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E-03080, Alicante, Spain
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SUMMARY

Realistic applications of numerical modeling of acoustic wave dynamics usually demand high

performance computing because of the large size of study domains and demanding accuracy

requirements on simulation results. Forward modeling of seismic motion on a given subsurface

geological structure is by itself a good example of such applications, and when used as a component of

seismic inversion tools or as a guide for the design of seismic surveys, its computational cost increases

enormously. In the case of finite difference methods (or any other volumen-discretization scheme),

memory and computing demands rise with grid refinement which may be neccesary to reduce errors

on numerical wave patterns and better capture target physical devices. In this work, we present

several implementations of a mimetic finite difference method for the simulation of acoustic wave

propagation on highly dense staggered grids. These implementations evolve as different optimization

strategies are employed starting from appropriate setting of compilation flags, code vectorization by

using SSE and AVX instructions, CPU parallelization by exploiting the OpenMP framework, to the

final code parallelization on GPU platforms. We present and discuss the increasing processing speed-up

of this mimetic scheme achieved by the gradual implementation and testing of all these performance

optimizations. In terms of simulation times, the performance of our GPU parallel implementations is

consistently better than the best CPU version.
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2 B. OTERO ET AL.

1. INTRODUCTION

Modeling of compressional P wave propagation in seismic Earth models is probably the

application of acoustic motion with the highest demand of high performance computing.

Explicit finite differences (FD) are still the most widely used discretization technique in

this field because of its simple formulation and implementation even on complex geological

media (see [12] for a review of multiple formulations). FD acoustic solvers are also

amenable for domain decomposition and code parallelization, and particularly, GPU-CUDA

implementations have recently increased mainly on

3-D domains (for instance, [1, 16, 17]). However, these GPU-based methods are still being

developed on 2-D domains given their potential use on computationally intensive applications

for seismic imaging [2], inversion of source location [11], parametric studies on water immersed

bodies [18], and also represent useful prototypes in anticipation to their generalization to 3-D

as well [30].

Modern seismic FD methods perform the spatial discretization of the acoustic wave model

on staggered grids (SG). On these grids, each wave field is computed at a separate nodal

grid displaced by half of the grid spacing (in one or more directions) from the remaining

individual grids. The advantage of such geometrical distribution of discrete values is that each

scalar field is located at the center of those it depends upon, and numerical differentiation

gains accuracy by halving the grid step [9, 19, 31]. Grid staggering has been also sucessfully

applied for FD simulations of wave propagation in the case of more general elastic or

viscoelastic media [10, 13, 32]. Regardless the material rheology, accuracy and computational

efficiency of FD modeling of seismic motion depend on the implementation of free surfaces

(FS) and absorbing boundary conditions (ABC). The former techniques are used to model

the Earth-Atmosphere interface, and low dispersive and efficient modeling of surface waves

have been achieved by using lateral FD discretization of null pressure (or traction free)

boundary conditions. On planar FS, this type of implementation was employed by Kristek and

collaborators by means of Taylor-based FD stencils [14], and then by Rojas and co-workers in

the case of second- and fourth-order accurate mimetic formulas [22, 25]. The concept of mimetic

FD discretization is breifly introduced in the next paragraph, and applied to the acoustic

model in the following section. On the other hand, ABC are differential operators designed to

avoid artificial wave reflections at the boundaries of a finite simulation domain. Clayton and

Enquist [3] propose FD implementations of ABC based on paraxial approximations of the two-

way wave equation that only model the outward-moving energy impinging domain boundaries.

Later, Reynolds [20] constructs a family of splitting operators for acoustic and elastic media.

The application of Reynolds’ ABC proceed by compositions of first order differential operators

that progressively increase their effectiveness and implementation complexity. Recently, Solano

and co-authors in [27] implement a second-order FD method for the acoustic wave equation on

1-D and 2-D rectangular SG, where lateral mimetic discretization of FS and ABC result crucial

for the global accuracy. This scheme incorporates the first order Reynolds’ ABC operators that

show enough efficiency on standard seismic tests.

The extense work of Samarsky [26] on constructing conservative FD has evolved into two

modern methods on SG. The first one is based on two discrete support operators, a Divergence
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A PERFORMANCE ANALYSIS OF A MIMETIC FINITE DIFFERENCE SCHEME 3

D and a Gradient G, both providing second-order accuracy at interior grid points, but reduced

to first order at domain boundaries. This method has been extensively applied to diffusion,

electromagnetic, and viscoelastic problems even on non uniform meshes (see [15] for a general

review, and also [10] for the latter application). The second family of conservative D and G,

exhibits second-, fourth-, and

sixth-order accuracy along all grid locations including boundaries and were proposed by

Castillo and collaborators in [5] and later reformulated in [4]. For a rigorous numerical

treatment of Neumann and Robin boundary conditions, Castillo and Yasuda [7] introduce an

operator B to approximate boundary fluxes of a given vector field. These new operators D, G,

and B, are referred as mimetic because in combination to the numerical solution to a boundary

value problem, satisfy a particular discrete version of Gauss’ Divergence theorem. Applications

of mimetic D and G to 2-D wave propagation reduce to works on cartesian SG by Rojas and co-

authors focused on modeling shear ruptures [23, 24], and surface Rayleigh waves [25]. Recently,

De La Puente in [8] employs mimetic D and G on 3-D curvilinear structured meshes to study

seismic motion acounting for irregular topographic effects. To our knowledge, the full set of

mimetic D, G, and B has been only applied to wave propagation problems by Solano and

collaborators in [27] and [28].

This paper focuses on the progressive optimization and parallelization of the 1-D and 2-D

mimetic Solano’s methods on available multi-core (CPU) and many-core (GPU) architectures.

The parallel CPU code version takes advantage of the Streaming SIMD Extensions (SSE) found

in modern microprocessors to exploit built-in capabilities. Then, this code incorporates parallel

strategies to use all available cores in a given CPU by means of OpenMP directives. This fine-

tuned CPU version was later compared to a massively parallelized CUDA code that also

implements the same mimetic methods on a GPU platform. Thus, we carry out a comparative

performance analysis of both parallel versions and report speed up of global simulation times.

These implementations correspond to the first parallel versions of Castillo type mimetic FD

schemes for acoustic wave propagation.

The remainder of this paper is organized in the following way: Section 2 gives a brief review

of the mimetic discretization framework and presents Solano’s algorithms for 1-D and 2-D

acoustic wave propagation, that we use in our parallel implementations. In section 3, we

describe available architecture and chosen application sceneries, in addition to our CPU and

GPU parallel code versions. Section 4 compares the speed up of the execution time spent by

both parallel implementations. Finally, Section 5 summarizes our conclusions and points out

new directions for future works.

2. MIMETIC METHODS FOR SOLVING THE ACOUSTIC WAVE EQUATION

This section presents an overview of the mimetic acoustic solvers proposed by Solano

in [27] for 1-D and 2-D spatial domains. We make a special emphasys on the different FD

stencils that conform both numerical schemes giving their crucial implications on the parallel

implementations discussed in this paper. In [27], acoustic wave propagation is modeled by the

second order differential equation
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4 B. OTERO ET AL.

∂2u

∂t2
= c2∇ · (∇u) + f, (1)

where c is the wave speed, f is a source term, and the physical interpretation of the

unknown scalar function u depends on the spatial dimension. Symbols ∇· and ∇ represent

the divergence and gradient operators, respectively, widely used in the field of Mathematical

Physics. Particular solutions of (1) require appropriate initial and boundary conditions. In

seismic applications, the former usually correspond to the homogeneous case u = ∂u
∂t = 0,

while the latter result a combination of FS and ABC conditions. In the 1-D case, Solano in [27]

considers u as the particle displacement, and implements the following boundary conditions

on the interval x ∈ [0, 1]

∂u

∂x
(0, t) = f1(t), (2)[

∂u

∂t
+ c

∂u

∂x

]
(1, t) = f2(t). (3)

In the case that f1(t) = f2(t) = 0, above equations represent a FS condition at x = 0, and the

first order Reynolds’ ABC operator at x = 1. For 2-D domains, formulation in [27] identifies u

with the acoustic pressure experienced by particles on the plate (x, y) ∈ [0, 1]× [0, 1]. Boundary

conditions at edges x = 0, 1, and y = 0, correspond to the extension of Reynolds’s ABC to 2-D

rectangular domains, and a FS condition is imposed at the top boundary y = 1. That is,(
∂u

∂t
− c

∂u

∂x

)
(0, y, t) = 0,

(
∂u

∂t
+ c

∂u

∂x

)
(1, y, t) = 0 (4)

(
∂u

∂t
− c

∂u

∂z

)
(x, 0, t) = 0, u(x, 1, t) = 0. (5)

2.1. Mimetic discretization

Generally speaking, the mimetic discretization of boundary value problems stated above

proceeds on a SG by substituting the continuous differential operators gradient ∇, divergence

∇·, and the normal derivative ( ∂
∂~n ) at boundaries by the discrete FD approximations G,D,

and BG, proposed in [4] and [7]. The operator ( ∂
∂~n ), also known as flux operator in

diffusion applications, corresponds to any of the spatial derivates appearing on boundary

conditions (2), (3), (4), and (5). In Appendix, we briefly present the matrix representation

of 1-D second-order accurate G,D, and B operators that produce the whole set of FD stencils

of Solano’s mimetic acoustic schemes, in one and two dimensions. For the sake of completeness,

we also transcribe these mimetic stencils on this Appendix, but refer the interested reader to

original references [4] and [7] for construction details and properties of G,D, and B, as

well as to Solano’s work in [27] for the complete formulation and convergence analysis of

acoustic solvers subject of this paper. An important property of these schemes is the use of

explicit numerical integrations for time derivates present in the acoustic equation and boundary
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A PERFORMANCE ANALYSIS OF A MIMETIC FINITE DIFFERENCE SCHEME 5

conditions, and therefore computer implementations do not require linear solvers or costly

matrix inversion strategies. In this section, we limit ourselves to illustrate the grid distribution

of unknown u values on the 1-D and 2-D mimetic grids, each of which must be computed by

an individual FD stencil from approximations for previous times. This whole set of different

stencils is also shown in a programmer friendly fashion on grid illustrations.

Figure 1 depicts the 1-D mimetic grid on the interval [0, 1] with cells [xi, xi+1] and nodes

xi = ih, i = 0, . . . , n for a constant step h = 1
n . This grid becomes staggered after including the

cell centers xi+ 1
2

= xi+xi+1

2 . Discrete values of target function u are considered at cell centers

ui+ 1
2
, in addition to both boundary values u0 and un, all of which are collected in the computer

vector ~u. A standard FD solution of (1) on uniform grids would require the approximation of

the laplacian d2u
dx2 at some interior points of this (or any other) grid. In the case of a mimetic

scheme, numerical differentiation of u is computed by using the gradient operator G~u, that

renders estimates to du
dx at each grid node. Next, this vector is transformed by the divergence

operator by computing D(G~u). Components of last vector are approximations to d2u
dx2 at all cell

centers, and can be used by a standard FD method to update u values at those locations upon

a numerical integration of (1). However, the mimetic discretization of the Laplacian operator

at cell centers is actually given by the interior components of vector (DG + BG)~u. Thus, non

zero interior rows of B (see Appendix) add the mimetic contribution to the standard Laplacian

approximation GD at the two nearest cell centers to each grid boundary. This discretization

process gives rise to three different Laplacian approximations at centers x 1
2
, x 3

2
, and xi+ 1

2
for

i = 2, . . . , n− 3, and depicted with distinct symbols by figure 1. Same symbols are used at right

centers xn− 1
2

and xn− 3
2

as a way to remark that computing FD stencils at those locations are

minor variations of their symmetrical counterparts on the left side. The remaining first and

last rows of matrix operator DG + BG represent the particular boundary discretizations of

the spatial terms on conditions (2) and (3), and then are shown by a new symbol in this figure.

Figure 1. 1-D grid distribution of u values and mimetic FD stencils

The mimetic discretization grid for the acoustic model (1), (4) and (5), in the rectangular

domain [0, 1]x[0, 1] is shown in figure 2. Coarsely speaking, this 2-D grid can be thought of as

the Cartesian product of two one-dimensional grids, each one defined along a particular axis

x or y, and the final exclusion of corners (0, 0), (0, 1), (1, 0), and (1, 1). Classical mimetic FD

discretization on multidimensional rectangular domains excludes corner points (see e.g., [6]),

and Solano’s acoustic method falls into this family. In figure 2 one can see that the target

discrete values of u are defined at the center of all rectangular cells, and also at the middle

of each boundary cell edge. Similar to the grid geometry, the 2-D FD stencils of the mimetic

scheme result from a cross combination of 1-D stencils that creates a non-standard set of nine

Concurrency Computat.: Pract. Exper. (2015)

Preprint



6 B. OTERO ET AL.

2-D stencils at each 3x3 grid corner. These grid corners along with the different mimetic stencils

within are illustrated in figure 2. Similar to the 1-D case, there are minor sign variations among

these nine-stencil sets belonging to different corners, but we only display on this figure the

most different computing stencils. Once again, we repeat that Appendix lists all explicit FD

computing equations in a amenable coding way for both 1-D and 2-D mimetic schemes.

Figure 2. 2-D rectangular grid distribution of u values and mimetic FD stencils

2.2. New acoustic mimetic algorithms

Figure 3 shows the FD mimetic algorithms for solving the acoustic wave equation on 1-D

and 2-D rectangular spatial grids. In this diagram, target u wavefield values at all grid nodes

are collectively stored in separate computer vectors Uk+1, Uk and Uk−1, according to the

time level of computation which is denoted by the superscript iteration index. The process

starts with the allocation of initial conditions on these vectors. Next, time updating of discrete

wavefields is carried out by a k-indexed loop until a final simulation time is achieved on ksteps

iterations. In each loop iteration, the second-order FD computing stencils applied at each non-

boundary grid point involves current-time values at same location and at the two adjacent in

each direction, all of these are placed on Uk, in addition to the previous-time value at same grid

site and stored in Uk−1. For this reason, vectors Uk and Uk−1 must be also updated inside this

time loop, in order to make available appropriate values for next iterations. Calculations at

boundary nodes are slightly different. On those edges where ABC are applied, the FD stencils

Concurrency Computat.: Pract. Exper. (2015)
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A PERFORMANCE ANALYSIS OF A MIMETIC FINITE DIFFERENCE SCHEME 7

do not involve previous-time values in Uk−1, but corresponding components on this computer

vector are also updated in the time loop to keep time consistency. Finally, in the case of the

2-D numerical scheme, vector components holding discrete values at boundary y = 1 are never

updated because of the trivial boundary condition u = 0 imposed on it.

Figure 3. Flowchart of mimetic methods for solving the acoustic wave equation in a: (a) One-
dimensional spatial domain; (b) Two-dimensional rectangular domain

3. COMPUTATIONAL OPTIMIZATION

3.1. Hardware

Here, we briefly describe the computer architecture used to implement and speed up our

mimetic acoustic methods. This architecture is an Intel Xeon E5-2630 CPU with 6 cores

working at a 2.3 GHz clock speed, with 15 MB of cache memory, and access to two GTX 670

GPU cards. On the architecture, the operating system is the 7.1 version of CentOS.

3.2. CPU implementations

3.2.1. A sequential C code. Original codes of the mimetic acoustic schemes were developed in

MATLAB without using of any special built-in function. To better use the capabalities of our

CPU architecture and apply some code optimization techniques, we migrate original mimetic

codes to C language, and use the 4.8.3 version of the gcc compiler in this process. The first

optimization step was using different compilation flags, among which the −O3 flag significantly

Concurrency Computat.: Pract. Exper. (2015)
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8 B. OTERO ET AL.

improved our C code and achieved the best performance in our numerical tests [21, 29].

This −O3 flag automatically introduces the following software optimization techniques: loop

unrolling, function inlining and automatic vectorization.

3.2.2. A vectorized code. To fully exploit the benefits of CPU vectorization, we implement

a new code with both SSE and AVX intrinsic functions, explicitly coded in our schemes’

programs. An appropriate use of these intrinsic functions require a specific memory alignment

(32 bits) and data independence in the updating process of floating-point vector Uk+1

components. This is naturally offered by the 1-D scheme implementation, but in the 2-D

case the memory allocation of grid values uses a single aligned vector following the ordering

shown in figure 4. Let us explain this updating by taking an interior grid location (i, j) denoted

with a triangle mark on this figure. The computation of Uk+1
i,j requires several aligned loads of

nearby values in space and time, and available in the vector registers Uk−1
i,j , Uk

i,j , Uk
i−1,j , Uk

i+1,j ,

Uk
i,j−1, Uk

i,j+1. For the specific case of AVX functions, eight float values can be loaded into a

vector register (the register length is 256 bits). Once all values required for Uk+1
i,j update have

been loaded, the stencil arithmetic operations is performed by using these vector registers.

Some of intrinsic functions involved in this process are mm256 mul ps( m256 a, m256 b),

mm256 add ps( m256 a, m256 b) and mm256 sub ps(m256 a, m256 b). In the SSE case,

the number of float values stored by a register reduces from eight to four, and also slightly

change the names of some intrinsic functions names with respect to AVX. Figure 5 illustrates

Uk+1
i,j values whose computation have been vectorized according to detailed capabilities. It is

worthy to note that there is an alternative set of vector instructions for larger registers known

as AVX2 (the register length is 512 bits). However, this instruction set has been omitted in

this work due to hardware limitations. It is expected that results derived from current analysis

could be easily extrapolated to the AVX2 instruction set.

3.2.3. Vectorized and parallelized implementation. The next step after explicit SSE/AVX

vectorization is loop parallelization by using OpenMP. OpenMP allows us to take full advantage

of Intel multi-core CPU architectures. In our OpenMP loop parallelization, we have taken into

account two intrinsic aspects of our numerical discretization: (i) data dependencies, and (ii)

each loop collects the common set of updating instructions applied on a particular grid zone

(boundary, near boundary, or interior nodes). We keep using SSE/AVX vectorization, so we

actually update 4/8 grid nodes in each loop iteration, which are processed in parallel along

the available microprocessor cores. As an example, we below present a generic parallel loop

incluiding these ideas

1 #pragma omp parallel for schedule(auto) \

2 private(xmm0,xmm1,xmm2,xmm3)

3 for (i=3;i<(n-1);i=i+8){ //AVX vectorized loop

4 ...

5 }

Concurrency Computat.: Pract. Exper. (2015)
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A PERFORMANCE ANALYSIS OF A MIMETIC FINITE DIFFERENCE SCHEME 9

Figure 4. Allocation ordering of 2-D grid values into single aligned vectors Uk+1, Uk and Uk−1 (given
by the arrow)

Figure 5. Array allocation of 2-D grid values subject to vectorized optimization

In above code, line 1 sets a parallel loop with automatic load allocation for each thread, and

line 2 defines the thread-local variables. Scheduling of OpenMP threads is established by the

flag ’auto’, which invokes as many threads as the number of available CPU cores. We observed

in our experiments that this option provides the best performance for a wide range of scenarios.

Increasing the number of threads over the number of cores usually entails an overhead due

to communication conflicts, whereas using less threads than available cores might lead to an

underuse of a multi-core platform.

3.3. GPU implementations

3.3.1. One-GPU: A parallel CUDA code on a 1 GPU card. Once CPU parallelization has been

appropriately exploited, we address a new GPU implementation of our numerical schemes.

On the architecture, the programming language is CUDA C based on the nvcc compiler.

We then migrate our original sequential C code to the CUDA programming paradigm, and

the new algorithm is shown in figure 6. To exploit the potential of a CUDA kernel, it is

Concurrency Computat.: Pract. Exper. (2015)

Preprint



10 B. OTERO ET AL.

Figure 6. General flowchart of a One-GPU CUDA code for mimetic acoustic wave simulations

necessary to split the whole computation process into several kernels, each one carrying out

the update of a particular group of locally closed nodes on the spatial grid, and by means of a

serialized instruction set with enough computational load [21]. Below, we also present a code

with example lines to write a CUDA kernel that updates Uk+1 values at interior grid nodes

(shown with triangle marks in figure 2).

1 __global__ void kernel_red_central_values(float *u_new, float *u_old, float *u, float

dt, float h, int n, int k){

2 int id = (blockIdx.x)*blockDim.x + threadIdx.x;

3 if( id < (n*n - 8*n +16 )){ //Barrier

4 int pos = (3*n +7) + id + 6*roundf(id/(n-4)); // Position in the grid

5 u_new[pos] = 2*u[pos] - u_old[pos] + (dt*(c/h)*dt*(c/h))*( u[pos-1] + u[pos+1] -

4*u[pos] + u[pos+n+2] + u[pos-(n+2)]);}

6 }

Above kernel begins by assigning an identifier to each thread launched in line 2. There is a

barrier condition in line 3 to prevent the access of some extra threads (this programming device

is commonly used when the number of blocks per grid is dynamically adjusted in execution

time). Once this barrier has been overcome, an array position corresponding to an interior

mimetic grid node is assigned to each thread in line 4, and then a new value of Uk+1 is

computed in line 5 and stored on that array location. Additionally, figure 6 shows how input

data (initial conditions and other parameters) has been uploaded to GPU memory before

Concurrency Computat.: Pract. Exper. (2015)
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A PERFORMANCE ANALYSIS OF A MIMETIC FINITE DIFFERENCE SCHEME 11

invoking the kernels. This action improves the overall performance by reducing overhead due

to continuous CPU - GPU transfers. Next step implements the time iteration where updating

kernels, previously declared and appropriately sized, are launched in each cycle. Lastly, the

vector with final values after simulation time is spent are transfered to host (CPU) memory.

3.3.2. Two-GPU: A CUDA parallel code on 2 GPU cards. Our main idea when programming

on this system is equally splitting the total amount of grid nodes into both GPUs. In this way,

each GPU works on updating half of the solution values in parallel to the other one.

Due to the spatial dependencies of FD stencil computation and considering that there

is no a direct visibility between memories of both GPUs, a synchronization step must be

implemented at each time iteration. This synchronization can be carried out by a Peer-to-Peer

communication between both GPUs, which avoids involving the CPU in the process and a

potential bottleneck. Figure 7 shows this Two-GPU scheme. It is obvious, that by halving

the whole computation load an important reduction of the computational load is experienced

by each GPU, in comparison to the One-GPU CUDA implementation. This reduction load

leads naturally a decay of each GPU utilization and computational cost, as we discuss in next

section.

4. RESULTS

Before presenting the performance results achieved by our CPU and GPU codes, we would

like to point out that in the CPU case, performance improvements are cumulative and only

the final explicitly vectorized and parallel implementation is considered for comparison against

GPU results.

As an interesting reference for numerical developer colleagues, we first report on

improvements with respect to original non-optimized MATLAB versions of our acoustic solvers.

In the cases of finest grids, the new vectorized and parallel CPU version achieves time

reductions up to 730 times (grid size n = 60000) and 1504 times (grid size nxn for n = 5000)

for 1-D and 2-D spatial domains, respectively. On the other hand, new GPU implementations

are even faster than the CPU ones since new execution times correspond to fractions 1
6237

and 1
17597 of their MATLAB counterparts under same maximum grid resolutions, in 1-D and

2-D spatial domains, respectively. We observe that the vectorized serial codes based on SSE

or AVX statements are not competitive with respect to the C version optimized by the -O3

flag compiler. Among other software optimizations, the superiority of the former is mainly due

to the −O3 automatic vectorization. However, this C version is way much slower than both

parallel and vectorized (C+SSE+OpenMP and C+AVX+OpenMP) codes that yield speed up

about 12.52 and 12.12, respectively. These performance advantages are mostly attributed to

the OpenMP multi-threading, and results are shown in figure 8, using log scale, along with

speed up observed on vectorized SSE- or AVX-based simulations. Results on this figure are

relative to execution times spent by the C code. Concerning the amount of floating point

operations per second (FLOPS), we would like to comment about our measurements in the

finest mesh test with n = 60000. For this grid, the C code performs about 0.47 GFLOPS, while

Concurrency Computat.: Pract. Exper. (2015)

Preprint



12 B. OTERO ET AL.

Figure 7. General flowchart of a Two-GPU CUDA parallel code for mimetic acoustic wave simulations

the SSE+OpenMP and AVX+OpenMP parallel and vectorized C versions execute 5.86 and

5.67 GFLOPS, respectively. For the same mesh, our One-GPU CUDA implementation achieve

up to 50.04 GFLOPS, while the Two-GPU CUDA code performs nearly 44.96 GFLOPS.

The memory bandwidth reached by both GPU implementations is 5.6 GB/s with an average

throughput of 480 Kb. Additionally, the memory usage corresponds to 1.41 MB on the same

highly-resolved grid. All these performance metrics has been reported by the NVIDIA Visual

Profiler. In the particular case of our CUDA implementations, we have verified that the amount

of GFLOPS given by thus profiler agree with our theoretical estimates.

From these results, we next isolate execution times of all four 1-D parallel implementations:

the (C and C+SSE+OpenMP) CPU codes, and (One-GPU and Two-GPU) CUDA codes.

Relative to the C code, One-GPU results competitive after n = 400 and advantageous for

grids with 1600 cells and finer with a speed up that exceeds 10, and finally reaches a notorious
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Figure 8. Speed up log2 values of the C implementation versus the vectorized and parallel CPU codes
on a 1-D numerical test

improvement of 106.9 when n = 60000. Now, the relative speed up achieved by Two-GPU

CUDA code is about 1.42 on grids with n = 1000, and steadily increases to nearly 96.04 for

n = 60000. Figure 9 depicts these time ratios for all grid sizes considered in our tests, and also

compares the speed up in log scale of both CUDA codes using the best CPU implementation

C+SSE+OpenMP as reference. In this case, One-GPU reaches a modest improvement of 8.54

when n = 60000, while Two-GPU CUDA implementation starts being competitive for n = 6000

with a speed up of 1.55 than later improves to 7.67 for n = 60000.

Figure 9. Speed up log2 values of the GPU implementations versus the CPU (C and C+SSE+OpenMP)
codes on a 1-D numerical test

We additionally compare the execution times of both CUDA implementations on our 1-D

experiments, and time ratios of Two-GPU using One-GPU as reference are shown in log scale

in figure 10. Unfortunately, Two-GPU results do not improve One-GPU times, and actually

are quite similar. The computational utilization is a metric related to the efficiency of a CUDA

implementation, and measures the throughput achieved by a GPU platform when available

resources are occupied to the maximum extent. In our case, this metric depends on the volume
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of computational load, and when this volume is not enough to fully exploit GPU resources, the

utilization is not optimal. In the case of our Two-GPU CUDA implementation, we have divided

the whole computation load between two GPUs, but find that even on those highly refined

grids where numerical errors almost reach machine precision, each load is not big enough to

fully utilize each GPU resources. In fact, the NVIDIA visual profiler showed how the Two-

GPU CUDA code attains a computing utilization under 23% for a grid size of n = 60000, while

One-GPU reaches a higher 91% on same grid.

Figure 10. Speed up log2 values of the Two-GPU CUDA implementation relative to the One-GPU
CUDA code on a 1-D numerical test

Now, we focus on numerical experiments on 2-D spatial domains where a higher volume of

computational data and more complex data dependencies, with respect to the 1-D case, make

results significantly different.

Figure 11 shows the speed-up reached by all CPU vectorized implementations relative to

the simple C solver. Similar to the 1-D case, we also observe here that the performance of

vectorized SSE and AVX codes is very similar to one on C −O3 simulations on most grids.

Again, this C solver is benefit from the automatic vectorization enabled by the compilation

flag O3. On the other hand, for n = 1200 the C+AVX+OpenMP implementation achieves a

significant speed up of 8.86 respect to the C solver, and the C+SSE+OpenMP also reaches

a gain little above 8. Data associated to these tests take nearly half of the capacity of the

CPU L3 cache memory. Under this condition, using intrinsic functions and multi-threading

allow taking full advantage of all resources available at the microprocessor. For n ≥ 1400,

relative performances of both OpenMP-based implementations steadily decay mainly due to

memory saturation (Cache misses) until reach a speed up of 2 on simulations with n = 2000.

As memory allocation increases with n beyond the L3 cache memory capacity, the performance

of these vectorized codes is affected and steadily follows same speed up level. Similar to the 1-D

vectorized CPU codes, figure 11 also illutrates that C+AVX+OpenMP and C+SSE+OpenMP

execution times are comparable, and there is a minor speed-up gain showed by the former

on coarse grids, n ≤ 1400. For a grid size of n = 5000, calculations of the One-GPU CUDA

implementation spends about 42.36 GFLOPS, while the Two-GPU CUDA code performs

nearly 77.07 GFLOPS. The memory usage is close to 300 MB on these highly-resolved
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simulations. Similar to previous cases, these performance metrics have been reported by the

NVIDIA Visual Profiler.

Figure 11. Speed up of the C implementation versus the vectorized and parallel CPU codes on a 2-D
numerical test

It is worthy to note that both GPUs are physically connected to a PCIe bus, in such a way

that the overall bus performance is just x8 instead of x16. Physical dimensions of GPU cards

are incompatible with respect to the gap between PCIe connections in the main board, so there

is no way to connect both GPUs to the PCIe slots and ensure a performance of x16. However,

our final speed up results and bandwidth profiling measurements indicate that this hardware

issue does not affect the overall performance in a significant way. The bus speed in inter-GPU

communications is close to 70% of the PCIex8, whereas the bandwidth of Host-to-Device (HtD)

transactions reaches a 100% of the total PCIex8 speed. It is worth to note that the transaction

Device-to-Device (DtD) in 1-D test were far from the bandwidth achieved for the 2-D case.

We mainly attribute the speed reduction in Two-GPU communications on 1-D simulations

to the low amount of data transferred in each HtD communication, or the pattern followed

by the data. These transactions do not exploit the maximum PCIe bus speed. On the other

hand, higher performances observed on 2-D simulations are partially due to communications

take place at almost the maximum bus speed, and bigger amount of data are transferred in a

single message (variable and matrix initializations, and result retrieval). In these tests, DtD

speed is not limited by the x8 setup and HtD transactions only occur at the beginning and

the end of our simulations. Since HtD operations represent a small fraction compared to the

computation time, the impact of achieving x16PCIe bus performance would not change our

global results in great manner.

In figure 12, we show the speed up achieved by both CUDA solvers with respect to C

and C+AVX+OpenMP CPU implementations, on our 2-D numerical tests. Relative to the

C solver, One-GPU reaches a gain of 12.28 in the most-refined grid case (n = 5000), while

the speed up accomplished by Two-GPU is 23.06 on same test. Now, taken the vectorized

C+AVX+OpenMP simulation as reference on same grid, we observe a speed up of 6.23 and 11.7

on One-GPU and Two-GPU calculations, respectively. These 2-D Two-GPU results represent
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a performance gain relative to the implementation on 1-D, which is attributed to an increase of

60% of GPU utilization under a higher data and processing demand. In all these experiments,

Two-GPU presents a consistently better performance compared to One-GPU, and particularly

for n ≥ 5000, this gain is about 6 speed up units. Again, the higher occupancy of both GPU’s

resources (with a peak of 84%) leads to this performance superiority on dense grids. Finally,

we additionally compare the performance of this Two-GPU implementation against to the

One-GPU CUDA code. The former shows a steady speed up of 1.88 over the latter on dense

grids with n ≥ 2000.

Figure 12. Speed up of: i) The GPU implementations versus the CPU (C and C+AVX+OpenMP)
codes;

ii) The One-GPU implementation vs Two-GPU code on a 2-D numerical test

5. CONCLUSIONS

In this work, we present progressive computing accelerations of a mimetic finite difference

method for the simulation of wave propagation on 1-D and 2-D acoustic media, on CPU and

GPU computer platforms. We start our CPU optimizations by migrating original MATLAB

codes to the 4.8.3 gcc compiler, test built-in flags for better performance, and observe significant

time reductions with the −O3 compiling flag. Next, we introduce intrinsic SSE and AVX

vectorization statements and OpenMP loop paralelization to this code, which allows taking

full advantage of multi-core CPU architectures. Results from these new optimized codes

have shown a significant performance improvement by reducing the MATLAB-based codes’

execution times to 730 times on 1-D and 1504 times on 2-D tests, respectively. In this process,

it has been also exposed that CPU implementations present a cache limitation for high

data volumes, and this limits actual improvements to medium-sized grids. In addition, new

CUDA implementations have been developed by translating acoustic solver C versions to the

NVIDIA CUDA architecture with one GPU card. In both 1-D and 2-D spatial domains, GPU

implementations behave faster than their CPU counterparts, and execution times correspond

to the fractions 1
6237 (1-D test) and 1

17597 (2-D test) relative to original MATLAB computing

times. On same experiments, a comparison between CPU-based and GPU-based results show
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that our CUDA implementation is up to 8.54 times faster than our best vectorized parallel

code in a 1-D scenario, and is up to 6.23 times more rapid in a 2-D scenario. Only in the

case of 2-D coarse grids (n ≤ 1200), the optimal CPU code is nearly competitive to the GPU

implementation.

We finally extend our CUDA implementations to a platform with two GPU cards (Two-GPU

version). Relative to the best CPU code, the new implementation manages to be 11.7 times

faster in 2-D tests with very fine discretizations. In any other case, execution times of the Two-

GPU CUDA implementation are comparable or even worse because of the low computational

load. Our results confirm the well known fact that CUDA potential is better exhibited under

high computational loads, as in the case of 2-D tests with computing utilization up to 90.4%, in

comparison to less demanding 1-D tests with 23% utilization, at the most. We finally perform

2-D tests on a broad range of grid sizes, and observe that Two-GPU CUDA is nearly twice

faster than the One-GPU solver. These last experiments represent perfect realizations of the

theoretical expectation after doubling the hardware GPU capacity.

ACKNOWLEDGEMENTS

Authors from Universidad Central de Venezuela (UCV) were partially supported by: Consejo
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APPENDIX: MIMETIC OPERATORS AND FD STENCILS IN 1-D AND 2-D DOMAINS

On the 1-D staggered grid described in section 2 with n cells and constant step h, second-order

mimetic finite differences can be comprised into the following matrix operators

G =
1

h



− 8
3 3 − 1

3 0 · · · 0

0 −1 1 0 · · · 0

0 0
. . .

. . . 0 0

0 · · · 0 −1 1 0

0 · · · 0 1
3 −3 8

3


,

(n+1)×(n+2)

D =
1

h



0 0 · · · · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 0 · · · 0

0 0
. . .

. . . 0 0

0 · · · 0 −1 1 0

0 0 · · · 0 −1 1

0 0 · · · · · · 0 0


,

(n+2)×(n+1)

and

B =



−1 0 0 · · · 0
1
8 − 1

8 0 · · ·
− 1

8
1
8 0 · · ·

0 0 0 · · ·
...

...
...

. . .
...

...
...

· · · 0 0 0

· · · 0 − 1
8

1
8

· · · 0 1
8 − 1

8

0 · · · 0 0 1


.

(n+2)×(n+1)

In the gradient operator G, first and last rows correspond to lateral FD stencils to

approximate the exact gradient at both boundaries. Remaining G rows coincide with the

standard central FD stencil with second order accuracy, that also conforms interior rows of

divergence operator D. The first and last zero rows in D respond to the fact that the continuous

divergence does not play a physical role at boundaries in most standard applications. The

operator B is exclusive of mimetic FD discretizations, and first and last rows of BG allow

approximating normal derivates ∂
∂n̂ at boundary nodes, while interior nonzero rows intervene

on Laplacian approximations at mid-cell points x 1
2
, x 3

2
, xn− 1

2
and xn− 3

2
. Notice that null D

rows also permit a natural superposition of Neumann- or Robin-type boundary conditions with

interior Laplacian approximation on the final mimetic discretization operator (DG + BG).

The collection of FD stencils for the mimetic solution of (1), (2), and (3), on the 1-D grid

depicted in figure 1 result from combining approximations in DG + BG for the spatial terms

to a mixed time integration given by the Leapfrog schemes at grid centers x 1
2
, . . . , xn− 1

2
,
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and a simple forward difference at boundary xn, for time steps tk = k∆t. These stencils are

transcribed below in the special case of f1(t) = f2(t) = 0 and c = 1.

(i) Node x0

8

3h
uk+1
0 +

3

h
uk+1

1
2

− 1

3h
uk+1

3
2

= 0

(ii) Center x 1
2

uk+1
1
2

= 2uk
1
2
− uk−1

1
2

+ ∆t2

[
f
(
x 1

2
, tk
)

+

(
8

3h2
− 1

3h

)
uk
0 +

(
1

2h
− 4

h2

)
uk

1
2

+

(
4

3h2
− 1

6h

)
uk

3
2

]

(iii) Center x 3
2

uk+1
3
2

= 2uk
3
2
− uk−1

3
2

+ ∆t2

[
f
(
x 3

2
, tk
)

+

(
1

3h

)
uk
0 +

(
1

h2
− 1

2h

)
uk

1
2

+

(
1

6h
− 2

h2

)
uk

3
2

+

(
1

h2

)
uk

5
2

]

(iv) Center xi+ 1
2

at grid interior

uk+1
i+ 1

2

= 2uk
i+ 1

2
− uk−1

i+ 1
2

+

(
∆t

h

)2[
f
(
xi+ 1

2
, tk
)

+ uk
i+ 3

2
− 2uk

i+ 1
2

+ uk
i− 1

2

]

(v) Node xn

uk+1
n = uk

n −

(
∆t

h

)[
8

3
uk
n − 3uk

n− 1
2

+
1

3
uk
n− 3

2

]

FD stencils at mid-cell points xn− 1
2

and xn− 3
2

are symmetric replications of computing

formulas at leftmost centers x 1
2

and x 3
2
, respectively.

The mimetic FD discretization of the 2-D wave propagation problem (1), (4), and (5) on

the unit square, yields a non-standard stencil set mainly due to computing formulas at interior

mid-cell points displaced by either h
2 or 3h

2 from any boundary. These unique mimetic stencils

along with FD formulas applied at boundaries and remaining interior points are illustrated in

figure 2 and given as follows

(i) Nodes on the bottom boundary, Ui,0 for i = 1
2 , . . . , n−

1
2 :

Uk+1
i,0 = Uk

i,0 +

(
4t

h

)[
−8

3
Uk
i,0 + 3Uk

i, 12
− 1

3
Uk
i, 32

]
(ii) Nodes on the left and right edges, Ui,j for i ∈ {0, n} and j = 1

2 , . . . , n−
1
2 :

Uk+1
i,j = Uk

i,j +

(
4t

h

)[
−8

3
Uk
i,j + 3Uk

i,j± 1
2
− 1

3
Uk
i,j± 3

2

]
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(iii) Nodes on the top boundary, Ui,n for i = 1
2 , . . . , n−

1
2 :

Uk+1
i,n = 0

(iv) Interior nodes Ui,j for i, j ∈
{

1
2 , n−

1
2

}
:

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +4t2

[(
8

3h2
− 1

3h

)
Uk
i∓ 1

2 ,j
+

(
1

h
− 8

h2

)
Uk
i,j +

(
4

3h2
− 1

6h

)
Uk
i±1,j+(

8

3h2
− 1

3h

)
Uk
i,j∓ 1

2
+

(
4

3h2
− 1

6h

)
Uk
i,j±1

]
(v) Interior nodes Ui,j for i ∈

{
3
2 , n−

3
2

}
and j ∈

{
1
2 , n−

1
2

}
:

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +4t2

[(
8

3h2
− 1

3h

)
Uk
i,j∓ 1

2
+

(
2

3h
− 6

h2

)
Uk
i,j +

(
4

3h2
− 1

6h

)
Uk
i,j±1+

1

3h
Uk
i∓ 3

2 ,j
+

(
1

h2
− 1

2h

)
Uk
i∓1,j +

c2

h2
Uk
i±1,j

]
(vi) Interior nodes Ui,j for i = 5

2 , . . . , n−
5
2 and j ∈

{
1
2 , n−

1
2

}
:

Uk+1
i,j = 2Uk

i,j − Uk−1
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8
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)
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2
+

(
1
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− 6

h2

)
Uk
i,j +

(
4

3h2
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)
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1

h2
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1

h2
Uk
i+1,j

]
(vii) Interior nodes Ui,j for i ∈

{
1
2 , n−

1
2

}
and j ∈

{
3
2 , n−

3
2

}
:

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +4t2

[(
8

3h2
− 1

3h

)
Uk
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2 ,j
+

(
2
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− 6
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)
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(
4
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)
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1
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Uk
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2
+

(
1

h2
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)
Uk
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1

h2
Uk
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]
(viii) Interior nodes Ui,j for i ∈

{
3
2 , n−

3
2

}
and j ∈

{
3
2 , n−

3
2

}
:

Uk+1
i,j = 2Uk
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i,j +4t2

[(
1
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2
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1
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(
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(ix) Interior nodes Ui,j for i = 5

2 , . . . , n−
5
2 and j ∈

{
3
2 , n−

3
2

}
:

Uk+1
i,j = 2Uk

i,j − Uk−1
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h2
− 1
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)
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h2

)
Uk
i,j +

1

3h
Uk
i,j∓ 3

2
+

1

h2

(
Uk
i+1,j + Uk

i−1,j + Uk
i,j±1

)]
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(x) Interior nodes Ui,j for i ∈
{

1
2 , n−

1
2

}
and j = 5

2 , . . . , n−
5
2 :

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +4t2

[(
8

3h2
− 1

3h

)
Uk
i∓ 1

2 ,j
+

(
1

2h
− 6

h2

)
Uk
i,j +

(
4

3h2
− 1

6h

)
Uk
i∓1,j+

1

h2

(
Uk
i,j+1 + Uk

i,j−1

)]
(xi) Interior nodes Ui,j for i ∈

{
3
2 , n−

3
2

}
and j = 5

2 , . . . , n−
5
2 :

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +4t2

[(
1

h2
− 1

2h

)
Uk
i∓1,j −

(
1

6h
+

4

h2

)
Uk
i,j +

1

3h
Uk
i∓ 3

2 ,j
+

1

h2
Uk
i±1,j+

1

h2

(
Uk
i,j−1 + Uk

i,j+1

)]
(xii) Interior nodes Ui,j for i, j = 5

2 , . . . , n−
5
2 :

Uk+1
i,j = 2Uk

i,j − Uk−1
i,j +

4t2

h2

[
Uk
i−1,j + Uk

i+1,j − 4Uk
i,j + Uk

i,j−1 + Uk
i,j+1

]
Above, subindices with optional sings ± or ∓ must be taken with the top choice at grid

points closer to the bottom or left edges, while the bottom sign must be used at grid locations

closer to the top or right boundaries.
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