
ar
X

iv
:1

60
4.

01
89

0v
1

 [c
s.

P
F

]
7

A
pr

 2
01

6
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016;00:1–15
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Performance analysis of the Kahan-enhanced scalar producton
current multi- and manycore processors

J. Hofmann1,∗,†, D. Fey1, M. Riedmann2, J. Eitzinger3, G. Hager3 and G. Wellein3

1 Chair for Computer Architecture, University of Erlangen-Nuremberg, Erlangen, Germany
2 AREVA GmbH, Erlangen, Germany

3 Erlangen Regional Computing Center (RRZE), University of Erlangen-Nuremberg, Erlangen, Germany

SUMMARY

We investigate the performance characteristics of a numerically enhanced scalar product (dot) kernel loop
that uses the Kahan algorithm to compensate for numerical errors, and describe efficient SIMD-vectorized
implementations on recent multi- and manycore processors.Using low-level instruction analysis and the
execution-cache-memory (ECM) performance model we pinpoint the relevant performance bottlenecks for
single-core and thread-parallel execution, and predict performance and saturation behavior. We show that
the Kahan-enhanced scalar product comes at almost no additional cost compared to the naive (non-Kahan)
scalar product if appropriate low-level optimizations, notably SIMD vectorization and unrolling, are applied.
The ECM model is extended appropriately to accommodate not only modern Intel multicore chips but also
the Intel Xeon Phi “Knights Corner” coprocessor and an IBM POWER8 CPU. This allows us to discuss the
impact of processor features on the performance across fourmodern architectures that are relevant for high
performance computing.
Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: ECM Performance Model; Kahan; Scalar Product; Xeon; Knights Corner; POWER8

1. INTRODUCTION AND RELATED WORK

Accumulating finite-precision floating-point numbers in a scalar variable is a common operation
in computational science and engineering. The consequences in terms of accuracy are inherent
to the number representation and have been well known and studied for a long time [1]. There
are a number of summation algorithms that enhance accuracy while maintaining an acceptable
throughput [2, 3], of which Kahan [4] is probably the most popular one. However, the topic is still
subject to active research [5, 6, 7, 8]. A straightforward solution to the inherent accuracy problems
is arbitrary-precision floating point arithmetic, which comes at a significant performance penalty.
Naive summation and arbitrary precision arithmetic are at opposite ends of a broad spectrum of
options, and balancing performance vs. accuracy is a key concern when selecting a specific solution.

Naive summation, which simply adds each successive number in sequence to an accumulator,
requires appropriate unrolling for single instruction multiple data (SIMD) vectorization and
pipelining. The necessary code transformations are performed automatically by modern compilers,

†E-mail: johannes.hofmann@fau.de
∗Correspondence to: Johannes Hofmann, Lehrstuhl für Rechnerarchitektur (Informatik 3), Martensstr. 3, 91058 Erlangen,
Germany

Copyright c© 2016 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

http://arxiv.org/abs/1604.01890v1

2 J. HOFMANN ET AL.

which results in optimal in-core performance. Such a code quickly saturates the memory bandwidth
of modern multi-core CPUs when the data is in memory.

This paper investigates implementations of the scalar product, a kernel which is relevant in many
numerical algorithms. Starting from an optimal naive implementation it considers scalar and SIMD-
vectorized versions of the Kahan algorithm using various SIMD instruction set extensions on a
range of multi- and manycore processors from Intel and IBM. Using an analytic performance model
we point out the conditions under which Kahan comes for free,and we predict the single core
performance in all memory hierarchy levels as well as the scaling behavior across the cores of a
chip. The present work is an extended version of [9], where we carried out the analysis for a range
of older Intel Xeon processors. Apart from new architectures we present a refined version of the
ECM performance model and add an additional optimization for the Intel Haswell-EP CPU.

This paper is organized as follows. In Sect.3 we give an overview of the hardware used for
analysis and benchmarking. Section2 introduces the execution-cache-memory (ECM) performance
model, which is used in Sect.4 to describe different variants of the naive and the Kahan scalar
product. Section5 gives performance results and validates the models. Section 6 provides a
conclusion and some comments on the possible extension of our work.

2. THE ECM PERFORMANCE MODEL

The execution-cache-memory (ECM) model [10, 11, 12, 9] is an analytic performance model that
uses hardware architecture specifications and few measurements as input. It estimates the number
of CPU cycles required to execute a number of iterations of a loop on a single core of a multi-
or many-core chip. The prediction comprises contributionsfrom the in-core execution timeTcore,
i.e., the time spent executing instructions in the core under the assumption that all data resides in
the L1 cache, and the transfer timeTdata, i.e., the time spent transferring data from its location in
the cache/memory hierarchy to the L1 cache. As data transfers in the cache and memory hierarchy
occur at cache line (CL) granularity we choose the number of loop iterationsnit to correspond to
one cache line’s “worth of work.” On Intel architectures, where CLs are 64 B long, we usenit = 16
for the single precision (SP) dot product because sixteen SPfloating-point numbers (4 B each) fit
into one CL. CLs on the IBM POWER8 architectures are 128 B, which leads tonit = 32 for the SP
dot product.

Superscalar core designs house multiple execution units, for loading and storing data,
multiplication, division, addition, etc. The in-core execution timeTcore is determined by the unit that
takes the longest to execute the instructions allocated to it. Other constraints for the in-core execution
time of a single core may apply, e.g., the four micro-op per cycle retirement limit for Intel’s Xeon
cores and the eight instruction per cycle retirement limit for IBM’s POWER8 core. The model
differentiates between core cycles depending on whether data transfers in the cache hierarchy can
overlap with in-core execution time. For instance, on IntelXeons, core cycles in which data is moved
between the L1 cache and registers, e.g., cycles in which load and/or store instructions are retired,
prohibit the simultaneous transfers of data between the L1 and L2 cache; these “non-overlapping”
cycles contribute toTnOL. Cycles in which other instructions, such as arithmetic instructions, retire
are considered “overlapping” cycles and contribute toTOL. The in-core runtime is the maximum
of both: Tcore= max(TOL,TnOL). Note that the non-overlapping quality of L1-register transfers is
specific to Intel CPUs. We will see later that the IBM POWER8 does not have non-overlapping
instructions.

For modeling the data transfers, latency effects are initially neglected, so transfer times are
exclusively a function of bandwidth. Cache bandwidths are typically well documented and can be
found in vendor data sheets. Depending on how many CLs have tobe transferred, the contribution
of each level in the memory hierarchy (TL1L2, . . . , TL3Mem) can be determined. Special care has to
be taken when dealing with main memory bandwidth, because peak memory bandwidth specified
in the data sheet and sustained memory bandwidthbs can differ greatly. In addition, in practice the
sustained bandwidth may also depend on the number of distinct load and store streams. It is therefore
recommended to empirically determinebs using a kernel that resembles the memory access pattern

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 3

��������
��������
��������

��������
��������
��������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������

�������
�������
�������
�������

��������
��������
��������
��������

�������
�������
�������

�������
�������
�������

��
��
��

��
��
��

��
��
��

��
��
��

Tmem TchipTmem Tchip

Tmem Tchip Tmem TchipTchip

Tmem

Tmem Tchip Tmem TchipTchip

Tmem TchipTmem Tchip

Tmem Tchip Tmem TchipTchip

Tmem

Tmem Tchip Tmem Tchip

core 0

core 1

core 2

Tmem Tchip Tmem Tchip

Tmem Tchip TmemTchip

Tmem TchipTchip

(a)
core 0

core 1

(b)

core 0

core 1

core 2

core 3

(c)

time

Figure 1. Multicore scaling in the ECM model.Tmem is the time spent for data transfers over the memory
bottleneck, whileTchip comprises all non-bottlenecked (i.e., core-local) contributions. The saturation point
is at three cores in this case since(Tchip+Tmem)/Tmem= 3. Hatched boxes denote stalls, which emerge from

using more cores than needed for bandwidth saturation.

of the benchmark to be modeled. Oncebs has been obtained, the time to transfer one CL between the
cache hierarchy and main memory can be derived from the CPU frequencyf as 64B· f/bs cycles.

In a second step, an empirically determined latency penaltyTp is applied to off-core transfer
times. This departure from the bandwidth-only model has been mandated by the inability of some
architectures to hide the memory access latency. On regularXeon processors, this penalty is added
for each level in the memory hierarchy that has to make use of the Uncore interconnect (i.e., the L3
cache, as data is pseudo-randomly distributed between all last-level cache segments and memory,
because the memory controller is attached to the ring bus as well). On Knights Corner there exists
no shared cache when each thread is working on its own data; each core is using data from its
local L2 cache so the latency penalty is only added when the core-ring-interconnect is used to
get data from main memory. Instruction times as well as data transfer times, e.g.,TL1L2 for the
time required to transfer data between L1 and L2 caches, are summarized in a shorthand notation:
{

TOL ‖TnOL |TL1L2 |TL2L3+Tp |TL3Mem+Tp
}

.
To arrive at a prediction, in-core execution and data transfer times must be combined

appropriately. The runtime is given by eitherTOL or the sum of non-overlapping core cyclesTnOL
plus contributions of data transfersTdata, whichever takes longer.Tdatacomprises all necessary data
transfers in the memory hierarchy, plus latency penalties if applicable. Again we have to distinguish
between overlapping and non-overlapping behavior; in caseof Intel Xeon, any data transfer during
a specific cycle in the inclusive cache hierarchy prevents all other transfers (including those in
TOL) in that cycle.Tdata is thus the sum of all cycles required to transfer the data to L1 and back.
E.g., for data coming from the L3 cache we haveTdata= TL1L2 + TL2L3 + Tp. The prediction is
thusTECM = max(TOL,TnOL+ Tdata). Note that for other architectures with different overlapping
properties and/or exclusive cache hierarchies this formula may look very different.

In order to summarize the predictions for data coming from different levels in the hierarchy we use
a shorthand notation:

{

T core
ECM⌉T L2

ECM⌉T L3
ECM⌉T Mem

ECM

}

. Converting from time (cycles) to performance
is done by dividing the workW (e.g., floating-point operations, updates, or any other relevant work
metric) by the runtime:PECM =W/TECM.

The model assumes that single-core performance scales linearly with the cores until a shared
bottleneck is saturated. On most modern processors the onlyshared bottleneck is main memory
bandwidth. As shown in Fig.1, the ratio of the overall single-core execution time and the
contribution of the bottleneck determines the maximum speedup: as long as the number of cores
is smaller than this ratio, the memory bus is not saturated. In terms of the ECM model, the
maximum speedup isσS = T Mem

ECM /TL3Mem. Performance at the saturation point is thenPS
ECM =

f ·σS ·WCL/T Mem
ECM = f ·WCL/TL3Mem, whereWCL is the work per CL andf is the processor clock

frequency. This is just another formulation of the bandwidth-bound part of the Roofline model [13].
The core count necessary to saturate the memory bandwidth isnS = ⌈T Mem

ECM /TL3Mem⌉. If nS≥ nchip,
i.e., if the required number of cores for saturation exceedsthe available number, the code is scalable.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 J. HOFMANN ET AL.

Microarchitecture Haswell-EP Broadwell-EP Knights Corner POWER8
Shorthand HSW BDW KNC PWR8

Chip model E5-2695 v3 unknown 5110P S822LC
Release date Q3 2014 pre-release Q4 2012 Q2 2014

Nominal CPU clock 2.3 GHz 2.1 GHz 1.05 GHz 2.926 GHz

Cores/threads 14/28 22/44 60/240 10/80
Max. SIMD width 32 B 32 B 64 B 16 B

of SIMD registers 16 16 32 64

Instruction throughput per cycle
LOAD/STORE 2 / 1 2 / 1 1 / 1 2 / 2

ADD/MUL/FMA 1 / 2 / 2 1 / 2 / 2 1 / 1 / 1 2 / 2 / 2

Core-private caches 32 kB L1 32 kB L1 32 kB L1 64 kB L1
256 kB L2 256 kB L2 512 kB L2 512 kB L2

— — — 8 MB L3
Shared caches 35 MB L3 55 MB L3 — 64 MB L4

L2-L1 bandwidth 64 B/cy 64 B/cy 32 B/cy 64 B/cy
L3-L2 bandwidth 32 B/cy 32 B/cy — 32 B/cy

MEM-L3 bandwidth ∼14 B/cy ∼15 B/cy 160 B/cy —
Centaur-L2 bandwidth — — — ∼19 B/cy

Main memory 4×DDR4-2166 4×DDR4-2166 16×GDDR5-5000 4×Centaur

Theor. load BW 69.3 GB/s 69.3 GB/s 320 GB/s 76.8 GB/s
Meas. load BW 2×32.0 GB/s (92%) 2×32.3 GB/s (93%) 175 GB/s (55%) 73.6 GB/s (96%)

Table I. Test machine specifications and micro-architectural features (one socket). The cache line size is
64 bytes for all Intel architectures and 128 bytes for IBM POWER8.

3. EXPERIMENTAL TESTBED

TableI gives an overview of the relevant architectural details of the systems used in this paper. The
regular Xeon machines (Haswell-EP and Broadwell-EP) and the POWER8 machine are standard
two-socket systems. The Xeon Phi coprocessor (Knights Corner) is a PCIe card hosted in a standard
two-socket Ivy Bridge-EP system.

Note that BDW corresponds to a “tick” in Intel’s design model, i.e., it is a shrink in the
manufacturing process technology from 22 nm to 14 nm with only minor architectural improvements
compared to HSW. All results for Broadwell-EP are preliminary since we only had access to a pre-
release version of the chip.

All SIMD instructions set extensions for the covered microarchitectures support fused multiply-
add (FMA) instructions. The vector scalar extension (VSX) on IBM’s PWR8 have a SIMD width of
16 B. The AVX2 vector extensions supported by HSW and BDW havea SIMD width of 32 B and
KNC’s initial many core instructions (IMCI) allow for 64-B SIMD. All Intel processors employ a
fully inclusive cache architecture whereas PWR8 uses an exclusive victim cache architecture for the
last level cache. This results in different data paths inside the caches. On PWR8 data is loaded from
memory directly into the L2 caches, and only cachelines which get evicted from L2 will be copied
back to the L3 cache.

The sustained memory bandwidth for all architectures was determined using a naive dot product
benchmark. To obtain good results on the Xeon Phi, we followed the optimization instructions for
the STREAM benchmark as described by Intel [14]; in particular, we set the prefetching distance
64 CLs ahead for the L2 cache, 8 CLs for the L1 cache, and used one thread per core to avoid

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 5

(a)
float sum = 0.0;

for (int i=0; i<N; i++) {
sum = sum + a[i] * b[i]

}

(b)
float sum = 0.0;
float c = 0.0;
for (int i=0; i<N; ++i) {

float prod = a[i]*b[i];
float y = prod-c;
float t = sum+y;
c = (t-sum)-y;
sum = t;

}

Figure 2. (a) Naive scalar product code in single precision.(b) Kahan-compensated scalar product code.

congestion on the ring bus. The IBM PWR8 memory bandwidth requires further explanation. PWR8
uses a custom high frequency channel interface between the processor chip and a memory buffer
chip (Centaur) [15]. Each Centaur chip connects to four DRAM channels. PWR8 supports up to
eight memory channels per chip operating at 9.6 GHz with a buswidth of 2 B (read) plus 1 B
(write). Our test system is an IBM S822LC and supports only four Centaur chips. The four memory
channels can provide up to 115.2 GB/s read/write or 76.8 GB/sread-only bandwidth per chip. Note
that this is significantly less than what the 16 attached DRAMchannels (DDR3-1333) could provide
(170.6 GB/s). A fully equipped high-end PWR8 system hence has twice the memory bandwidth per
chip.

Unless noted otherwise, KNC was used in 2-SMT and PWR8 in 8-SMT mode, i.e., two
respectively eight threads were run on each physical core. On HSW and BDW a single thread
was run on each physical core, and Uncore frequency scaling was deactivated. Furthermore, the
“cluster on die” (COD) mode was active for HSW and BDW. In CoD mode, the chip is logically
split into two ccNUMA domains of equal size. Last-level cache and memory requests are limited to
the domain a core is assigned to, reducing latency and collisions in the Uncore interconnect. The two
memory domains per chip are visible in the load-only bandwidth row of TableI; e.g., the sustained
load-only bandwidth for HSW is 32.0 GB/s per memory domain and 64.0 GB/s per chip. For details
on the CoD mode see [16].

4. OPTIMAL IMPLEMENTATIONS AND PERFORMANCE MODELS FOR DOT

We only discuss variants for dot in SP here. The model prediction in terms of cycles per CL
does not change for the SIMD variants of Kahan when going fromSP to double precision (DP),
but one CL update represents twice as much useful work (scalar iterations) in the SP case. To
eliminate variations introduced by compiler-generated code we implemented all kernels directly in
assembly language and use thelikwid-bench microbenchmarking framework [17] to perform
measurements.

4.1. Naive scalar product

An optimal implementation of the naive scalar product in single precision serves as the baseline
(see Fig.2a). All versions of the Kahan-enhanced scalar product described in Section4.2 will be
compared to this baseline.

Sufficient unrolling must be applied to hide the ADD pipelinelatency for the recursive update
on the accumulation register and to apply SIMD vectorization. Both optimizations introduce partial
sums and are therefore not compatible with the C standard as the order of non-associative operations
is changed. With higher optimization levels (-O3) the current Intel C compiler (version 15.0.2) and
IBM XL C compiler (version 13.1.3) both generate optimal code. Note that partial sums usually
improve the accuracy of the result [8].

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 J. HOFMANN ET AL.

4.1.1. Intel Haswell-EP and Broadwell-EP On HSW and BDW the kernel is limited by the
throughput of the LOAD units (see TableI). Two AVX loads per vector (a andb) are required to
cover one unit of work (16 scalar loop iterations), leading to a total of four AVX load instructions;
with two LOAD units, the core can execute two LOAD instructions per cycle, resulting inTnOL =
2cy. To process the data, two FMA instructions have to be executed; with two FMA units, the core
can execute both instructions in a single cycle, resulting in an overlapping part ofTOL = 1cy.

If the data is in the L2 cache, two CLs (one each fora andb) have to be transferred to the L1
cache; at the advertised bandwidth of 64 B/cy this results inTL1L2 = 2cy. With data in L3 it takes
TL2L3 = 4cy to transfer the two CLs to L2 due to the L2-L3 bandwidth of 32 B/cy; the empirical
latency penalty was determined to beTp = 1cy for the 14-core HSW andTp = 5cy for the 22-core
BDW. The latency penalty is strongly correlated with the number of hops in the Uncore; as BDW
features more cores and each core’s L3 slice forms a hop in theUncore its latency is higher than
that of the HSW chip with fewer cores/hops.

To compute the contribution of transferring the two CLs frommain memory to the L3 cache, we
convert the sustained memory bandwidth from GB/s to B/cy. Note that in cluster on die mode a
single core can only make use of the bandwidth inside its memory domain. For the HSW, which
runs at 2.3 GHz, the measured memory domain bandwidth of 32.0GB/s corresponds to a transfer
time of 64B/CL · 2.3GHz/32.0GB/s= 4.6cy/CL or 9.2cy for both CLs. BDW runs at 2.1 GHz,
which leads to a transfer time of 64B/CL ·2.1GHz/32.3GB/s= 4.2cy/CL or 8.4cy for both CLs.
The same latency penalty as for the L3 cache is applied for data coming from main memory,
because the data has to be moved from the memory controller tothe L3 cache segment in which the
cache line is placed. The resulting ECM model inputs are{1‖2|2|4+1|9.2+1} cy for HSW and
{1‖2|2|4+5|8.4+5} cy for BDW.

The full ECM prediction reads{2⌉4⌉9⌉19.2} cy for HSW. We choose an “update” (two flops)
as the basic unit of work to make performance results for different implementations comparable.
The resulting unit is “updates per second” (UP/s). The expected single core performance for the
HSW is thus

P =
16updates·2.3Gcy/s
{2⌉4⌉9⌉19.2} cy

= {18.40⌉9.20⌉4.09⌉1.92} GUP/s. (1)

The predicted saturation point is atnS = ⌈19.2/9.2⌉= 3 cores per memory domain or 6 cores per
chip. Performance at the saturation point isPS

ECM = f ·WCL/TL3Mem= 2.3GHz·16updates/9.2cy=
4GUP/s per memory domain or 8 GUP/s per chip.

For BDW the full ECM prediction is{2⌉4⌉13⌉26.4} cy and the resulting expected serial
performance at 2.1 GHz is

P =
16updates·2.1Gcy/s
{2⌉4⌉13⌉26.4} cy

= {16.80⌉8.40⌉2.58⌉1.27} GUP/s. (2)

The predicted saturation point is atnS = ⌈26.4/8.4⌉= 4 cores per memory domain or 8 cores per
chip. The difference in sustained memory bandwidth betweenour HSW and BDW systems are
marginal, so the prediction for the saturated performance is identical to that of the HSW machine.

4.1.2. Intel Xeon Phi KNC’s initial many core instructions (IMCI) extensions have a SIMD width
of 512 b or 64 B, corresponding to a full cache line. This meansthat two 512-b IMCI load
instructions are needed to load the data from the L1 cache into registers, soTOL = 2cy. Processing
the data requires one FMA instruction, which has a maximum throughput of one per cycle, resulting
in TOL = 1cy. Note that while a KNC core is much simpler than its HSW or BDW counterpart, it is
still capable of retiring two instructions in a superscalarfashion. It features two pipelines: a vector
pipeline (U-pipe) with the 512-b vector processing unit attached and a scalar pipeline that handles
all remaining instructions. While SIMD vector arithmetic is only possible on the U-pipe, the V-pipe

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 7

can also be used for SIMD load instructions. It is thus possible to overlap the FMA that is scheduled
on the U-pipe with one of the load instructions when both instructions are paired.†

At a bandwidth of 32 B/cy [18], it takesTL1L2 = 4cy to deliver the data from the L2 cache to the
core. At a clock speed of 1.05 GHz and a sustained memory bandwidth of 175 GB/s the transfer time
of a single CL is 64B/CL ·1.05GHz/175GB/s= 0.4cy, thus 0.8 cy for both CLs. The empirically
determined latency penalty for the ring interconnect amounts to Tp = 20cy. The resulting ECM
input is{1‖2|4|0.8+20} cy.

The full ECM prediction is{2⌉6⌉26.8} cy. It is clear from these numbers that the KNC is a
strongly latency-dominated machine beyond the L2 cache. The expected performance of a single
core is

P =
16updates·1.05Gcy/s

{2⌉6⌉26.8} cy
= {8.40⌉2.80⌉0.63} GUP/s. (3)

The predicted saturation point is atnS = ⌈26.8/0.8⌉= 34 cores, and the maximum performance is
21.3GUP/s.

4.1.3. IBM POWER8 In contrast to Intel Xeon and Xeon Phi chips, where cache lines are 64 B, the
cache line size on the IBM PWR8 is 128 B. At a SIMD width of 16 B this means that a total of 16
VSX LOAD instructions are required to move data from the L1 cache to the registers, which takes
eight cycles. The L1 cache is multi-ported, i.e., it can supply data to the registers and simultaneously
receive data from the L2 cache [19]. Eight VSX FMA instructions process the data from both CLs;
the kernel is thus limited by the throughput of the LOAD unitsandTOL = 8cy. As there are no
non-overlapping instructions, we haveTnOL = 0cy.

Data can be delivered from the L2 to the L1 at a bandwidth of 64 B/cy, thusTL1L2 = 4cy.
Using the documented L2-L3 bandwidth of 32 B/cy we calculateTL2L3 = 8cy. When data is in
main memory, the bandwidth of the chip-to-Centaur interconnect proves to be the bottleneck:
each centaur can provide 19.2 GB/s, which translates into a peak bandwidth of 76.8 GB/s for
our system. The measured sustained memory bandwidth is 73.6GB/s, hence a CL transfer takes
128B/CL ·2.9GHz/73.6GB/s= 5.0cy. Consequently,TL2L4 = 10cy.

The resulting ECM input is{8‖0|4|8|10} cy. We assume a latency penaltyTp of zero, because
in the measurements there is no deviation from the model prediction for data coming from the L3
cache. The reason is that on PWR8, each core has a dedicated L3cache in which data for a particular
core resides; opposed to Intel’s Uncore design, no transfers across the L3 cache interconnect are
necessary when accessing data from L3. The full ECM model prediction is{8⌉8⌉12⌉22} cy. The
predicted saturation point is atnS = ⌈22/10⌉= 3 cores.

4.2. Kahan-enhanced scalar product

Figure2b shows the implementation of the Kahan algorithm for the dotproduct. Compilers have
problems with this loop code for two reasons: First, the compiler detects (correctly) a loop-carried
dependency onc, which prohibits SIMD vectorization and modulo unrolling.Second, the compiler
may recognize that, arithmetically,c is always equal to zero. With high optimization levels it may
thus reduce the code to the naive scalar product, defeating the purpose of the Kahan algorithm. This
is the reason why we use hand-coded assembly throughout thiswork. For comparison we also show
compiler-generated Kahan code for which we ensured (by appropriate compiler options) that the
algorithm is preserved.

4.2.1. Intel Haswell-EP and Broadwell-EP One iteration comprises one multiplication, four
additions or subtractions, and two loads. The bottleneck onthe HSW and BDW cores is thus the
ADD unit (ADD and SUB are handled by the same pipeline). In thefollowing we construct the
ECM model for the AVX versions of the Kahan loop.

†Instruction pairing happens whenever an instruction scheduled for the U-pipe is followed directly by an instruction
scheduled on the V-pipe. Restrictions about when instructions pairing can happen are complex but well documented
[18].

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 J. HOFMANN ET AL.

Figure 3. Left: Four-way
unrolled Kahan dot
product kernel using
FMAs. Right: Our five-
way unrolled optimized

version.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

LD

LD

LD

LD

FMA

FMA

ADD

ADD

ADD

Five cycle FMA latency

ADD

ADD

ADD

ADD

ADD

FMA

FMA

FMA

Three cycle ADD latency

ADD1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

LD

LD

LD

LD

FMA

FMA

ADD

ADD

ADD

ADD

ADD

Five cycle FMA latency

ADD

⎫
⎪
⎬
⎪
⎪
⎭ 4

w
ay

 u
n
ro

lli
n
g

(4
 A

D
D

s)

ADD

ADD

ADD

ADD

ADD

ADD

FMA

FMA

FMA

Three cycle ADD latency

ADD

FMA

ADD

FMA

FMA

FMA

Three cycle ADD latency

FMA

FMA

Five cycle FMA latency

ADD

FMAFMA ADD FMA

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

5
w

ay
 u

n
ro

lli
n
g

(5
 A

D
D

s)

1

2

1

2

LD

LD

LD

LD

LD

LD

LD

LD

In an AVX vectorized version of the Kahan-enhanced dot product kernel that does not use
the new FMA3 extensions, we require two AVX multiplication instructions and eight AVX
additions/subtractions to process one unit of work (eight scalar iterations). Multiplications can be
executed speculatively several loop iterations ahead, because they have no data dependencies. This
means that the five (HSW) respectively three (BDW) cycles of latency of the multiplication are
not an issue. With at least four-way unrolling the add latency of three cycles can be hidden. The
throughput is thus limited by the ADD unit, on which both AVX additions and subtractions are
executed, resulting inTOL = 8cy. Because data movement is exactly the same as in the naivedot
product, the remaining model inputs stay the same. This results in the following inputs for the ECM
model:{8‖2|2|4+1|9.2+1} cy for HSW and{8‖2|2|4+5|8.8+5} cy for BDW. The resulting
ECM predictions are{8⌉8⌉9⌉19.2} cy and{8⌉8⌉13⌉26.8} cy, respectively.

At first glance, when making use of the new FMA instructions weexpect the number of in-
core cycles to drop, because each core can execute two advanced vector extensions (AVX) FMA
instructions per cycle. The multiplication in line four andthe subtraction in line five of the source
code in Fig.2b can be handled by a singlevfmsub231ps instruction. This reduces the number of
additions/subtractions to six per cache line update so we expectTOL to drop to six cycles. However,
the situation is more complicated. Since the FMA instructions havey as input, the instruction can
no longer be executed speculatively, which means that the ADD instructions now have to wait for
the FMA instruction, which has a five-cycle latency on both HSW and BDW. Unfortunately, 16
addressable AVX registers are not enough to perform sufficient unrolling to completely hide this
latency. It turns out that a four-way unrolled loop results in the sameTOL of eight cycles (see left
part of Fig.3). For a four-way unrolled kernel, intra-loop latencies play a significant role: After the
first FMA has been scheduled in the first cycle of the loop (shown in black), it takes five cycles until
the addition using the result of the FMA can be issued in cyclesix (shown in black). The three-cycle
latency of the addition is hidden by using four-way unrolling; thus it takes four cycles until the next
addition corresponding to the partial sum can be retired. Finally, in the fourteenth cycle, the last
addition of the first partial sum is issued. Only after the ADDlatency of three cycles, the first FMA
of the next loop iteration can be issued, because it uses the result of the addition as input.

Even by reusing registers that can be overwritten because their content is no longer needed, the
maximum unrolling factor that can be achieved is five. Unrolling the loop with the previous strategy

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 9

1 vfmsub231ps zmm2, zmm0, [rdx+rax*8] # y=A[i]*B[i]-c
2 vprefetch0 [576+rsi+rax*8] # prefetch A into L1
3

4 vaddps zmm4, zmm3, zmm2 # t=sum+y
5 vmovaps zmm0, [rsi+rax*8+64] # load A for next iter
6

7 vsubps zmm5, zmm4, zmm3 # tmp=t-sum
8 vprefetch0 [512+rdx+rax*8] # prefetch B into L1
9

10 vsubps zmm2, zmm5, zmm2 # c=tmp-y
11 vmovaps zmm3, zmm4 # sum=t

Figure 4. Assembly code of the loop body for L2-optimized Kahan-enhanced dot product on KNC.

will result in an execution time of 18 cycles‡ for one loop iteration (handling 2.5 cache lines at 5-way
unrolling) corresponding to 7.2 cy/CL. It is possible to further decrease the runtime by “abusing”
FMA operations: by keeping a vector register that has all itscomponents set to floating-point one,
we can model an addition, i.e.,y = a×1.0+b. By this optimization we can keep the loop iteration
time at 16 cycles for 5-way unrolling, corresponding to aTOL = 6.4cy. The instruction scheduling
for this version is shown on the right in Fig.3. We replace the second unrolled additions by an FMA
to increase throughput while minimizing the five-cycle latency via unrolling. The ECM model input
for this optimized kernel is{6.4‖2|2|4+1|9.2+1} cy for HSW and{6.4‖2|2|4+5|8.8+5} cy
for BDW. The resulting ECM predictions are{6.4⌉6.4⌉9⌉19.2} cy and{6.4⌉6.4⌉13⌉26.8} cy,
respectively.

The conclusion from this analysis is that there is no expected performance difference for in-
memory working sets between the naive scalar product and theKahan version if AVX vectorization
is applied to Kahan. It comes for free even in the L3 cache. Only for in-L1 and in-L2 data we expect
a 2× slowdown for Kahan versus the naive version even with the best possible code.

4.2.2. Intel Xeon Phi On KNC, the vector instructions performing arithmetic operations can only
retire on the vector U-pipe. Thus it makes no sense to use a similar strategy as on HSW and
BDW to replace additions/subtractions by fused multiply-add instructions. To process one work
unit (16 scalar iterations) using 512-b SIMD instructions,the core has to execute one fused multiply-
add and three additions/subtractions, yieldingTOL = 4cy; the two 512-b loads can be executed in
parallel with some of the arithmetic instructions when instructions are paired correctly, resulting in
TnOL = 2cy. At 32 B/cy,TL1L2 = 4cy for two cache lines. As previously determined, the sustained
memory bandwidth of 175 GB/s corresponds to a transfer time of 0.4 cy/CL; thusTL2Mem= 0.8cy.

We found that it is necessary to use separate, specifically designed kernels to obtain the
best performance for each individual cache level. The L1-optimized kernel needs no prefetching
instructions at all. For data in the L2 cache, two software prefetching instructions are used, fetching
eight cache lines ahead. These two instructions can be paired with arithmetic instructions and
thus do not change in-core execution time (see lines two and eight in Fig. 4). For data coming
from main memory, we prefetch 64 iterations ahead into the L2cache and also keep the previous
prefetching strategy of fetching cache lines eight iterations ahead from L2 into L1. The two new
prefetch instructions can no longer be paired, because we run out of unpaired arithmetic instructions:
The first FMA and the first ADD is paired with the LOADs that bring data into the registers; the
second and third ADD/SUB are paired with the L2-L1 software prefetch instructions. The in-core
execution time is thus extended by two additional cycles forthe two prefetch instructions from main
memory into L2. The ECM input for KNC thus is{4‖2+2L2+2MEM |4|0.8+17} cy. Note that
the composition ofTnOL is dependent on where input data is coming from: in the L1 kernel, we are
retiring just two load instructions soTnOL=2 cy; in the kernel optimized for data coming from the

‡By increasing the unrolling factor from four to five, we have to wait 2×5 cycles after the ADD instructions instead of
2×4 when using four-way unrolling.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 J. HOFMANN ET AL.

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

5

10

15

20

25

C
yc

le
s

pe
r

C
ac

he
 L

in
e

Naive (Compiler)
Kahan (AVX)
Kahan (AVX opt)

(a)

2 cycles

6.4 cycles

8 cycles

4 cycles

9 cycles

19.2

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

10

20

30

C
yc

le
s

pe
r

C
ac

he
 L

in
e

Naive (Compiler)
Kahan (AVX)
Kahan (AVX opt)

(b)

2 cycles

6.4 cycles

8 cycles

4 cycles

13 cycles

26.8

Figure 5. Single-core cycles per CL vs. data set size for AVX,AVX/FMA and the naive scalar product in
SP on (a) HSW and (b) BDW. The horizontal black lines represent the ECM model predictions.

L2 cache, we need to include two prefetching instructions soTnOL=2 cy+2 cy=4 cy; finally, for the
memory-optimized kernel, we have to include two more prefetching instructions, soTnOL=6 cy. The
full ECM prediction is{4⌉8⌉27.8} cy.

4.2.3. IBM POWER8 On PWR8, 16 VSX LOADs (eight 16-byte LOADs per 128-byte cache
line) and required to load and an additional 32 (eight VSX FMAand 24 VSX ADD/SUB)
instructions are required to process one cache line. Core throughput is limited by the two arithmetic
VSX units, which require 16 cycles to process all 32 FMA/ADD/SUB instructions, resulting in
TOL = 16cy;TnOL is zero. The remaining ECM inputs are identical to the naive dot product, yielding
{16‖0|4|8|10} as ECM input. The full ECM prediction is{16⌉16⌉16⌉22} cy.

5. PERFORMANCE RESULTS AND MODEL VALIDATION

5.1. Intel Haswell-EP and Broadwell-EP

Single-core benchmarking results for single precision on HSW and BDW are shown in Figs.5a and
5b. The model describes the overall behavior very well. The naive (plain sdot) and the AVX Kahan
version show identical performance in L3 cache and beyond. As predicted there is no performance
drop for the AVX Kahan version from L1 to L2. The naive versionas well as the AVX/FMA
variant of Kahan fall short of the L2 model prediction; whether this is due to inefficiencies of
the hardware prefetcher or issues with the new 64-B wide bus between L2 and L1 can only be
speculated upon. We have no explanation for why the AVX/FMA optimized version shows worse
in-memory performance on HSW.

In-memory scaling results on the chip level for HSW and BDW are shown in Figs.8a and8b.
Note here that due to the cluster on die mode, the actual number of cores per memory domain
is half of what thex axis in the graphs shows, i.e., the two-core run was done withone core per
memory domain. This ensures that we can report the capabilities of the full chip. The number of
cores required to reach saturation is underestimated in both cases. It is a well-known deficiency
of the ECM model that the scaling behavior near the saturation point is not tracked correctly.
We attribute this to the documented change in the prefetching strategy near memory bandwidth
saturation [20]. The compiler-generated Kahan code is so slow that it misses the target of memory

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 11

10
1

10
2

10
3

Dataset Size [kB]

0

20

40

60

80

C
yc

le
s

pe
r

C
ac

he
 L

in
e Naive (compiler)

Kahan (manual, L1)
Kahan (manual, L2)
Kahan (manual MEM)

4 cycles 8 cycles

27.8 c Figure 6. Single-core cycles per CL vs. data
set size with different implementations tuned
for specific memory hierarchy levels of the
Kahan scalar product and the compiler generated
naive scalar product in SP on Intel KNC. The
black horizontal lines represent the ECM model
predictions. All versions use 2-SMT except the
manual memory-optimized kernel, which uses 4-

SMT.

bandwidth saturation by far on both architectures. On HSW one would need more than twice the
number of available cores to reach saturation.

5.2. Intel Xeon Phi

Figure6 shows the SP single core results for Xeon Phi. The model fits very well as long as the
special code variant in every memory hierarchy level is used. Although the Xeon Phi has a hardware
prefetcher, best performance can only be achieved by appropriate software prefetching.

In-memory scaling results are shown in Fig.8c. In accordance with Intel’s guidelines, which
recommend using a single thread per core when trying to reachthe maximum sustained bandwidth
on KNC [14], all in-memory scaling measurements were performed with 1-SMT. The compiler-
generated naive and manual Kahan variants are all but identical. Xeon Phi exposes a piecewise
linear scaling behavior which is not captured by the linear scaling assumption of the ECM model:
Three phases can be identified, with a clear change in slope atabout 20 and 50 cores. While the
naive and manual Kahan codes achieve bandwidth saturation,the naive compiler version misses it
by far.

5.3. IBM POWER8

Fig 7b shows the SP single core results for the PWR8 processor. Themodel correctly predicts the
observed identical performance in L1 and L2 for the naive variant and in all memory hierarchy levels
for the Kahan variant. In contrast to the Intel architectures we failed to reach the predicted instruction
throughput of the processor by 20–30%. PWR8 is also more sensitive to small loop lengths. The
8 MB L3 cache is only effective up to 2 MB. Beyond this point performance dramatically decreases
and fluctuates. The aggregated L4 buffer cache is not visiblein the measurements. For in-memory
data sets the performance improves and stabilizes. There isno documented hardware feature that
could explain the erratic behavior between 2 MB and 64 MB working set size.

Fig 7a shows the impact of different SMT options on the naive sdot performance. There is no
SMT setting that shows competitive performance in all memory hierarchy levels. In L1, more SMT
threads lead to shorter loops and a corresponding breakdownin performance. In L2, any number
of threads greater than one enables “wirespeed.” In L3 (up to2 MB) there is clearly is a strong
latency effect, which can be compensated only by SMT-8. From2 MB to the L4 capacity limit
all variants exhibit the same fluctuating performance pattern with SMT-4 and SMT-8 showing the
best performance. Then in memory surprisingly SMT-4 is significantly better than SMT-8. For
in-memory data sets we provide two ECM model predictions: 18cy if we assume that evicts of
cachelines from L2 to L3 fully overlap with reloads from memory to L2, and 22 cy if we assume
there is no overlap among those contributions. Only SMT-4 isfaster than 22 cy, indicating that

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 J. HOFMANN ET AL.

10
0

10
2

10
4

Dataset Size [kB]

0

10

20

30

40

50

C
yc

le
s

pe
r

C
ac

he
 L

in
e

[c
/1

28
B

]
ST
2-SMT
4-SMT
8-SMT

L4
 (

64
M

B
)

L1
 (

64
kB

)

L2
 (

51
2k

B
)

8 cycles
12 cycles

22c

2M
B

18c

(a) Naive

L3
 (

8M
B

)

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

5

10

15

20

25

30

C
yc

le
s

pe
r

C
ac

he
 L

in
e

[c
/1

28
B

]

Naive (Compiler, 8-SMT)
Kahan (VSX, 8-SMT)

8 cycles

16 cycles

22 cycles

12 cycles

(b)

Figure 7. Single-core cycles per CL vs. data set size on PWR8.(a) Results for different SMT settings for
naive scalar product using SP. (b) Comparison of compiler-generated naive scalar product and manual SIMD

Kahan enhanced scalar product using SMT-8. The horizontal lines are ECM model predictions.

there is at least some overlap. More investigations are necessary to fully understand this complex
behavior.

In-memory scaling results are shown in Fig.8d. The Naive and Kahan variants show almost
identical scaling behavior and quickly saturate the memorybandwidth. In contrast to the Intel
architectures the compiler version of Kahan (using SMT-8) almost saturates the bandwidth.

5.4. DP performance for compiler-generated Kahan variant

As most applications rely on compiler-generated code, we show the saturation behavior of the
compiler-generated Kahan variant for DP in Fig.9. Since all compilers fail at SIMD vectorization,
it is interesting to see on which architectures memory bandwidth is still achieved. On PWR8 we
have already observed near-saturation in the SP case; with DP this happens at five cores. Comparing
HSW and BDW, the additional cores help BDW to just about saturate whereas HSW misses this
goal. KNC, as expected, misses saturation by a long shot but still achieves an absolute performance
slightly better than PWR8.

5.5. Comparison across architectures

For meaningful cross-architectural comparison of the Kahan-enhanced dot product performance we
report the cyclesper update in all memory hierarchy levels (Fig.10a) and the absolute performance
for the in-memory case in GUP/s for single core as well as the full chip (Fig.10b). In L1 and L2 all
Intel architectures run close to their design specifications. PWR8 in contrast is slightly less efficient
missing its design instruction throughput by 30%. In L3 and memory the results are reversed, here
the Intel architectures show a significant drop in performance for L3 and also memory, especially
BDW with its complex Uncore design and large number of cores,whereas PWR8 due to its lock-
free memory hierarchy shows less severe performance breakdowns with increasing working set size.
(Note, however, the large performance variations in a data set size window between 2 MB to over
64 MB as described in Sect.5.3.)

Regarding absolute single-core and full-chip in-memory performance (Fig.10b), PWR8 due to
its cache architecture and higher frequency shows the best performance of all multicore chips, only
surpassed by the full-chip KNC by more than a factor of two dueto the latter’s superior memory
bandwidth.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 13

2 4 6 8 10 12 14
Number of Cores

0

2

4

6

8
P

er
fo

rm
an

ce
 [G

U
p/

s]

Naive (icc)
Kahan (icc)
Kahan (manual)

(a) HSW

2 4 6 8 10 12 14 16 1820 22
Number of Cores

0

2

4

6

8

P
er

fo
rm

an
ce

 [G
U

p/
s]

(b) BDW

0 10 20 30 40 50 60
Number of Cores

0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 [G
U

p/
s]

(c) KNC

1 2 3 4 5 6 7 8 9 10
Number of Cores

0

2

4

6

8

10

P
er

fo
rm

an
ce

 [G
U

p/
s]

Naive (xlc), 4-SMT
Kahan (xlc), 8-SMT
Kahan (manual), 4-SMT

(d) PWR8

Figure 8. In-memory scaling (10 GB working set size) for different implementations of the Kahan scalar
product using SP on (a) HSW, (b) BDW, (c) KNC, and (d) PWR8. Oneupdate (UP) is equivalent to five

flops (one MULT, four ADDs).

0 20% 40% 60% 80% 100%
Percentage of Cores on Chip

0

1

2

3

4

5

P
er

fo
rm

an
ce

 [G
U

p/
s]

HSW
BDW
KNC
PWR8

Figure 9. On-chip performance scaling of
the compiler-generated Kahan-enhanced ddot
on all tested processors. The saturated
performance is 4 GUP/s for HSW/BDW,
10.6 GUP/s for KNC, and 4.5 GUP/s for

PWR8.

6. CONCLUSION

We have investigated the performance of naive and Kahan-enhanced variants of the scalar
product on a range of recent multi- and manycore chips. Usingthe ECM model the single-core
performance in all memory hierarchy levels and the multi-core scaling for in-memory data were

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 J. HOFMANN ET AL.

L1 L2 L3 MEM
0

1

2

3

4

C
yc

le
s

pe
r

U
pd

at
e

Haswell-EP
Brodwell-EP
Knights Corner
POWER8

4C
34C

3C

4C

(a)

single core full chip
0

5

10

15

20

P
er

fo
rm

an
ce

 [G
U

p/
s]

(b)

Figure 10. Comparison between all tested architectures using the manually implemented SIMD variants of
the Kahan-enhanced scalar product in SP: (a) Measured single-core runtime in cycles per update in different
memory hierarchy levels. The saturation pointnS is indicated above the bars for the memory-bound case

(smaller is better). (b) Measured full chip performance forthe in memory data set (bigger is better).

accurately described. The most important result is that even the single-threaded optimized Kahan
implementation comes with no performance penalty on the Intel multicore chips under investigation
compared to a naive sdot implementation in the L3 cache and inmemory. On IBM POWER8 this
applies only for in-memory data sets. On the other hand, the POWER8 is able to saturate the memory
bandwidth with very few cores and provides the best single-core and chip-level performance for in-
memory data. Depending on the particular architecture and whether single or double precision is
used, even compiler-generated code may achieve memory bandwidth saturation on the full chip.
Intel Xeon Phi as well as IBM POWER8 require special code or SMT settings to achieve best
performance in different memory hierarchy levels. Furtherinvestigations are necessary to explain
erratic performance behavior on POWER8 for data sets between 2 MB and 64 MB.

We emphasize that the approach and insights described here for the special case of the Kahan
scalar product can serve as a blueprint for other load-dominated streaming kernels. Especially on
POWER8, the ECM model still needs to be validated and adjusted using more complex codes such
as stencil algorithms.

6.0.1. Acknowledgement We thank pro com and IBM Germany for access to an IBM POWER8 test
system, and Intel Germany for providing an early access Broadwell-EP test system.

REFERENCES

1. Goldberg D. What every computer scientist should know about floating-point arithmetic.ACM Comput. Surv. Mar
1991;23(1):5–48,DOI:10.1145/103162.103163.

2. Linz P. Accurate floating-point summation. Commun. ACM Jun 1970; 13(6):361–362,
DOI:10.1145/362384.362498.

3. Gregory J. A comparison of floating point summation methods. Commun. ACM Sep 1972; 15(9),
DOI:10.1145/361573.361584.

4. Kahan W. Pracniques: Further remarks on reducing truncation errors. Commun. ACM Jan 1965; 8(1),
DOI:10.1145/363707.363723.

5. Rump SM, Ogita T, Oishi S. Accurate floating-point summation part I: Faithful rounding.SIAM J. Sci. Comput.
Oct 2008;31(1):189–224,DOI:10.1137/050645671.

6. Zhu YK, Hayes WB. Algorithm 908: Online exact summation offloating-point streams.ACM Trans. Math. Softw.
2010;37(3):1–13,DOI:10.1145/1824801.1824815.

7. Demmel J, Nguyen HD. Fast reproducible floating-point summation. 21st IEEE Symposium on Computer
Arithmetic, 2013; 163–172,DOI:10.1109/ARITH.2013.9.

8. Dalton B, Wang A, Blainey B. SIMDizing pairwise sums: A summation algorithm balancing accuracy with
throughput.Proceedings of the 2014 Workshop on Programming Models for SIMD/Vector Processing, WPMVP
’14, ACM: New York, NY, USA, 2014; 65–70,DOI:10.1145/2568058.2568070.

9. Hofmann J, Fey D, Riedmann M, Eitzinger J, Hager G, WelleinG. Performance analysis of the
Kahan-enhanced scalar product on current multicore processors. CoRR abs/1505.02586 2015; URL

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/362384.362498
http://dx.doi.org/10.1145/361573.361584
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1145/1824801.1824815
http://dx.doi.org/10.1109/ARITH.2013.9
http://dx.doi.org/10.1145/2568058.2568070

PERFORMANCE ANALYSIS OF THE KAHAN-ENHANCED SCALAR PRODUCT 15

http://arxiv.org/abs/1505.02586, accepted for PPAM’2015, the 11th International Conference on
Parallel Processing and Applied Mathematics, September 6-9, 2015, Krakow, Poland.

10. Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels.Parallel Processing and
Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R, Dongarra J, Karczewski K,
Wasniewski J (eds.), Springer Berlin / Heidelberg, 2010; 615–624.

11. Hager G, Treibig J, Habich J, Wellein G. Exploring performance and power properties of modern multicore chips
via simple machine models.Concurrency Computat.: Pract. Exper. 2013; DOI: 10.1002/cpe.3180.

12. Stengel H, Treibig J, Hager G, Wellein G. Quantifying performance bottlenecks of stencil computations
using the Execution-Cache-Memory model.Proceedings of the 29th ACM International Conference on
Supercomputing, ICS ’15, ACM: New York, NY, USA, 2015, DOI:10.1145/2751205.2751240. URL
http://doi.acm.org/10.1145/2751205.2751240.

13. Williams S, Waterman A, Patterson D. Roofline: An insightful visual performance model for multicore
architectures.Commun. ACM 2009;52(4):65–76,DOI:10.1145/1498765.1498785.

14. Intel Corporation. Optimizing Memory Bandwidth on Stream Triad. Https://software.intel.com/en-
us/articles/optimizing-memory-bandwidth-on-stream-triad, accessed March 29, 2016.

15. Starke WJ, Stuecheli J, Daly D, Dodson JS, Auernhammer F,Sagmeister P, Guthrie GL, Marino CF, Siegel MS,
Blaner B. The cache and memory subsystems of the IBM POWER8 processor.IBM Journal of Research and
Development 2015;59(1), DOI:10.1147/JRD.2014.2376131.

16. Hofmann J, Fey D, Eitzinger J, Hager G, Wellein G. Analysis of Intel’s Haswell Microarchitecture Using The ECM
Model and Microbenchmarks.CoRR abs/1511.03639 2015; URLhttp://arxiv.org/abs/1511.03639,
accepted for ARCS’2016, the 29th International Conference, April 4-7, 2016, Nuremberg, Germany.

17. Treibig J, Hager G, Wellein G. likwid-bench: An extensible microbenchmarking platform
for x86 multicore compute nodes.Tools for High Performance Computing 2011, Brunst H,
et al. (eds.). Springer Berlin Heidelberg, 2012; 27–36,DOI:10.1007/978-3-642-31476-63. URL
http://dx.doi.org/10.1007/978-3-642-31476-6_3 .

18. Intel Corporation. Intel Xeon Phi Core Micro-architecture. Https://software.intel.com/en-us/articles/intel-xeon-phi-
core-micro-architecture, accessed 29.3.2016.

19. Sinharoy B, Norstrand JAV, Eickemeyer RJ, Le HQ, Leenstra J, Nguyen DQ, Konigsburg B, Ward K, Brown MD,
Moreira JE,et al.. IBM POWER8 processor core microarchitecture.IBM Journal of Research and Development
Jan 2015;59(1):2:1–2:21,DOI:10.1147/JRD.2014.2376112.

20. Intel Corp. Intel64 and IA-32 Architectures Optimization Reference Manual.
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
2015. Version: September 2015.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://arxiv.org/abs/1505.02586
http://dx.doi.org/10.1145/2751205.2751240
http://doi.acm.org/10.1145/2751205.2751240
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1147/JRD.2014.2376131
http://arxiv.org/abs/1511.03639
http://dx.doi.org/10.1007/978-3-642-31476-6_3
http://dx.doi.org/10.1007/978-3-642-31476-6_3
http://dx.doi.org/10.1147/JRD.2014.2376112
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

	1 Introduction and related work
	2 The ECM performance model
	3 Experimental testbed
	4 Optimal implementations and performance models for dot
	4.1 Naive scalar product
	4.1.1 Intel Haswell-EP and Broadwell-EP
	4.1.2 Intel Xeon Phi
	4.1.3 IBM POWER8

	4.2 Kahan-enhanced scalar product
	4.2.1 Intel Haswell-EP and Broadwell-EP
	4.2.2 Intel Xeon Phi
	4.2.3 IBM POWER8

	5 Performance results and model validation
	5.1 Intel Haswell-EP and Broadwell-EP
	5.2 Intel Xeon Phi
	5.3 IBM POWER8
	5.4 DP performance for compiler-generated Kahan variant
	5.5 Comparison across architectures

	6 Conclusion
	6.0.1 Acknowledgement

