arxiv:1604.01890v1 [cs.PF] 7 Apr 2016

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016;00:1-15
Published online in Wiley InterScience (www.intersciemgkey.com). DOI: 10.1002/cpe

Performance analysis of the Kahan-enhanced scalar product
current multi- and manycore processors

J. Hofmand*T, D. Fey*, M. Riedman®, J. Eitzingef, G. Haget and G. Welleid

1 Chair for Computer Architecture, University of Erlangen-Nuremberg, Erlangen, Germany
2 AREVA GmbH, Erlangen, Germany
3 Erlangen Regional Computing Center (RRZE), University of Erlangen-Nuremberg, Erlangen, Germany

SUMMARY

We investigate the performance characteristics of a nwallrienhanced scalar product (dot) kernel loop
that uses the Kahan algorithm to compensate for numerioadserand describe efficient SIMD-vectorized
implementations on recent multi- and manycore proces&ésig low-level instruction analysis and the
execution-cache-memory (ECM) performance model we pirtgbie relevant performance bottlenecks for
single-core and thread-parallel execution, and predidopeance and saturation behavior. We show that
the Kahan-enhanced scalar product comes at almost noawditiost compared to the naive (non-Kahan)
scalar product if appropriate low-level optimizationstaty SIMD vectorization and unrolling, are applied.
The ECM model is extended appropriately to accommodate migtrnodern Intel multicore chips but also
the Intel Xeon Phi “Knights Corner” coprocessor and an IBM/PER8 CPU. This allows us to discuss the
impact of processor features on the performance acrossrfodern architectures that are relevant for high
performance computing.

Copyright(© 2016 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: ECM Performance Model; Kahan; Scalar Producpisenights Corner; POWERS

1. INTRODUCTION AND RELATED WORK

Accumulating finite-precision floating-point numbers inalgr variable is a common operation
in computational science and engineering. The conseqadancerms of accuracy are inherent
to the number representation and have been well known awikdtiior a long time I]. There
are a number of summation algorithms that enhance accuradg maintaining an acceptable
throughput 2, 3], of which Kahan {] is probably the most popular one. However, the topic i$ stil
subject to active research,[6, 7, 8]. A straightforward solution to the inherent accuracy peots
is arbitrary-precision floating point arithmetic, whichrmges at a significant performance penalty.
Naive summation and arbitrary precision arithmetic aregiosite ends of a broad spectrum of
options, and balancing performance vs. accuracy is a kegecnnwhen selecting a specific solution.
Naive summation, which simply adds each successive numb&quence to an accumulator,
requires appropriate unrolling for single instruction tipie data (SIMD) vectorization and
pipelining. The necessary code transformations are paefdrautomatically by modern compilers,

TE-mail: johannes.hofmann@fau.de
*Correspondence to: Johannes Hofmann, Lehrstuhl fur Realshitektur (Informatik 3), Martensstr. 3, 91058 Erlang
Germany

Copyright© 2016 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

http://arxiv.org/abs/1604.01890v1

2 J. HOFMANN ET AL.

which results in optimal in-core performance. Such a codeldjsaturates the memory bandwidth
of modern multi-core CPUs when the data is in memory.

This paper investigates implementations of the scalarymipa kernel which is relevant in many
numerical algorithms. Starting from an optimal naive inmpéantation it considers scalar and SIMD-
vectorized versions of the Kahan algorithm using variougl3linstruction set extensions on a
range of multi- and manycore processors from Intel and IBBIng an analytic performance model
we point out the conditions under which Kahan comes for fee& we predict the single core
performance in all memory hierarchy levels as well as thdirggdehavior across the cores of a
chip. The present work is an extended version%fihere we carried out the analysis for a range
of older Intel Xeon processors. Apart from new architecune present a refined version of the
ECM performance model and add an additional optimizatioitfe Intel Haswell-EP CPU.

This paper is organized as follows. In Se@twe give an overview of the hardware used for
analysis and benchmarking. Sectimtroduces the execution-cache-memory (ECM) performance
model, which is used in Sect.to describe different variants of the naive and the Kahatasca
product. Sectiorb gives performance results and validates the models. $e6tiprovides a
conclusion and some comments on the possible extension efak.

2. THE ECM PERFORMANCE MODEL

The execution-cache-memory (ECM) mod&0[11, 12, 9] is an analytic performance model that
uses hardware architecture specifications and few measuatsras input. It estimates the number
of CPU cycles required to execute a number of iterations @o@ lon a single core of a multi-
or many-core chip. The prediction comprises contributifvom the in-core execution tim&gre,
i.e., the time spent executing instructions in the core utite assumption that all data resides in
the L1 cache, and the transfer tifmigy, i.€., the time spent transferring data from its location in
the cache/memory hierarchy to the L1 cache. As data transféhe cache and memory hierarchy
occur at cache line (CL) granularity we choose the numbeoap literationa; to correspond to
one cache line’s “worth of work.” On Intel architectures,evl CLs are 64 B long, we usg = 16

for the single precision (SP) dot product because sixteefiddBng-point numbers (4 B each) fit
into one CL. CLs on the IBM POWERS architectures are 128 Bctieads tay; = 32 for the SP
dot product.

Superscalar core designs house multiple execution units,|dading and storing data,
multiplication, division, addition, etc. The in-core exgion timeTqe is determined by the unit that
takes the longest to execute the instructions allocated®@dtier constraints for the in-core execution
time of a single core may apply, e.g., the four micro-op paleyetirement limit for Intel’s Xeon
cores and the eight instruction per cycle retirement lirait IBM’'s POWERS core. The model
differentiates between core cycles depending on whethartdansfers in the cache hierarchy can
overlap with in-core execution time. For instance, on IXbns, core cycles in which data is moved
between the L1 cache and registers, e.g., cycles in whichdod/or store instructions are retired,
prohibit the simultaneous transfers of data between thendll2 cache; these “non-overlapping”
cycles contribute tdnoL. Cycles in which other instructions, such as arithmetitruions, retire
are considered “overlapping” cycles and contributdgp. The in-core runtime is the maximum
of both: Teore = max(ToL, Tho). Note that the non-overlapping quality of L1-register sfms is
specific to Intel CPUs. We will see later that the IBM POWER&sImot have non-overlapping
instructions.

For modeling the data transfers, latency effects are Ihyitizeglected, so transfer times are
exclusively a function of bandwidth. Cache bandwidths gpécilly well documented and can be
found in vendor data sheets. Depending on how many CLs hawe tansferred, the contribution
of each level in the memory hierarchyi (.2, ..., TLavem) Can be determined. Special care has to
be taken when dealing with main memory bandwidth, becauak pemory bandwidth specified
in the data sheet and sustained memory bandviagddan differ greatly. In addition, in practice the
sustained bandwidth may also depend on the number of dikiatand store streams. Itis therefore
recommended to empirically determibgusing a kernel that resembles the memory access pattern

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 3

core 0

core 1
e Tai core 0

(b) Tetip core 1
Tehip core 2
77777777777777777777777777777 7T;h7ip777777777777777777777777777777777”””””””””””””””””7”” core 0
sz core 1

© Teni V core 2

chip
; Tenip V core 3

time

Figure 1. Multicore scaling in the ECM mod@inen is the time spent for data transfers over the memory

bottleneck, whileTcni, comprises all non-bottlenecked (i.e., core-local) contions. The saturation point

is at three cores in this case sir@&nip+ Tmem) / Tmem= 3. Hatched boxes denote stalls, which emerge from
using more cores than needed for bandwidth saturation.

of the benchmark to be modeled. Orgdnas been obtained, the time to transfer one CL between the
cache hierarchy and main memory can be derived from the C&juiéncyf as 64 B f /bs cycles.

In a second step, an empirically determined latency penalts applied to off-core transfer
times. This departure from the bandwidth-only model haslmeandated by the inability of some
architectures to hide the memory access latency. On rejelam processors, this penalty is added
for each level in the memory hierarchy that has to make udeeo/ncore interconnect (i.e., the L3
cache, as data is pseudo-randomly distributed betweeastildvel cache segments and memory,
because the memory controller is attached to the ring busels ®n Knights Corner there exists
no shared cache when each thread is working on its own dath; e is using data from its
local L2 cache so the latency penalty is only added when the-idog-interconnect is used to
get data from main memory. Instruction times as well as daaster times, e.gT 1.2 for the
time required to transfer data between L1 and L2 cachesuanenarized in a shorthand notation:
{ToL [Thou | TLatz| Teoes + Tp| Teamem+ Tp }-

To arrive at a prediction, in-core execution and data tems$fimes must be combined
appropriately. The runtime is given by eith&s_ or the sum of non-overlapping core cycl&s.
plus contributions of data transfefgas Whichever takes longefyata cOmprises all necessary data
transfers in the memaory hierarchy, plus latency penaltiggplicable. Again we have to distinguish
between overlapping and non-overlapping behavior; in csgtel Xeon, any data transfer during
a specific cycle in the inclusive cache hierarchy preveritstakr transfers (including those in
ToL) in that cycle.Tyaa is thus the sum of all cycles required to transfer the dataltamhd back.
E.g., for data coming from the L3 cache we ha\gia= TL12 + Tiowz + Tp. The prediction is
thus Tecm = max(Tov, ThoL + Tdate). Note that for other architectures with different overlaggp
properties and/or exclusive cache hierarchies this foarmady look very different.

In order to summarize the predictions for data coming frofiecént levels in the hierarchy we use
a shorthand notatiof:TEe 1 TEé 1 Tedw 1 TR}, Converting from time (cycles) to performance
is done by dividing the workV (e.g., floating-point operations, updates, or any othevesit work
metric) by the runtimeBzcy = W/ Tecwm-

The model assumes that single-core performance scalesliingith the cores until a shared
bottleneck is saturated. On most modern processors thesbialyed bottleneck is main memory
bandwidth. As shown in Figl, the ratio of the overall single-core execution time and the
contribution of the bottleneck determines the maximum dppeas long as the number of cores
is smaller than this ratio, the memory bus is not saturatedtefms of the ECM model, the
maximum speedup igs = TMSM /T 3vem. Performance at the saturation point is trefx,, =
f- US~W¢L/TE'\"Ce,{,|n = f-WeL/TLamem, WhereWe, is the work per CL and is the processor clock
frequency. This is just another formulation of the bandtvidound part of the Roofline model].
The core count necessary to saturate the memory bandwidgh-g TE’V'Ce,{,l“/TLgMem]. If Ns > Nehip,
i.e., if the required number of cores for saturation excéleelavailable number, the code is scalable.

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

J. HOFMANN ET AL.

Microarchitecture Haswell-EP Broadwell-EP Knights Carne POWERS
Shorthand HSW BDW KNC PWRS
Chip model E5-2695 v3 unknown 5110P S822L.C
Release date Q32014 pre-release Q4 2012 Q22014
Nominal CPU clock 2.3GHz 2.1GHz 1.05GHz 2.926 GHz
Cores/threads 14/28 22/44 60/240 10/80
Max. SIMD width 32B 32B 64B 16B
of SIMD registers 16 16 32 64
Instruction throughput per cycle
LOAD/STORE 2/1 2/1 1/1 2/2
ADD/MUL/FMA 1/2/2 1/2/2 1/1/1 21212
Core-private caches 32kB L1 32kB L1 32kB L1 64kB L1
256 kB L2 256 kB L2 512kB L2 512kB L2
— — — 8MB L3
Shared caches 35MB L3 55MB L3 — 64 MB L4
L2-L1 bandwidth 64 Bl/cy 64 Blcy 32 Blcy 64 Blcy
L3-L2 bandwidth 32 Blcy 32Blcy — 32Blcy
MEM-L3 bandwidth ~14 Blcy ~15Bl/cy 160 B/cy —
Centaur-L2 bandwidth — — — ~19 B/cy
Main memory 4«DDR4-2166 4<DDR4-2166 16&GDDR5-5000 4 Centaur
Theor. load BW 69.3GB/s 69.3GB/s 320GB/s 76.8 GB/s

Meas. load BW 232.0GB/s (92%) 232.3GB/s (93%) 175GB/s (55%) 73.6 GB/s (96%)

Table I. Test machine specifications and micro-archite¢tieatures (one socket). The cache line size is
64 bytes for all Intel architectures and 128 bytes for IBM PERS.

3. EXPERIMENTAL TESTBED

Tablel gives an overview of the relevant architectural detailefdystems used in this paper. The
regular Xeon machines (Haswell-EP and Broadwell-EP) aedP®WERS8 machine are standard
two-socket systems. The Xeon Phi coprocessor (Knightse&Zbima PCle card hosted in a standard
two-socket Ivy Bridge-EP system.

Note that BDW corresponds to a “tick” in Intel’s design madié., it is a shrink in the
manufacturing process technology from 22 nm to 14 nm witly orihor architectural improvements
compared to HSW. All results for Broadwell-EP are prelinminsince we only had access to a pre-
release version of the chip.

All SIMD instructions set extensions for the covered micobdtectures support fused multiply-
add (FMA) instructions. The vector scalar extension (VSX)BM’'s PWRS8 have a SIMD width of
16 B. The AVX2 vector extensions supported by HSW and BDW rea@&MD width of 32B and
KNC'’s initial many core instructions (IMCI) allow for 64-BIBID. All Intel processors employ a
fully inclusive cache architecture whereas PWR8 uses dngixe victim cache architecture for the
last level cache. This results in different data paths m#hé caches. On PWRS8 data is loaded from
memory directly into the L2 caches, and only cachelines Wwhiet evicted from L2 will be copied
back to the L3 cache.

The sustained memory bandwidth for all architectures wésraéned using a naive dot product
benchmark. To obtain good results on the Xeon Phi, we foltbthe optimization instructions for
the STREAM benchmark as described by Intef][in particular, we set the prefetching distance
64 CLs ahead for the L2 cache, 8 CLs for the L1 cache, and usedhoead per core to avoid

Copyright© 2016 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls

Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 5

(a) (b)
float sum = 0.0; float sum = 0.0;
float ¢ = 0.0;
for (int i=0; i<N; i++) { for (int i=0; i<N; ++1) {
sum = sum + a[i] = b[i] float prod = ali]l*b[il];

} float y = prod-c;

float t = sum+ty;

c = (t-sum)-y;

sum = t;

}

Figure 2. (a) Naive scalar product code in single precigionKahan-compensated scalar product code.

congestion on the ring bus. The IBM PWR8 memory bandwidthireg further explanation. PWR8
uses a custom high frequency channel interface betweernrdlcegsor chip and a memory buffer
chip (Centaur) 15]. Each Centaur chip connects to four DRAM channels. PWR&®atip up to
eight memory channels per chip operating at 9.6 GHz with avkidsh of 2B (read) plus 1B
(write). Our test system is an IBM S822LC and supports only foentaur chips. The four memory
channels can provide up to 115.2 GB/s read/write or 76.8 @&&/d-only bandwidth per chip. Note
that this is significantly less than what the 16 attached DRsinnels (DDR3-1333) could provide
(170.6 GB/s). A fully equipped high-end PWR8 system hensatvice the memory bandwidth per
chip.

Unless noted otherwise, KNC was used in 2-SMT and PWRS8 in 8-Shbde, i.e., two
respectively eight threads were run on each physical coreHSW and BDW a single thread
was run on each physical core, and Uncore frequency scalésydeactivated. Furthermore, the
“cluster on die” (COD) mode was active for HSW and BDW. In CoDadm, the chip is logically
split into two ccNUMA domains of equal size. Last-level ca@nd memory requests are limited to
the domain a core is assigned to, reducing latency andiool$isn the Uncore interconnect. The two
memory domains per chip are visible in the load-only bandwidw of Tablel; e.g., the sustained
load-only bandwidth for HSW is 32.0 GB/s per memory domaich &4.0 GB/s per chip. For details
on the CoD mode sed §)].

4. OPTIMAL IMPLEMENTATIONS AND PERFORMANCE MODELS FOR DOT

We only discuss variants for dot in SP here. The model predidh terms of cycles per CL
does not change for the SIMD variants of Kahan when going f&™to double precision (DP),
but one CL update represents twice as much useful work ¢sitatations) in the SP case. To
eliminate variations introduced by compiler-generatedece implemented all kernels directly in
assembly language and use thikwid-bench microbenchmarking framework] to perform
measurements.

4.1. Naive scalar product

An optimal implementation of the naive scalar product inginprecision serves as the baseline
(see Fig.2a). All versions of the Kahan-enhanced scalar product desttin Sectiord.2 will be
compared to this baseline.

Sufficient unrolling must be applied to hide the ADD pipeliagency for the recursive update
on the accumulation register and to apply SIMD vectorizat®oth optimizations introduce partial
sums and are therefore not compatible with the C standateasder of non-associative operations
is changed. With higher optimization levelsy3) the current Intel C compiler (version 15.0.2) and
IBM XL C compiler (version 13.1.3) both generate optimal eotllote that partial sums usually
improve the accuracy of the resulij|

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 J. HOFMANN ET AL.

4.1.1. Intel Haswell-EP and Broadwell-EP On HSW and BDW the kernel is limited by the
throughput of the LOAD units (see Table Two AVX loads per vector4 andb) are required to
cover one unit of work (16 scalar loop iterations), leadio@ total of four AVX load instructions;
with two LOAD units, the core can execute two LOAD instruatsoper cycle, resulting ifinoL =
2cy. To process the data, two FMA instructions have to bewdrelc with two FMA units, the core
can execute both instructions in a single cycle, resultingn overlapping part ofp. = 1cy.

If the data is in the L2 cache, two CLs (one eachdoandb) have to be transferred to the L1
cache; at the advertised bandwidth of 64 B/cy this resulif ip, = 2cy. With data in L3 it takes
TioL3 = 4cy to transfer the two CLs to L2 due to the L2-L3 bandwidth aB3cy; the empirical
latency penalty was determined to e= 1cy for the 14-core HSW an®}, = 5cy for the 22-core
BDW. The latency penalty is strongly correlated with the fw@mof hops in the Uncore; as BDW
features more cores and each core’s L3 slice forms a hop ibticere its latency is higher than
that of the HSW chip with fewer cores/hops.

To compute the contribution of transferring the two CLs frorain memory to the L3 cache, we
convert the sustained memory bandwidth from GB/s to B/cyteNbat in cluster on die mode a
single core can only make use of the bandwidth inside its mgmomain. For the HSW, which
runs at 2.3 GHz, the measured memory domain bandwidth ofGR/6 corresponds to a transfer
time of 64B/CL - 2.3GHz/32.0GB/s= 4.6cy/CL or 9.2cy for both CLs. BDW runs at 2.1 GHz,
which leads to a transfer time of 648L - 2.1 GHz/32.3 GB/s= 4.2cy/CL or 8.4 cy for both CLs.
The same latency penalty as for the L3 cache is applied fa daming from main memory,
because the data has to be moved from the memory controtiee {8 cache segment in which the
cache line is placed. The resulting ECM model inputs{drg2|2|4+1|9.2+ 1} cy for HSW and
{1]/12|2]|4+5|8.4+5} cy for BDW.

The full ECM prediction read$2]419119.2} cy for HSW. We choose an “update” (two flops)
as the basic unit of work to make performance results foeddfit implementations comparable.
The resulting unit is “updates per second” (UP/s). The etquksingle core performance for the
HSW is thus

_ 16updates2.3Gcy/s
~ {21479719.2} cy

P = {18.40]9.20]4.09] 1.92} GUPIs. 1)

The predicted saturation point isa = [19.2/9.2] = 3 cores per memory domain or 6 cores per
chip. Performance at the saturation poirﬁ’&M = f-WeL/TLsvem = 2.3GHz 16 updatesd.2cy =
4 GUP/s per memory domain or 8 GUP/s per chip.

For BDW the full ECM prediction is{2]4113]26.4} cy and the resulting expected serial
performance at 2.1 GHz is

_ 16updates2.1Gcey/s

P= {214713]26.4} cy

= {16.80]8.40]2.58] 1.27} GUPIs.)

The predicted saturation point is @ = [26.4/8.4] = 4 cores per memory domain or 8 cores per
chip. The difference in sustained memory bandwidth betwaenHSW and BDW systems are
marginal, so the prediction for the saturated performasdégentical to that of the HSW machine.

4.1.2. Intel Xeon Phi KNC's initial many core instructions (IMCI) extensions leaa SIMD width

of 512b or 64B, corresponding to a full cache line. This metha two 512-b IMCI load
instructions are needed to load the data from the L1 cacbeégisters, sdo. = 2cy. Processing
the data requires one FMA instruction, which has a maximuouiphput of one per cycle, resulting
in ToL. = 1cy. Note that while a KNC core is much simpler than its HSW BVB counterpart, it is
still capable of retiring two instructions in a superscdéshion. It features two pipelines: a vector
pipeline (U-pipe) with the 512-b vector processing uniaeltted and a scalar pipeline that handles
all remaining instructions. While SIMD vector arithmetscanly possible on the U-pipe, the V-pipe

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 7

can also be used for SIMD load instructions. It is thus pdesidoverlap the FMA that is scheduled
on the U-pipe with one of the load instructions when bothrirtons are paired.

At a bandwidth of 32 B/cy18], it takesT 1.2 = 4cy to deliver the data from the L2 cache to the
core. At a clock speed of 1.05 GHz and a sustained memory hdtidef 175 GB/s the transfer time
of a single CL is 64 BCL - 1.05GHz/175 GB/s= 0.4 cy, thus 0.8 cy for both CLs. The empirically
determined latency penalty for the ring interconnect an®tmT, = 20cy. The resulting ECM
inputis{1]/2|4|0.8+ 20} cy.

The full ECM prediction is{2]6]26.8} cy. It is clear from these numbers that the KNC is a
strongly latency-dominated machine beyond the L2 cache.eXpected performance of a single

coreis
~ 16updatesl.05Gcy/s

P = 5761268 oy

The predicted saturation point isa = [26.8/0.8] = 34 cores, and the maximum performance is
21.3GUP/s.

= {8.4012.80]0.63} GUP/s. ©)

4.1.3. IBM POWERS In contrast to Intel Xeon and Xeon Phi chips, where cachelare 64 B, the
cache line size on the IBM PWRS8 is 128 B. At a SIMD width of 16 Bstimeans that a total of 16
VSX LOAD instructions are required to move data from the Lthmto the registers, which takes
eight cycles. The L1 cache is multi-ported, i.e., it can $yppta to the registers and simultaneously
receive data from the L2 cach&d. Eight VSX FMA instructions process the data from both CLs;
the kernel is thus limited by the throughput of the LOAD uratsd To. = 8cy. As there are no
non-overlapping instructions, we haVigy, = Ocy.

Data can be delivered from the L2 to the L1 at a bandwidth of &4 BthusT 1.2 = 4cy.
Using the documented L2-L3 bandwidth of 32 B/cy we calculbitg 3 = 8cy. When data is in
main memory, the bandwidth of the chip-to-Centaur intenamt proves to be the bottleneck:
each centaur can provide 19.2 GB/s, which translates inteak pandwidth of 76.8 GB/s for
our system. The measured sustained memory bandwidth iSSB3% hence a CL transfer takes
128B/CL-2.9GHz/73.6 GB/s= 5.0cy. Consequently; 2.4 = 10cy.

The resulting ECM input i$8| 0| 4|8| 10} cy. We assume a latency penalyof zero, because
in the measurements there is no deviation from the modeigirea for data coming from the L3
cache. The reason is that on PWR8, each core has a dedicatadhs3in which data for a particular
core resides; opposed to Intel's Uncore design, no tramsfeross the L3 cache interconnect are
necessary when accessing data from L3. The full ECM modeligtien is{818] 12] 22} cy. The
predicted saturation point is ag = [22/10] = 3 cores.

4.2. Kahan-enhanced scalar product

Figure2b shows the implementation of the Kahan algorithm for themtotluct. Compilers have
problems with this loop code for two reasons: First, the cibenpletects (correctly) a loop-carried
dependency or, which prohibits SIMD vectorization and modulo unrollirfgecond, the compiler
may recognize that, arithmetically,is always equal to zero. With high optimization levels it may
thus reduce the code to the naive scalar product, defedngLirpose of the Kahan algorithm. This
is the reason why we use hand-coded assembly throughowtdhis For comparison we also show
compiler-generated Kahan code for which we ensured (byompiaite compiler options) that the
algorithm is preserved.

4.2.1. Intel Haswell-EP and Broadwell-EP One iteration comprises one multiplication, four
additions or subtractions, and two loads. The bottleneckherHSW and BDW cores is thus the
ADD unit (ADD and SUB are handled by the same pipeline). In fibllowing we construct the
ECM model for the AVX versions of the Kahan loop.

TInstruction pairing happens whenever an instruction saleedfor the U-pipe is followed directly by an instruction
scheduled on the V-pipe. Restrictions about when instostipairing can happen are complex but well documented
[18].

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 J. HOFMANN ET AL.

1 |ADD LD LD 1 |ADD LD LD
2 FMA LD LD 2 |ADD FMA LD LD
3 FMA 3 |[FMA FMA

4 4 FMA

5 Five cycle FMA latency 5 Five cycle FMA latency

6 g _ w [6

7 |ADD % 8 % g 7 |ADD Three cycle ADD latency
8 |ADD| | > ig 8 |ADD

9 [app| | 2 ge| 9 |ADD

I'M ADD © 10 [ADD FMA

11 [ADD 11 |FMA FMA

12 |[ADD 12 FMA

13 |ADD 13 Five cycle FMA latency

Three cycle ADD latency Three cycle ADD latency

Figure 3. Left: Four-way 14

unrolled Kahan dot ! 15

product kernel using 16 16

FMAs. Right: Our five- 1 LD LD 1 LD LD

way unrolled optimized ’ D D 5 D)
version.

In an AVX vectorized version of the Kahan-enhanced dot pcodernel that does not use
the new FMA3 extensions, we require two AVX multiplicationstructions and eight AVX
additions/subtractions to process one unit of work (eightas iterations). Multiplications can be
executed speculatively several loop iterations aheadusecthey have no data dependencies. This
means that the five (HSW) respectively three (BDW) cyclesatdricy of the multiplication are
not an issue. With at least four-way unrolling the add layeoicthree cycles can be hidden. The
throughput is thus limited by the ADD unit, on which both AvXditions and subtractions are
executed, resulting ilp. = 8cy. Because data movement is exactly the same as in the dative
product, the remaining model inputs stay the same. Thidtsdsithe following inputs for the ECM
model:{8|/2|2|4+1|9.2+ 1} cy for HSW and{8]| 2| 2| 4+ 5| 8.8+ 5} cy for BDW. The resulting
ECM predictions ar¢8]8]9]19.2} cy and{8]8]13] 26.8} cy, respectively.

At first glance, when making use of the new FMA instructions ex@ect the number of in-
core cycles to drop, because each core can execute two adlveector extensions (AVX) FMA
instructions per cycle. The multiplication in line four atige subtraction in line five of the source
code in Fig2b can be handled by a singl&Emsub231ps instruction. This reduces the number of
additions/subtractions to six per cache line update so we@Xo, to drop to six cycles. However,
the situation is more complicated. Since the FMA instrutdibavey as input, the instruction can
no longer be executed speculatively, which means that thB AlStructions now have to wait for
the FMA instruction, which has a five-cycle latency on bothViM&nd BDW. Unfortunately, 16
addressable AVX registers are not enough to perform suidficiarolling to completely hide this
latency. It turns out that a four-way unrolled loop resuttshie samélg of eight cycles (see left
part of Fig.3). For a four-way unrolled kernel, intra-loop latenciesypdasignificant role: After the
first FMA has been scheduled in the first cycle of the loop (shovblack), it takes five cycles until
the addition using the result of the FMA can be issued in cgidiéshown in black). The three-cycle
latency of the addition is hidden by using four-way unrdadfithus it takes four cycles until the next
addition corresponding to the partial sum can be retiredalFy, in the fourteenth cycle, the last
addition of the first partial sum is issued. Only after the AREency of three cycles, the first FMA
of the next loop iteration can be issued, because it usegsidt of the addition as input.

Even by reusing registers that can be overwritten becaesedbntent is no longer needed, the
maximum unrolling factor that can be achieved is five. Unmglthe loop with the previous strategy

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 9

1 vimsub23lps zmm2, zmm0O, [rdx+rax*8] # y=A[i]l*B[i]l-c

2 vprefetchO [576+rsi+rax=*8] # prefetch A into L1
3

4 vaddps zmmé4, zmm3, zmm2 # t=sum+y

5 vmovaps zmmO, [rsitrax*8+64] # load A for next iter
6

7 vsubps zmm5, zmm4, zmm3 # tmp=t-sum

8 vprefetchO [512+rdx+rax=*8] # prefetch B into L1
9

10 vsubps zmm2, zmmb5, zmm2 # c=tmp-y

11 vmovaps zmm3, zmm4 # sum=t

Figure 4. Assembly code of the loop body for L2-optimized Katenhanced dot product on KNC.

will result in an execution time of 18 cyclefor one loop iteration (handling 2.5 cache lines at 5-way
unrolling) corresponding to 7.2 cy/CL. It is possible tother decrease the runtime by “abusing”
FMA operations: by keeping a vector register that has attaimponents set to floating-point one,
we can model an addition, i.g.= a x 1.0+ b. By this optimization we can keep the loop iteration
time at 16 cycles for 5-way unrolling, corresponding tdsa = 6.4 cy. The instruction scheduling
for this version is shown on the right in Fig. We replace the second unrolled additions by an FMA
to increase throughput while minimizing the five-cycle tatg via unrolling. The ECM model input
for this optimized kernel i$6.4|/2|2|4+1]9.2+ 1} cy for HSW and{6.4| 2| 2|4+ 5|8.8+ 5} cy
for BDW. The resulting ECM predictions afé.4]6.4]9119.2} cy and{6.4]6.4]13] 26.8} cy,
respectively.

The conclusion from this analysis is that there is no exgkptrformance difference for in-
memory working sets between the naive scalar product andahan version if AVX vectorization
is applied to Kahan. It comes for free even in the L3 cachey@mlin-L1 and in-L2 data we expect
a 2x slowdown for Kahan versus the naive version even with thé fessible code.

4.2.2. Intel Xeon Phi On KNC, the vector instructions performing arithmetic ggims can only
retire on the vector U-pipe. Thus it makes no sense to use #asistrategy as on HSW and
BDW to replace additions/subtractions by fused multipdigtanstructions. To process one work
unit (16 scalar iterations) using 512-b SIMD instructidihg, core has to execute one fused multiply-
add and three additions/subtractions, yieldig = 4 cy; the two 512-b loads can be executed in
parallel with some of the arithmetic instructions wheniiastions are paired correctly, resulting in
ThoL = 2¢y. At 32 B/cy, T 112 = 4cy for two cache lines. As previously determined, the sosth
memory bandwidth of 175 GB/s corresponds to a transfer tinGedacy/CL; thusT, opem = 0.8cy.

We found that it is necessary to use separate, specificabiged kernels to obtain the
best performance for each individual cache level. The Ltlniped kernel needs no prefetching
instructions at all. For data in the L2 cache, two softwaedgiching instructions are used, fetching
eight cache lines ahead. These two instructions can bedpuwiith arithmetic instructions and
thus do not change in-core execution time (see lines two &id & Fig. 4). For data coming
from main memory, we prefetch 64 iterations ahead into thedache and also keep the previous
prefetching strategy of fetching cache lines eight iterstiahead from L2 into L1. The two new
prefetch instructions can no longer be paired, becausem@utof unpaired arithmetic instructions:
The first FMA and the first ADD is paired with the LOADs that lgidata into the registers; the
second and third ADD/SUB are paired with the L2-L1 softwaref@tch instructions. The in-core
execution time is thus extended by two additional cyclestertwo prefetch instructions from main
memory into L2. The ECM input for KNC thus 4|2+ 22+ 2uyem | 4| 0.8+ 17} cy. Note that
the composition off,,o. is dependent on where input data is coming from: in the L1 derme are
retiring just two load instructions s&,o =2 cy; in the kernel optimized for data coming from the

*By increasing the unrolling factor from four to five, we haeenait 2x 5 cycles after the ADD instructions instead of
2 x 4 when using four-way unrolling.

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 J. HOFMANN ET AL.

25 "I(')"""'I HEAEEL DAL I IR 30 "I(b')"'“"l HELEALE D DL B
a
—e Naive (Compiler L ~— Naive (Compiler 26.4
@ 20 .~ Kahan (AVX) 3 o == Kahan (AVX)
g | — Kahan (AVX opt 19.2] - +— Kahan (AVX opt
Q o 20+ —
< <
g 151 1 8
o O
TR 1 5 |
o o
¢ 10 - @ 13 cycles
e} 9 cycles | S 10 geycles i
O O s
5 n Ll 6.4 cycle _
. 4 cycles
O 11l 2I (I:X(I:Ellllesl 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 0 III 2I (I:YI(I:I!I?SI 1 IIIIIII 11 IIIIIII 11 IIIIIII 11 IIIIIII
10° 100 100 100 100 10° 10> 100 100 100 10° 10°
Dataset Size [kB] Dataset Size [kB]

Figure 5. Single-core cycles per CL vs. data set size for ANC/FMA and the naive scalar product in
SP on (a) HSW and (b) BDW. The horizontal black lines repregenECM model predictions.

L2 cache, we need to include two prefetching instruction$,gp=2 cy+2 cy=4 cy; finally, for the
memory-optimized kernel, we have to include two more podfieig instructions, sd,o.=6 cy. The
full ECM prediction is{4]8]27.8} cy.

4.2.3. IBM POWER8 On PWRS8, 16 VSX LOADs (eight 16-byte LOADs per 128-byte cache
line) and required to load and an additional 32 (eight VSX FMAd 24 VSX ADD/SUB)
instructions are required to process one cache line. Covaghput is limited by the two arithmetic
VSX units, which require 16 cycles to process all 32 FMA/ABDB instructions, resulting in
ToL = 16c¢y;ThoL is zero. The remaining ECM inputs are identical to the nadatgpdoduct, yielding
{16]/0|4|8|10} as ECM input. The full ECM prediction i§16]16]16] 22} cy.

5. PERFORMANCE RESULTS AND MODEL VALIDATION

5.1. Intel Haswell-EP and Broadwell-EP

Single-core benchmarking results for single precision &\Hand BDW are shown in FigSa and
5b. The model describes the overall behavior very well. Theenglain sdot) and the AVX Kahan
version show identical performance in L3 cache and beyosdradicted there is no performance
drop for the AVX Kahan version from L1 to L2. The naive versias well as the AVX/FMA
variant of Kahan fall short of the L2 model prediction; whethhis is due to inefficiencies of
the hardware prefetcher or issues with the new 64-B wide letswden L2 and L1 can only be
speculated upon. We have no explanation for why the AVX/FMpimized version shows worse
in-memory performance on HSW.

In-memory scaling results on the chip level for HSW and BDW sinown in Figs8a and8b.
Note here that due to the cluster on die mode, the actual nuofb®res per memory domain
is half of what thex axis in the graphs shows, i.e., the two-core run was done evithcore per
memory domain. This ensures that we can report the capebitf the full chip. The number of
cores required to reach saturation is underestimated im ¢agtes. It is a well-known deficiency
of the ECM model that the scaling behavior near the saturgtioint is not tracked correctly.
We attribute this to the documented change in the prefegchirategy near memory bandwidth
saturation 20]. The compiler-generated Kahan code is so slow that it mitse target of memory

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 11

80I T IIIIIII T T IIIIIII T T LU
.g - [e—e Naive (compiler)]
= 60k | Kahan (manual, L1) B
2 +~— Kahan (manual, L2)
8 I |~ Kahan (manual MEM 1
)
5 40 -
% | | Figure 6. Single-core cycles per CL vs. data
Q set size with different implementations tuned
Q L _| for specific memory hierarchy levels of the
L>)‘ 20 4 cycles Kahan scalar product and the compiler generated
L b geaa s i0 s HBPEESIEY {1 naive scalar product in SP on Intel KNC. The
B black horizontal lines represent the ECM model
Ob——nl ol el predictions. All versions use 2-SMT except the
10 102 10 manual memory-optimized kernel, which uses 4-
Dataset Size [kB] SMT.

bandwidth saturation by far on both architectures. On HSW wauld need more than twice the
number of available cores to reach saturation.

5.2. Intel Xeon Phi

Figure 6 shows the SP single core results for Xeon Phi. The model fitg well as long as the
special code variant in every memory hierarchy level is usétiough the Xeon Phi has a hardware
prefetcher, best performance can only be achieved by apategoftware prefetching.

In-memory scaling results are shown in F&.. In accordance with Intel’s guidelines, which
recommend using a single thread per core when trying to rdcmaximum sustained bandwidth
on KNC [14], all in-memory scaling measurements were performed wi8MIT. The compiler-
generated naive and manual Kahan variants are all but @#n¥Xeon Phi exposes a piecewise
linear scaling behavior which is not captured by the lineating assumption of the ECM model:
Three phases can be identified, with a clear change in slogbaatt 20 and 50 cores. While the
naive and manual Kahan codes achieve bandwidth saturétiemaive compiler version misses it
by far.

5.3. IBM POWERS

Fig 7b shows the SP single core results for the PWR8 processonmnbldel correctly predicts the
observed identical performance in L1 and L2 for the naiveaveiand in all memory hierarchy levels
for the Kahan variant. In contrast to the Intel architecswre failed to reach the predicted instruction
throughput of the processor by 20-30%. PWRS is also mordtsen® small loop lengths. The
8 MB L3 cache is only effective up to 2 MB. Beyond this pointfeemance dramatically decreases
and fluctuates. The aggregated L4 buffer cache is not vigitilee measurements. For in-memory
data sets the performance improves and stabilizes. Thex@ d®cumented hardware feature that
could explain the erratic behavior between 2 MB and 64 MB waglset size.

Fig 7a shows the impact of different SMT options on the naive sé&otopmance. There is no
SMT setting that shows competitive performance in all mgniderarchy levels. In L1, more SMT
threads lead to shorter loops and a corresponding breakaoperformance. In L2, any number
of threads greater than one enables “wirespeed.” In L3 (UpNtB) there is clearly is a strong
latency effect, which can be compensated only by SMT-8. FedviB to the L4 capacity limit
all variants exhibit the same fluctuating performance patigth SMT-4 and SMT-8 showing the
best performance. Then in memory surprisingly SMT-4 is i§icgntly better than SMT-8. For
in-memory data sets we provide two ECM model predictionscylB we assume that evicts of
cachelines from L2 to L3 fully overlap with reloads from memdo L2, and 22 cy if we assume
there is no overlap among those contributions. Only SMT-fagter than 22 cy, indicating that

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 J. HOFMANN ET AL.

50 [rrrrmm T J IR 30 M B L I D D I
_ @ Naive 1 o L]
T =t | z
o 4of [=—=2-SMT| 1 ¥ SN .
3, —4-SMT| ! S B
P ._‘S-SI\I/IT gi 2 20 cyclef
— | N -

Q 30 R o I :
S o S 15
o] I ! B B
O SO S]
= 20 R =
g 8 10k 12 cycles
(%] r (%)
Q Q L .
S 10 1 |12 ¢ycles| — S 5l 8 cycles i i |
© 8 cycles ! : ! ! © — Naive (Compiler, 8-SMT])
I I I I T 3 +— Kahan (VSX, 8-SMT) -
O I 111 : I 1 1 IlIIIIII :I 1 1 IIIIiIII 0 III 11 IIIIIII 1 1 IIIIIII 11 IIIIIII 1 1 IIIIIII 11 IIIIIII 1 1111
10” 10° 10" 10 100 1¢¢ 100 10° 10
Dataset Size [kB] Dataset Size [kB]

Figure 7. Single-core cycles per CL vs. data set size on P& &Results for different SMT settings for
naive scalar product using SP. (b) Comparison of comp#eregated naive scalar product and manual SIMD
Kahan enhanced scalar product using SMT-8. The horizantd kre ECM model predictions.

there is at least some overlap. More investigations aressacg to fully understand this complex
behavior.

In-memory scaling results are shown in Figl. The Naive and Kahan variants show almost
identical scaling behavior and quickly saturate the mentmgdwidth. In contrast to the Intel
architectures the compiler version of Kahan (using SMTHJost saturates the bandwidth.

5.4. DP performance for compiler-generated Kahan variant

As most applications rely on compiler-generated code, wevsthe saturation behavior of the
compiler-generated Kahan variant for DP in FigSince all compilers fail at SIMD vectorization,
it is interesting to see on which architectures memory baditws still achieved. On PWR8 we
have already observed near-saturation in the SP case; WithiDhappens at five cores. Comparing
HSW and BDW, the additional cores help BDW to just about sa&uwhereas HSW misses this
goal. KNC, as expected, misses saturation by a long shotibbaichieves an absolute performance
slightly better than PWRS.

5.5. Comparison across architectures

For meaningful cross-architectural comparison of the Ka¢rahanced dot product performance we
report the cycleper update in all memory hierarchy levels (Fig.0a) and the absolute performance
for the in-memory case in GUP/s for single core as well asuliefiip (Fig. 10b). In L1 and L2 all
Intel architectures run close to their design specificati®WR8 in contrast is slightly less efficient
missing its design instruction throughput by 30%. In L3 anehmory the results are reversed, here
the Intel architectures show a significant drop in perforoeafor L3 and also memory, especially
BDW with its complex Uncore design and large number of cordsgreas PWR8 due to its lock-
free memory hierarchy shows less severe performance leaisdvith increasing working set size.
(Note, however, the large performance variations in a dettaize window between 2 MB to over
64 MB as described in Se&.3)

Regarding absolute single-core and full-chip in-memomfqrenance (Fig10b), PWRS8 due to
its cache architecture and higher frequency shows the eésirmmance of all multicore chips, only
surpassed by the full-chip KNC by more than a factor of two ttuthe latter’s superior memory
bandwidth.

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 13

I I I I I I I I I I I I I I I I I I
g (@ HSW____ - gl (b) BDW. - — |
%6— o—o Naive (icc)] %6— i
O, o—o Kahan (icc) O,
8t o— Kahan (manua|) - 8+ -
C [
S 1 g4]
gl | &1]
@ @
o 2L _ [a 2L _
0]]]] | | | 0 1 | | | | | | | | | |
2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 1820 22
Number of Cores Number of Cores
30— T T T T T 10— T T T T T T T T T
| T T T T T] _(d) PW 8 |
(c) KNC
w25_ — z‘ 8 -
st] S
_______ 5 1 |
3,200 o
o | | g6]
o (8}
€ 151 - s :
E |] £ 4 .
£ 10+ — 2
S] S T o-oNaive (xic), 4-SMT | |
5l 2+ o—o Kahan (xlIc), 8-SMT —
M I o— Kahan (manual), 4-SM[T |
0 L | L | L 0 | |

| L | L |
0 10 20 30 40 50 60 1 2
Number of Cores N

o.)—

<N
ok
ok
~F
ok
ok
5

Figure 8. In-memory scaling (10 GB working set size) for elifint implementations of the Kahan scalar
product using SP on (a) HSW, (b) BDW, (c) KNC, and (d) PWR8. @Qpdate (UP) is equivalent to five
flops (one MULT, four ADDs).

5

= T i

S 4 _

o)

o i

o 3 -

(8]

c - 4

I

E 21 .

5 o0—0 HSW

S0 oc—0BDW |] Figure 9. On-chip performance scaling of

a 1+ o< KNC | A the compiler-generated Kahan-enhanced ddot
L A-APWRE | on all tested processors. The saturated
0 ! ! 1 1 1 performance is 4GUP/s for HSW/BDW,
0 20% 40% 60% 80% 1009 10.6 GUP/s for KNC, and 4.5GUP/s for

Percentage of Cores on Chip PWRS.

6. CONCLUSION

We have investigated the performance of naive and Kahaareeldl variants of the scalar
product on a range of recent multi- and manycore chips. UgiageCM model the single-core
performance in all memory hierarchy levels and the multecscaling for in-memory data were

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 J. HOFMANN ET AL.

4
H @ Haswell-EP 4C34C | 20
Il Brodwell-EP
= Knights Cornel o
£s3 POWERS %)
2
= 315
o} o E‘
9] % 3
§2 é g 10
g % 8
5 . 5
(@] 1 é 5 5
%
é
7

0 L1 L3 MEM 0 sigle core full chip

Figure 10. Comparison between all tested architecturegyube manually implemented SIMD variants of

the Kahan-enhanced scalar product in SP: (a) Measureasiogt runtime in cycles per update in different

memory hierarchy levels. The saturation paigtis indicated above the bars for the memory-bound case
(smaller is better). (b) Measured full chip performancetfa in memory data set (bigger is better).

accurately described. The most important result is than ¢ve single-threaded optimized Kahan
implementation comes with no performance penalty on thed mtilticore chips under investigation
compared to a naive sdot implementation in the L3 cache anteimory. On IBM POWERS this
applies only for in-memory data sets. On the other hand, &BR8 is able to saturate the memory
bandwidth with very few cores and provides the best singke-and chip-level performance for in-
memory data. Depending on the particular architecture amether single or double precision is
used, even compiler-generated code may achieve memoryimthdsaturation on the full chip.
Intel Xeon Phi as well as IBM POWERS require special code orTdttings to achieve best
performance in different memory hierarchy levels. Furiiheestigations are necessary to explain
erratic performance behavior on POWERS for data sets bet@&B and 64 MB.

We emphasize that the approach and insights described dretieef special case of the Kahan
scalar product can serve as a blueprint for other load-dat®éhstreaming kernels. Especially on
POWERS, the ECM model still needs to be validated and adjustang more complex codes such
as stencil algorithms.

6.0.1. Acknowledgement We thank pro com and IBM Germany for access to an IBM POWERS tes
system, and Intel Germany for providing an early accessdved-EP test system.

REFERENCES

1. Goldberg D. What every computer scientist should knowaHoating-point arithmeticACM Comput. Surv. Mar
1991;23(1):5-48,D01:10.1145/103162.103163
2. Linz P. Accurate floating-point summation. Commun. ACM Jun 1970; 13(6):361-362,
DOI:10.1145/362384.362498
. Gregory J. A comparison of floating point summation metho@ommun. ACM Sep 1972; 15(9),
DOI:10.1145/361573.361584
. Kahan W. Pracniques: Further remarks on reducing triorcagrrors. Commun. ACM Jan 1965;8(1),
DOI:10.1145/363707.363723
. Rump SM, Ogita T, Oishi S. Accurate floating-point sumatpart |: Faithful roundingSIAM J. Sci. Compui.
Oct 2008;31(1):189-224D0I:10.1137/05064567.1
. Zhu YK, Hayes WB. Algorithm 908: Online exact summatiorflofting-point streamsACM Trans. Math. Softw.
2010;37(3):1-13,D01:10.1145/1824801.1824815
. Demmel J, Nguyen HD. Fast reproducible floating-point mation. 21st |IEEE Symposium on Computer
Arithmetic, 2013; 163—-172D0I:10.1109/ARITH.2013.9
. Dalton B, Wang A, Blainey B. SIMDizing pairwise sums: A smation algorithm balancing accuracy with
throughput.Proceedings of the 2014 Workshop on Programming Models for SMD/Vector Processing, WPMVP
14, ACM: New York, NY, USA, 2014; 65-70001:10.1145/2568058.2568070
9. Hofmann J, Fey D, Riedmann M, Eitzinger J, Hager G, Well&n Performance analysis of the
Kahan-enhanced scalar product on current multicore psocges CoRR abs/1505.02586 2015; URL

o N o o M~ W

Copyright© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/362384.362498
http://dx.doi.org/10.1145/361573.361584
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1145/1824801.1824815
http://dx.doi.org/10.1109/ARITH.2013.9
http://dx.doi.org/10.1145/2568058.2568070

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Copyright© 2016 John Wiley & Sons, Ltd.

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 15

http://arxiv.org/abs/1505.02586, accepted for PPAM'2015, the 11th International Confeeeno
Parallel Processing and Applied Mathematics, Septemi$e2615, Krakow, Poland.

Treibig J, Hager G. Introducing a performance model fordwidth-limited loop kernelarallel Processing and
Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R, Dongarra J, Karczewski K,
Wasniewski J (eds.), Springer Berlin / Heidelberg, 201G-&R4.

Hager G, Treibig J, Habich J, Wellein G. Exploring pamiance and power properties of modern multicore chips
via simple machine model€oncurrency Computat.: Pract. Exper. 2013; DOI: 10.1002/cpe.3180.

Stengel H, Treibig J, Hager G, Wellein G. Quantifying foenance bottlenecks of stencil computations
using the Execution-Cache-Memory modétroceedings of the 29th ACM International Conference on
Supercomputing, ICS 15, ACM: New York, NY, USA, 2015, DOI:10.1145/2751205.2751240URL
http://doi.acm.org/10.1145/2751205.2751240.

Williams S, Waterman A, Patterson D. Roofline: An insightvisual performance model for multicore
architecturesCommun. ACM 2009;52(4):65—-76,D01:10.1145/1498765.1498785

Intel Corporation. Optimizing Memory Bandwidth on @me Triad. Https://software.intel.com/en-
us/articles/optimizing-memory-bandwidth-on-strearae, accessed March 29, 2016.

Starke WJ, Stuecheli J, Daly D, Dodson JS, Auernhamm8agineister P, Guthrie GL, Marino CF, Siegel MS,
Blaner B. The cache and memory subsystems of the IBM POWEB&:psor.|BM Journal of Research and
Development 2015;59(1), DOI:10.1147/JRD.2014.2376131

Hofmann J, Fey D, Eitzinger J, Hager G, Wellein G. Anaysilntel's Haswell Microarchitecture Using The ECM
Model and Microbenchmark€CoRR abs/1511.03639 2015; URLhttp://arxiv.org/abs/1511.03639,
accepted for ARCS’2016, the 29th International ConfereAqeil 4-7, 2016, Nuremberg, Germany.

Treibig J, Hager G, Wellein G. likwid-bench: An exterisib microbenchmarking platform
for x86 multicore compute nodes.Tools for High Performance Computing 2011, Brunst H,
et al. (eds.). Springer Berlin Heidelberg, 2012; 27-36)0I:10.1007/978-3-642-31476-8. URL
http://dx.doi.org/10.1007/978-3-642-31476-6_3.

Intel Corporation. Intel Xeon Phi Core Micro-architeet. Https://software.intel.com/en-us/articles/intebn-phi-
core-micro-architecture, accessed 29.3.2016.

Sinharoy B, Norstrand JAV, Eickemeyer RJ, Le HQ, Leen3tNguyen DQ, Konigsburg B, Ward K, Brown MD,
Moreira JE,et al.. IBM POWERS processor core microarchitectuM Journal of Research and Development
Jan 201559(1):2:1-2:21D0I:10.1147/JRD.2014.2376112

Intel Corp. Intel64 and IA-32 Architectures Optimizati Reference Manual.

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual

2015. Version: September 2015.

Concurrency Computat.: Pract. Exper. (2016)

Prepared using cpeauth.cls DOI: 10.1002/cpe

.pdf

http://arxiv.org/abs/1505.02586
http://dx.doi.org/10.1145/2751205.2751240
http://doi.acm.org/10.1145/2751205.2751240
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1147/JRD.2014.2376131
http://arxiv.org/abs/1511.03639
http://dx.doi.org/10.1007/978-3-642-31476-6_3
http://dx.doi.org/10.1007/978-3-642-31476-6_3
http://dx.doi.org/10.1147/JRD.2014.2376112
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

	1 Introduction and related work
	2 The ECM performance model
	3 Experimental testbed
	4 Optimal implementations and performance models for dot
	4.1 Naive scalar product
	4.1.1 Intel Haswell-EP and Broadwell-EP
	4.1.2 Intel Xeon Phi
	4.1.3 IBM POWER8

	4.2 Kahan-enhanced scalar product
	4.2.1 Intel Haswell-EP and Broadwell-EP
	4.2.2 Intel Xeon Phi
	4.2.3 IBM POWER8

	5 Performance results and model validation
	5.1 Intel Haswell-EP and Broadwell-EP
	5.2 Intel Xeon Phi
	5.3 IBM POWER8
	5.4 DP performance for compiler-generated Kahan variant
	5.5 Comparison across architectures

	6 Conclusion
	6.0.1 Acknowledgement

