration that spawns the minimum number afithtkat provide
the highest performance. The lack of information of the underlying gsmrearchitecture, such as
how many cores are available and how resources are shared, as welb &rowser internals, such
as how the JavaScript virtual machine optimizes codes and scales therzerée along with Web
Workers, lead to very difficult estimation of the optimal number of workehss problem becomes
more accentuated taking into account that most of the web app usergeerdioer background
applications that constantly change the hardware resource availabilitg, hs very likely that
the number of Web Workers estimated could be non-optimal, since it may ayeHeasystem,
degrading the performance of all applications, or underutilize the availebteirces.

In this paper we propose to modify highly parallel JavaScript web appsctade a pool of
idle Web Workers and a simple algorithm. The goal of our approach is tontigadly manage the
number of running threads to the actual available resources and toptieeelifficulties to estimate
a fixed optimal number of running threads. To do this, we have also deratatsthat parallel web
apps do not suffer significant performance degradation when theraany idle Web Workers. The
results confirm that our browser independent proposal enables simitaber of threads than the
optimal setup for any of the three major web browsers in the market. Evegliitbere are co—
running applications that start or finish execution during the lifetime of the apgh the behavior
of the manager is sustained.

Our evaluation concludes that with this proposal developers do nothadly reachable details
of every particular underlying platform to efficiently exploit the availablsotgces, since the
spawning degree is automatically determined by the dynamic manager.
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