
Titre:
Title:

Hardware-assisted software event tracing

Auteurs:
Authors:

Adrien Vergé, Naser Ezzati-Jivan, & Michel Dagenais 

Date: 2017

Type: Article de revue / Article

Référence:
Citation:

Vergé, A., Ezzati-Jivan, N., & Dagenais, M. (2017). Hardware-assisted software 
event tracing. Concurrency and Computation: Practice and Experience, 29(10), 1-
9. https://doi.org/10.1002/cpe.4069

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2981/

Version: Version finale avant publication / Accepted version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Concurrency and Computation: Practice and Experience (vol. 29, no. 
10) 

Maison d’édition:
Publisher:

Wiley

URL officiel:
Official URL:

https://doi.org/10.1002/cpe.4069

Mention légale:
Legal notice:

This is the peer reviewed version of the following article: Vergé, A., Ezzati-Jivan, N., & 
Dagenais, M. (2017). Hardware-assisted software event tracing. Concurrency and 
Computation: Practice and Experience, 29(10), 1-9. https://doi.org/10.1002/cpe.4069, 
which has been published in final form at https://doi.org/10.1002/cpe.4069. This article 
may be used for non-commercial purposes in accordance with Wiley Terms and 
Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched
or otherwise transformed into a derivative work, without express permission from Wiley 
or by statutory rights under applicable legislation. Copyright notices must not be 
removed, obscured or modified. The article must be linked to Wiley’s version of record 
on Wiley Online Library and any embedding, framing or otherwise making available the 
article or pages thereof by third parties from platforms, services and websites other 
than Wiley Online Library must be prohibited. 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1002/cpe.4069
https://doi.org/10.1002/cpe.4069
https://publications.polymtl.ca/2981/
https://doi.org/10.1002/cpe.4069


Hardware-Assisted Software Event Tracing

Adrien Verge
Department of Computer and

Software Engineering
Ecole Polytechnique Montreal

Montreal, Canada
adrien.verge@polymtl.ca

Naser Ezzati-Jivan
Department of Computer and

Software Engineering
Ecole Polytechnique Montreal

Montreal, Canada
n.ezzati@polymtl.ca

Michel R. Dagenais
Department of Computer and

Software Engineering
Ecole Polytechnique Montreal

Montreal, Canada
michel.dagenais@polymtl.ca

ABSTRACT
Event tracing is a reliable and low-intrusiveness method to
debug and optimize systems and processes. Low overhead is
particularly important in embedded systems where resources
and energy consumption is critical. The most advanced trac-
ing infrastructures achieve a very low footprint on the traced
software, bringing each tracepoint overhead to less than a
microsecond. To reduce this still non-negligible impact, the
use of dedicated hardware resources is promising. In this
paper, we propose complementary methods for tracing, that
rely on hardware modules to assist software tracing. We de-
signed solutions to take advantage of CoreSight STM, Core-
Sight ETM and Intel BTS, which are present on most newer
ARM-based systems-on-chip and Intel x86 processors. Our
results show that the time overhead for tracing can be re-
duced by up to 10 times when assisted by hardware, as com-
pared to software tracing with LTTng, a high-performance
tracer for Linux. We also propose a modification to the Perf
tool to speed BTS execution tracing up to 65%.

Keywords
ARMCoreSight, debugging, dedicated hardware, event trac-
ing, Intel BTS, LTTng

1. INTRODUCTION
Tracing is a monitoring method to record the runtime be-
havior of a program, for debugging, optimization or perfor-
mance measurement purposes. Traces are generated during
execution. They contain series of timestamped events, which
may be used to understand and model a process execution.
Traces can be analyzed live or later, locally or on a remote
host. Unlike classical debugging, tracing is focused on low-
intrusiveness, allowing to study a process with a minimal
alteration of its execution. Although lightweight, software
tracing solutions have non-zero side-effects because of extra
executed code, cache perturbation and other alterations to
the execution path [1].

To facilitate program development, hardware manufacturers
such as Intel and ARM embed dedicated debugging circuits
in their newer processors. For instance, Intel BTS and ARM
CoreSight ETM provide program tracing (recording the se-
quence of executed instructions), whereas ARM CoreSight
STM is designed to timestamp instructions that write to a
specific area. Although having different purposes, hardware
debugging circuits provide dedicated resources (compara-
tors, buffers) that can be used to trigger events and store
data with almost zero overhead. By reconfiguring these re-
sources, we want to take advantage of hardware circuits to
make tracing more lightweight.

The objective is to measure the benefits of using special-
ized hardware components in the Linux Trace Toolkit next-
generation (LTTng) [2], a reference infrastructure for kernel
and user-space tracing for Linux. We designed solutions to
retrieve trace information, similar to LTTng software traces,
from hardware blocks on ARM (with CoreSight ETM, STM,
ETB [3]) and Intel (with BTS [4]). We developed tracing
tools that configure these hardware circuits and retrieve data
of interest to produce traces. We measured the time over-
head of such devices versus non-traced executions, in or-
der to compare to LTTng-UST (LTTng User Space Tracing)
pure-software tracing.

We detail the test environment and the hardware debugging
components that we tested in section 2. The methodology
and results are presented in section 3 for using hardware-
assisted software tracing, and in section 4 for using execu-
tion path tracing hardware. We describe related work in
section 5. We conclude and discuss future work in section 6.

2. TEST ENVIRONMENTS
Our experiments were run on three specific platforms. How-
ever, the hardware modules used for tracing are found in
many other processors and systems-on-chip.

The platforms used were:

• an OMAP3530 system-on-chip with a ARM Cortex-
A8 CPU and 512 MiB of LPDDR, integrated onto a
Beagleboard-xM development card;

• an OMAP4430 system-on-chip with a dual-core ARM
Cortex-A9 and 1 GiB of LPDDR2, integrated onto a
Pandaboard development card;



CPU
ETM

STM

ETB

system bus

timestamping

system-on-chip

Figure 1: Overview of the CoreSight components
used

• a desktop computer with an Intel Core i7-3770 proces-
sor (4 physical cores at 3,4 GHz) and 6 GiB of DDR3
RAM.

The first two platforms integrate ARM CoreSight debugging
components, whereas the third one embeds Intel Branch
Trace Store registers. These devices are presented in the
next subsections.

2.1 ARM CoreSight
ARM CoreSight [3] is a set of hardware blocks that provide
trace and debug functionalities for complex systems-on-chip.
There is a variety of trace sources and collectors, allowing
traces of different types to be timestamped and multiplexed
in the same output.

The only CoreSight components that we used are ETM,
STM and ETB. Their interaction is summarized in Figure 1.

2.1.1 CoreSight ETM
The Embedded Trace Macrocell (ETM) is an instruction
and data tracer. It enables reconstruction of program execu-
tion by recording jumps. When activated, ETM watches the
core’s internal buses to detect branches with low interference
with execution. ETM timestamps branches with cycle-level
precision, and supports output filtering and compressing.

2.1.2 CoreSight STM
The System Trace Macrocell (STM) records and timestamps
software events [5]. It allows real-time instrumentation of
software by providing a memory area where software writes
are converted to hardware messages. These messages are
automatically timestamped and assigned to the requested
channel. The area is divided into several channels, which
allows multiple programs to be debugged at the same time.

The version we used is the TI STM, present on our develop-
ment board. It is an earlier version of STM, not designed by
ARM but with very close capabilities and the same output
format [6]. In the rest of this article, we use the acronym
“STM” indifferently for both versions.

Figure 2: Overview of Intel Branch Trace Store

CPU

BTS

RAM

x86 host

branch records

4015a8

7f2aac77e024

7f2aac77e012

40ef26

4015b0

4015b4

2.1.3 CoreSight ETB
The Embedded Trace Buffer (ETB) stores traces from differ-
ent sources in a single place. It collects streams output from
the ETM and the STM, and allows deferring the retrieval of
traces, acting as a buffer.

2.2 Intel
2.2.1 BTS
The Branch Trace Store (BTS) [4] system stores every branch
taken during execution to a user-defined area in memory.
The BTS registers are part of Intel’s Model-Specific Regis-
ters (MSR), embedded in newer processors made by Intel
since the Pentium 4 [7].

BTS allows to define a zone in main memory where the
CPU will automatically store entries when encountering a
branch. Any deviation from the execution flow (that is, not
executing the next instruction) is saved in a 24-byte entry.
BTS can throw an interrupt when the buffer overflows a
given threshold. The user is responsible for draining this
buffer to save tracing data. It can also be configured as a
circular buffer, if only a backtrace is needed.

Embedded systems specialists estimate the BTS overhead
between 20% and 100% [8], partly because the CPU enters
a specialized debug mode associated with a 25 to 30 times
slowdown [9, 4].

The BTS design is summarized in Figure 2.

2.3 Measuring the overhead of tracing
The experiments presented here aim at lowering the trac-
ing overhead, thus minimizing the impact on the traced
processes execution. Different measurable side effects can
estimate this impact, for example the total elapsed execu-
tion time, extra system calls, accesses to memory and page
faults, as well as cache memory usage or energy consump-
tion. Among these, we selected the execution time as ref-
erence, since it is the major criteria for developers in most
cases. Moreover, most other effects (such as page faults)
also impact the execution time.

In the rest of this article, the term “overhead” will refer to



the modification to traced process normal execution. To es-
timate the “overhead”, we will measure the execution time
difference associated with tracing. Depending on the ex-
periment, this is obtained via the time command or with
the gettimeofday system call. To reduce variability and in-
fluence of unrelated events, each test was run several times
and over long execution times (between one and hundreds of
seconds). In the case of two programs running in parallel (a
trace producer and a trace consumer), only the traced pro-
gram is timed. We assume that with long execution times,
both the producer and the consumer enter a steady state,
so that the producer’s execution time is relevant by itself.

3. USING SYSTEM TRACING HARDWARE
The main functionality of tracing systems is to provide tra-
cepoints. When the execution of a program reaches a tra-
cepoint, an event is recorded along with customizable infor-
mation such as timestamp or process ID.

Modern tracers like LTTng, focused on performance, achieve
a good efficiency with low-overhead and precise tracepoints.
However, pure-software methods still induce a slowdown,
mainly due to synchronization and timestamp computation
(which may involve a system call in the worst case).

3.1 System Trace Macrocell

3.1.1 Design
The STMmodule offers system tracing capability: writing to
a specific zone in memory generates timestamped messages,
and stores them in a dedicated buffer. This led us to design
a tracing solution that takes advantage of these hardware
circuits. Instead of using the tracepoint function provided
by the LTTng-UST library, our prototype directly writes to
the STM memory area. Similarly, the trace consumer does
not read from shared memory, but retrieves data from the
ETB when needed.

The software part of recording tracepoints is lightened: times-
tamping is automatically done via a hardware clock, as is
transportation to the ETB for further fetching. Synchro-
nization between trace producers is guaranteed, as long as
each process writes to its own STM channel. There are hun-
dreds of possible channels (the exact number depends on
the hardware implementation), so many programs can be
traced at the same time. Channel information is included
in the generated output, to enable message decoding and
demultiplexing after retrieval from the ETB.

Our implementation results in two programs: a trace pro-
ducer, i.e. a traced program in which events occur; and a
trace consumer, i.e. the program that will fetch raw hard-
ware data from the ETB, decode and store it. The ETB has
a fixed size, for this reason, the producer and the consumer
must communicate to avoid overflow. They share a com-
mon page in memory to communicate and synchronize with
semaphores. In particular, they both update a counter that
represents buffer usage. The system’s scheduler is meant
to keep a balance between trace production and trace con-
sumption. However, if the ETB becomes full, the producer
stops and yields CPU time to the consumer to empty it.

3.1.2 Results

We measured the performance difference between this ap-
proach and the original LTTng-UST in two configurations,
meant to be representative of either the worst case, or a
more realistic situation. In the first case, the tracing over-
head is maximum: the benchmark process runs a loop that
does only tracing. In the second case, some arithmetic com-
putation is executed in each iteration, to simulate a real
program behavior. In both cases, tracing at each iteration
is done either by calling LTTng-UST’s tracepoint, or by
interacting with our library to use CoreSight STM. This is
then compared to the execution with no tracing at all. In the
same manner, the trace consumer is either LTTng’s session
daemon, or our custom program to retrieve data from the
ETB, decode it and store it to disk. It is important to note
that these results show intentionally high tracing overhead,
because we want worst-case results. For real-life programs,
overhead is much lower, typically a few percent [2].

The benchmarks were run on a Pandaboard and showed
that LTTng-UST’s tracing time can be significantly reduced
when using CoreSight STM and ETB. Here, we use a simple
tracepoint type with a 24-bit integer payload. We could use
any size of trace data as payload e.g., 16 bits which gives
a reduced overhead (Figure 4, but in our experiments we
choose 24 bits as a common size for better comparison.

Figure 3 presents the average execution time of iterations
when looping 107 times, with our test program recording a
tracepoint at each iteration. We show results for the un-
traced program (a simple loop iterating a volatile variable),
the same program traced with LTTng-UST, and then traced
using STM and ETB. In both case, the LTTng tracing de-
lay is reduced by approximately 91% when using hardware-
assisted tracing.

We then measured tracing performance with respect to tra-
cepoint types, i.e., the tracepoints payload length. We ran
the same programs with a fixed number of iterations (106)
but with payload varying from 3 to 100 bytes. The results
are shown in Figure 4. Please note that the numbers shown
in this figure are the times needed only for tracing the system
and no analysis time is included on that. Using the STM
and ETB hardware modules is efficient for small messages,
but does not scale well for payloads bigger than 60 bytes.
STM + ETB has reduced performance for larger payloads,
because the time needed to process a tracepoint is roughly
proportional to the payload size for this tracepoint. STM
encodes the payload data, and the kernel needs to process
and decode this data when retrieving it from the ETB. Thus,
for an empty payload, there is nothing to encode/decode: it
is very fast; and for a large payload, it takes longer time.

Whereas, with LTTng, every tracepoint results in storing
data in RAM (in a cache i.e., a ring buffer), which is very
fast. The part that takes most time with LTTng is retriev-
ing the clock time for every tracepoint, because it includes
a syscall and a context switch, which STM does instanta-
neously using hardware. So with LTTng, having a small or
large payload doesn’t change much, because the part that
takes time is independent of that payload size. We couldn’t
use the same cache (ring buffer in RAM) in STM + ETB as
well, because STM and ETB are dedicated hardware mod-
ules, independent from RAM.



Figure 3: Average execution time of programs
traced with LTTng-UST, with hardware (STM +
ETB), and not traced. We present a program loop-
ing, first with only a tracepoint in each iteration,
and then the same program performing real calcu-
lation in each iteration.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

only tracepoints computation + tracepoints

ti
m

e
 p

e
r 

it
e
ra

ti
o
n
 (

µ
s
)

no tracing

LTTng-UST

STM + ETB

Figure 4: Average execution time of programs
traced with LTTng-UST, with hardware (STM +
ETB), and not traced. We present tracepoints with
different payload size.

0

5

10

15

20

25

0 20 40 60 80 100

ti
m

e
 p

e
r 
it
e
ra

ti
o
n
 (
µ
s
)

trace data size (B)

no tracing

LTTng-UST

STM + ETB

These results also highlight the time taken by LTTng-UST
to synchronize with the trace consumer with memory barri-
ers, but also its ability to take advantage of the cache when
trace payloads get longer, as mentioned earlier.

Since most tracepoints typically used with LTTng do not
exceed a few bytes, using CoreSight STM and ETB is a
significant improvement to the low-intrusiveness of LTTng.
Moreover, the timestamping provided by CoreSight is cycle-
precise, which is not the case with LTTng on every platform.

4. USING EXECUTION PATH TRACING HARD-

WARE
Some hardware debugging components provide the ability to
save the execution path, i.e. the sequence of addresses for
executed instructions. When timestamped, this information
is sufficient to trace the complete execution of a program, or
a section thereof, and constitutes a superset of the program
location information conveyed by tracepoints. Nonetheless,
tracing infrastructures like LTTng have the ability to asso-
ciate a payload, and even a context, with the tracepoints (for
instance, the thread ID or the number of encountered page
faults), which is not available with hardware tracing com-
ponents. However, if this context information is not needed,
and only the sequence of reached tracepoints is of interest,
software tracing can benefit from hardware assistance.

4.1 Embedded Trace Macrocell

4.1.1 Design
The ETM hardware module performs execution path saving
in a highly compressed format, and without interfering with
the traced program execution. Moreover, it can be enabled
and disabled by triggers, including address matching and
context ID matching. This allows tracing a specific process,
in a specific address range. Moreover, the traced program
does not need to be recompiled to be traced: only the virtual
addresses of its symbols must be known.

We chose to use ETM to trace the program when it enters
the portion of code corresponding to the tracepoint. For
instance, if we want the call to function foo to be traced,
we set up ETM to start when the program is at the ad-
dress of foo, and stop at the same address + 4. ETM is
also configured to trigger only when the interesting process
is running. Due to hardware limitations, this design only al-
lows one tracepoint, with no payload. If several events need
to be traced, a full execution trace or a mix of pure-software
and hardware tracepoints can be used.

We implemented this design with two programs: a trace
producer, which represents the traced program; and a trace
consumer, whose role is to regularly drain the ETB and save
its contents to disk for further decoding. The trace producer
enables the ETM by communicating with the kernel, via an
entry in sysfs. We patched the Linux kernel to enable full
configuration of the ETM, especially the address range se-
lection and context ID tracking [10]. This patch has been
sent to the Linux Kernel Mailing List. Once the ETM is
activated, it is configured to trigger at the address of a sim-
ple function that does an arithmetic computation. The test
program, after activating the ETM, enters a loop calling this



Figure 5: Average execution time of programs
traced with LTTng-UST, with hardware (ETM +
ETB), and not traced. We present programs that
do a loop where each iteration performs either only
tracing, or tracing plus computation (with more
time spent on computation in the third program).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

only
tracepoints

computation
+ tracepoints

more computation
+ tracepoints

ti
m

e
 p

e
r 

it
e

ra
ti
o

n
 (

µ
s
)

E
V

E
N

T
 L

O
S

S

no tracing

LTTng-UST

ETM + ETB

function at each iteration. It is thus equivalent to the other
test cases studied.

4.1.2 Results
This implementation is compared to two others: the first
one is the same program but untraced; the second one has
hardware tracing replaced by a call to LTTng-UST’s trace-
point in each iteration (and the hardware trace consumer
replaced by LTTng’s session daemon). We evaluated the
tracing time overhead by running these on a Beagleboard.
Figure 5 presents the execution time of our three benchmark
programs in three different configurations: recording only
tracepoints, performing some extra computation in each it-
eration, and performing even more computation. In this
experminet, tracepoint type size is zero (no ETM payload
and empty LTTng tracepoint). Once again, it is important
to note that these results show the overhead in the worst-
cases, because our benchmark programs do almost nothing
but recording tracepoints.

This is also true for ”tracepoints + computation” scenarios,
because even for the bars on the right (”more computation
+ tracepoints”), the program is a loop that produces trace-
points at an insanely high rate. It does something like a hun-
dred useless instructions between each tracepoint (whereas
a normal program would generate tracepoints much less fre-
quently).

In other words, a ”normal” program in a general use-case on
ARM would not generate that much tracepoints per second.
In this study, we pushed the tracing tools (both ETM and
LTTng) to their limits (around 100k to 1M events / second)
to highlight their differences.

First, it is noticed that, for very high tracing frequencies,
events are lost by the ETM. However, this situation is infre-
quent: it happens when events occur more often than 105

times per second.

ETM drops packets when the buffer is full. This means
when ETM is configured to generate trace packets too fre-
quently, and the kernel routine to empty the buffer is not
called frequently enough, trace packets are dropped.

Rigorously, we cannot trust the ETM + ETB method be-
cause of packet loss. But this only happen in extreme cases
(like the infinite loop that does nothing but triggering trace-
points). Moreover, event loss wouldn’t happen if the kernel
interrupted the process when the ETB buffer is full.

Apart from cases with lost events, results show that using
ETM and ETB reduces the time overhead from 30% to 50%
when compared to LTTng-UST. This demonstrates the per-
formance benefits of using dedicated hardware to trace a
given location in a program, in addition to the fact that
there is no need to recompile the traced program. However,
this solution only provides the time (although cycle-precise)
when the program reaches a specific point, and no other
information. Also, its most significant drawback is that it
only allows tracing a few points in the program (because
the number of available address triggers in ETM remains
very limited). Configuring the ETM to trace the whole pro-
gram is possible, but every branch would be recorded and a
significant tracing overhead would be incurred.

4.2 Branch Trace Store
4.2.1 Design
The Branch Trace Store (BTS) registers, included in most
newer x86 processors from Intel, allow saving every branch
taken by the CPU to an area in main memory. Each branch
is stored as a couple (origin address, destination address).
The area starting address and size is user-definable, but can-
not be configured to limit tracing to a specific process or
address range. BTS does not timestamp records either. For
these reasons, software has to spend more time for tracing
control and synchronization: enable or disable it on con-
text switches (to trace only one process), separately collect
timestamps, and drain the buffer to save data to disk.

With BTS, every branch of the program is stored. The ad-
vantage of this behavior is that it provides much more infor-
mation than the use of sparse tracepoints. Its drawback is a
significant perturbation of the traced process execution, due
to frequent memory accesses (to store branches) and related
cache usage.

We wanted to know if the use of BTS, although known to
have a significant performance impact, could do better than
pure-software tracing, which is also very intrusive when used
to trace the complete execution path. For this purpose, we
designed test programs meant to be traced either with LT-
Tng, or using BTS. In order to have comparable results,
we needed to devise programs that trigger BTS branching
records only where wanted, that is at the place where we
would insert tracepoints. For this purpose, our benchmark
programs are just loops performing arithmetic computations
(to simulate real software activity): at the end of each it-



Figure 6: Time overhead of tracing when using
LTTng-UST or Intel BTS hardware module, for pro-
grams with events traced at various frequencies.
BTS results are presented for the original Perf im-
plementation, and with our “splice” modification to
avoid a multiple copies.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3.2 x 10 6

3.7 x 10 6

4.4 x 10 6

5.5 x 10 6

7.6 x 10 6

1.1 x 10 7

2.4 x 10 7

2.1 x 10 8

ti
m

e
 p

e
r 

it
e

ra
ti
o

n
 (

µ
s
)

program branching rate (branch/s)

no tracing

LTTng-UST

BTS with Perf

BTS with "spliced" Perf

eration, the looping branch is recorded. The LTTng-traced
version of these programs contains a tracepoint at the end
of each iteration. Finally, in order to measure the effect of
tracepoints sparsity, we varied the length of the loop com-
putation. This changes the relative frequency of branches in
the program.

4.2.2 Re-implementing Perf
We modified the Linux kernel to handle BTS more effi-
ciently [11]. The default behavior (illustrated in Figure 7)
was to set up one buffer per CPU, and to copy its whole
content to a larger place in RAM every time a buffer full
interrupt or a context switch occurs. Then, the user-space
tracing daemon would copy the contents of this intermedi-
ate buffer to disk. The trace file being opened without the
O_SYNC flag, writing to disk is not synchronized and data is
possibly copied once more to a temporary buffer.

To avoid the time-wasting multiple copies in RAM (espe-
cially the one performed during the handling of an inter-
rupt), we re-implemented this Linux kernel section to use
ring-buffers. BTS is then configured to store entries in a
sub-buffer; when it is full, BTS is reconfigured to use the
next sub-buffer in the ring-buffer. This way, there is no ur-
gent need to copy the BTS data to make room: this data
can be saved to disk later by a kernel task. The size of the
sub-buffers is the same as in Perf (64 KiB), their number
was chosen to allocate a bit less resources than Perf does
in its default implementation, that is 16 kernel-space pages
plus 128 user-space pages per core (576 KiB per core for
original Perf, 512 KiB in our implementation). Because the
trace data does not transit through user-space before being
stored, we use the term “splice” for our design. It is illus-
trated in Figure 8.

4.2.3 Results
We measured the overhead induced by tracing with LTTng-
UST, with BTS using the regular Perf interface, and with
BTS using our modified kernel interface (“splice”). The re-
sults for programs with various branching rates are shown in
Figure 6. To give the reader an idea of the branching rates
presented here, we measured as a reference the rates for com-
mon programs: md5sum: 7.4×106; sha256sum: 3.7×107; gcc:
6.70×108. These values, given in branches per second, were
measured on the desktop machine described in section 2.

First, this experiment once more shows that the tracing
overhead highly depends on the tracing frequency. Bars on
the left, in Figure 6, show the overhead for programs that
do nothing but recording tracepoints. Secondly, we com-
pare the different tracing solutions overhead to LTTng, our
reference tracer. The experiment reveals that using BTS
through the regular Perf interface incurs between 30% and
60% time overhead, when compared to tracing with LTTng.
This highlights the heavy bus usage and the double copy
done by the Branch Trace Store system in its original Linux
implementation. However, when using our “splice” design
(in a kernel patched to use ring-buffers and avoid a double
copy), BTS tracing performs much better than the original.
It even overtakes LTTng with an overhead reduced by 10%
to 45%.

These results highlight the limits of Perf’s handling of BTS:
multiple copies inducing a heavy bus usage that competes
with the traced program’s execution. Our re-implementation
use ring-buffers to avoid multiple copies, resulting in a per-
formance enhancement that makes BTS lighter than LTTng.
Still, BTS remains costly for a hardware mechanism, due to
a large trace volume (24 bytes per branch). The reader
should note that our benchmark is valid for programs that
record tracepoints at each branch, which is not often the
case with higher level event tracing.

5. DISCUSSION AND RELATED WORK
This section presents related work in the two main related
areas: software tracing tools and tracing systems using hard-
ware components.

5.1 Software tracing
A wide range of solutions have been developed to trace pro-
grams with pure-software [12]. They either use interrupt-
based methods or instrumentation (code modification). We
present here the main software tracers for Linux.

5.1.1 Ptrace
The ptrace [13] system call is an old Unix functionality en-
abling a process to control another one, including reading its
state and intercepting its system calls. It is used in debug-
gers and programs with moderate requirements on perfor-
mance, such as gdb and strace. By giving access to a process
internals, ptrace provides powerful control, albeit at a sig-
nificant performance cost [13]. This is in large part because
each communication between the tracer and the traced pro-
cess needs at least two context switches. Because of ptrace’s
intrusiveness, newer tools have been designed with lower im-
pact on the traced process execution.



Figure 7: Operation of Perf and BTS in the original implementation

core

0

64K

512K

core

1

64K

512K

core

6

64K

512K

core

7

64K

512K

disk

u
s
e
r-

s
p
a
c
e

system bu er

BTS writes trace

to a dedicated bu er

trace is copied to

a bigger memory zone

upon bu er full

or context switch

user stores trace to

disk using the write

system call

possible copy in

another bu er because

no O_SYNC flag

Figure 8: Operation of Perf and BTS in our new “splice” implementation

core

0

core

1

core

6

core

7

disk

BTS writes trace

to a dedicated bu er

upon bu er full

or context switch,

move to the next

sub-bu er

lled sub-bu ers

are labeled to be

written to disk later

64K

512K
×

number
of cores

writing is done

by a kernel task

in user context



5.1.2 Ftrace
Ftrace [14] is a tool to monitor the system’s behavior by
instrumenting the kernel. It is meant to debug and profile
kernel-level problems by tracing events such as system calls,
interrupt handlers or scheduling functions. As Ftrace was
developed to trace the kernel’s internals, it does not support
user-space program tracing. Moreover, it synchronizes on
multi-core systems by spinlocking with interrupts disabled,
which has a non-negligible impact on performance [15].

5.1.3 SystemTap
SystemTap [16] is an infrastructure that provides functional
and performance debugging for Linux. It uses dynamic
probes (Kprobes [17]) to hook on specific points of execu-
tion in the kernel, and more recently Uprobes [18] to instru-
ment functions in user-space. Custom instrumentation can
be defined via a scripting language, that once compiled into
a kernel module, outputs trace information in text format.
SystemTap is limited by its output format, which is not ef-
ficient for tracing programs with highly frequent events or
very large traces.

5.1.4 LTTng
LTTng [2] is a tracing infrastructure focused on performance
and output format flexibility. It achieves efficiency by us-
ing scalable and lockless methods such as read-copy-update
(RCU) [19] and allocating per-CPU data structures. Hence,
tracepoints are fast and the impact on cache is minimized.

LTTng records events to a ring buffer associated to the CPU
executing the tracepoint. There is also a consumer daemon
to share memory (i.e., ring buffers) with user space applica-
tions or kernel tracing modules to collect trace events and
send them to disk or other destinations over the network.

LTTng’s output trace complies with the Common Trace For-
mat [20], a flexible and lightweight format supporting arbi-
trary event types and compression. LTTng supports high-
performance kernel-space and user-space tracing (both shar-
ing the same clock source), and all traces can be displayed in
a graphical analyzer such as TMF [21], for better interpre-
tation. For these reasons, we chose LTTng-UST (user-space
tracing version of LTTng) as a reference to conduct our ex-
periments. The results described in the rest of this paper
refer to LTTng version 2.3.

5.2 Hardware-assisted tracing
Some tools take advantage of dedicated hardware capabil-
ities in order to debug and measure program performance.
We present here software solutions that use hardware com-
ponents related to tracing.

5.2.1 Perf
Perf [22] is a program profiler for Linux. It was not ini-
tially meant for tracing, yet it can trace the sequence of in-
structions executed by a process on new Intel platforms. To
achieve this, Perf uses Intel’s BTS hardware registers, which
are detailed in section 2. BTS control is done in the kernel
through the Perf application binary interface, hence custom
tracing programs can re-use this ABI to take advantage of
these hardware capabilities.

Since recently, Perf also provides support for Last Branch
Record (LBR) [23] registers on Intel processors. This fea-
ture enables automatic recording of the last taken branches.
Depending on the CPU version, LBR stores from 4 to 16
records [23], which is useful for call stack debugging, but
too limited for event-based tracing.

5.2.2 Linux
The Linux kernel provides basic CoreSight ETM support
for OMAP3 chips. CoreSight ETM is a hardware facility to
trace the sequence of executed instructions. It is detailed
in section 2. Controling ETM is achieved via an entry in
the sysfs virtual filesystem, but only a limited subset of the
options offered by ETM is available. For instance, it is nei-
ther possible to change the address range to trace, nor can
a specific context ID be followed (which however, ETM is
capable of). Patches (including ours) were proposed to add
more functionality and support.

5.3 Other tracing hardware
Other hardware facilities exist on different architectures for
program tracing. We present here two common architectures
offering interesting features.

5.3.1 Freescale
Freescale processors offer debug facilities compliant with the
Nexus standard [24], in particular an on-chip trace buffer
that can capture real-time bus information [25]. It can
be configured to either store data for specific memory ac-
cesses, or changes in the execution flow, which allows pro-
gram tracing. The triggering system is similar to CoreSight
ETM, allowing to start and stop trace upon combinations
of conditions, such as address range matching and opcode
type. Another feature called Data Acquisition enables in-
strumented software to write data directly in the debugging
channel. Also, trace buffers have enough capacity (typically
16 KiB) and bandwidth to trace events from all cores with-
out loss [26].

The generated trace data can then be fetched by another
machine via a JTAG interface connector [27], stored in a
dedicated buffer or sent to main memory. Although trace
can be collected by proprietary software, there is no public
documentation available. A direct comparison was therefore
not possible and it was not included in our study.

5.3.2 Intel
Intel has designed a new execution tracing solution called
Processor Trace (PT) [28]. It enhances and unites previ-
ous tracing implementations [4, 23] in an optimized exten-
sion that is capable of timestamping, filtering, and track-
ing specific processes (via the CR3 register). The dedicated
hardware facilities also include caching buffers to store small
traces without accessing main memory [28], thus avoiding
the BTS bus usage drawbacks.

Processor Trace is promising but not available on silicon
at this time. Yet, Intel provides open-source libraries for
generating and decoding traces [28]. Support in Linux is
planned through the Perf ABI [29].



5.4 Existing use of CoreSight and BTS
The hardware facilities that we used in our study have ex-
isted for a few years [3, 4]. They are already taken advantage
of in existing tools, for various purposes.

5.4.1 Debugging
CoreSight provide debugging features such as hardware and
software breakpoints that can be used to stop a program or
execute step by step. These mechanisms are designed for
multi-core processors, hence they are able to send stop sig-
nals to other processors and act on a whole system. These
features are used by development environments [30, 31],
and software-hardware co-debug platforms have been pro-
posed [32, 33].

5.4.2 Security
Tracing infrastructures are also used for security. Scherer
and Horvath propose a watchdog solution to monitor the
system on ARM-based platforms. They use CoreSight de-
bug and trace hardware blocks to make and record measure-
ments inside the system and estimate its healthiness [34].
On Intel x86 platforms, Branch Trace Store (BTS) can be
used to detect security breaches. By monitoring addresses
of executed instructions to detect deviations, Yuan et al.
propose system security enhancements. They rely on the
BTS debugging registers to detect abnormal control flows
and identify unexpected code execution [35].

5.4.3 Programming
Another use of execution tracing is to speed up development
processes by exposing execution information alongside the
source code. Tralfamadore [36] is a system that displays
execution trace analysis in a source code browser. By using
BTS, it helps developers to track the control flow and write
their programs more logically.

6. CONCLUSION AND FUTURE WORK
We have presented solutions to take advantage of various
hardware debugging modules when doing software tracing,
and compared their overhead to LTTng, a performance ori-
ented tracer for Linux. The hardware modules studied be-
longed to two categories: software writes timestampers and
program tracers.

We used STM from the former category, to instrument pro-
grams without needing to synchronize and compute a times-
tamp when recording a tracepoint. We showed a 10 times
decrease in time overhead when tracing a user-space pro-
gram on a Pandaboard. We then studied program tracers,
i.e. hardware modules to record the flow of executed instruc-
tions. These do not provide the same information as tracers
do but can be suited for tracing, depending on one’s needs.
On ARM platforms, ETM offers good efficiency because of
its trace compression and triggering capabilities: tracing a
program takes 30% to 50% less time when hardware-assisted.
On Intel x86, the BTS registers are not adapted to event
recording, mainly because they lack automatic enabling/dis-
abling with address matching and trace compression. How-
ever, they can be used for this purpose by tracing every
branch. Using BTS for recording user-space tracepoints on
an Intel Core i7-3770 is 30% to 60% slower than using LT-

Tng with the standard implementation, whereas our kernel
modification with ring-buffers performs up to 45% faster.

The significant performance increase offered by some of our
solutions, especially STM, should lead to an integration into
LTTng in the near future. We also plan to extend this work
to other interesting hardware features, including Freescale
processors (which provides a program tracing functionality),
and Intel Processor Trace (PT) [28], a new hardware tracing
infrastructure that Intel will embed in its future processors.
Intel PT is promising because of its triggering and filtering
capabilities, similar to CoreSight ETM.

7. REFERENCES
[1] M. Desnoyers, Low-impact operating system tracing.

PhD thesis, Ecole Polytechnique de Montreal, 2009.

[2] M. Desnoyers and M. R. Dagenais, “The lttng tracer:
A low impact performance and behavior monitor for
gnu/linux,” in OLS (Ottawa Linux Symposium),
vol. 2006, pp. 209–224, Citeseer, 2006.

[3] ARM, “Coresight components technical reference
manual,” tech. rep., ARM, 2006.

[4] I. Corp., “Branch trace store (bts), intel R© 64 and
ia-32 architectures software developerś manual,” 2013.

[5] R. Mijat, “Better trace for better software,”ARM Ltd,
2010.

[6] M. Alliance, “Specification for system trace protocol
(stp).” http://mipi.org/specifications/debug#STP,
2013. [Online; accessed 19-July-2016].

[7] I. Corp., “Table b-2. ia-32 architectural msrs, intel R©
64 and ia-32 architectures software developerś
manual,” 2011.

[8] C. Pedersen and J. Acampora, “Intel code execution
trace resources,” Intel R Technology Journal, vol. 16,
pp. 130–136, 2012.

[9] M. L. Soffa, K. R. Walcott, and J. Mars, “Exploiting
hardware advances for software testing and debugging
(nier track),” in Proceedings of the 33rd International
Conference on Software Engineering, pp. 888–891,
ACM, 2011.

[10] A. Verge, “Arm coresight: Etm: Fix a vmalloc/vfree
failure and enhance tracing control.” https://github.
com/adrienverge/linux/tree/patch_etm_v3, 2014.
[Online; accessed 19-July-2016].

[11] A. Verge, “perf: Intel bts: Add ”splice” output mode.”
https://github.com/adrienverge/linux/tree/

patch_perf_bts_splice, 2013. [Online; accessed
19-July-2016].

[12] N. Ezzati-Jivan and M. R. Dagenais, “Multi-scale
navigation of large trace data: A survey,”Wiely
Concurrency and Computation: Practice and
Experience, 2016.

[13] P. Padala, “Playing with ptrace, part i,” Linux
Journal, vol. 2002, no. 103, p. 5, 2002.

[14] T. Bird, “Measuring function duration with ftrace,” in
Proceedings of the Linux Symposium, pp. 47–54,
Citeseer, 2009.

[15] M. Desnoyers and M. R. Dagenais, “Lttng, filling the
gap between kernel instrumentation and a widely
usable kernel tracer,” 2009.

[16] F. C. Eigler and R. Hat, “Problem solving with



systemtap,” in Proc. of the Ottawa Linux Symposium,
pp. 261–268, Citeseer, 2006.

[17] S. Goswami, “An introduction to kprobes, 2005.”
http://lwn.net/Articles/132196, 2015. [Online;
accessed 19-July-2016].

[18] J. Keniston and S. Dronamraju, “Uprobes: User-space
probes,” Linux Foundation Collaboration Summit,
2010.

[19] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger,
R. Russell, D. Sarma, and M. Soni, “Read-copy
update,” in AUUG Conference Proceedings, p. 175,
AUUG, Inc., 2001.

[20] M. Desnoyers, “Common trace format (ctf)
specification.” http://git.efficios.com, 2011.
[Online; accessed 19-July-2016].

[21] Ericsson, “Open source application for viewing and
analyzing traces.” http://www.tracecompass.org,
2016. [Online; accessed 19-July-2016].

[22] J. Edge, “Perfcounters added to the mainline,” LWN,
July, vol. 10, p. 50, 2009.

[23] I. Corp., “Lbr stack, intel R© 64 and ia-32 architectures
software developerś manual,” 2013.

[24] H. OḰeeffe, “The nexus 5001 forum standard
providing the gateway to the embedded systems of the
future.” http//www.ieeeisto.org, 2004. [Online;
accessed 19-July-2016].

[25] Freescale, “Application note an4420: Linux kernel
program tracing using nexus.”
http://www.freescale.com, 2011. [Online; accessed
19-July-2016].

[26] Freescale, “In eref 2.0: a programmerś reference

manual for freescale power architectureÂő processors.
chapter 9, 787–803.” http://www.freescale.com,
2011. [Online; accessed 19-July-2016].

[27] C. M. Maunder and R. E. Tulloss, IEEE Standard for
Reduced-Pin and Enhanced-Functionality Test Access
Port and Boundary Scan Architecture. IEEE
Computer Society Press Los Alamitos/Washington,
DC, 2010.

[28] J. Reinders, “Intel processor tracing.”
http://software.intel.com/en-us/blogs/2013/09/

18/processor-tracing, 2013. [Online; accessed
19-July-2016].

[29] A. Shishkin, “perf: Add support for intel processor
trace..” http://lwn.net/Articles/576551/, 2013.
[Online; accessed 19-July-2016].

[30] T. Instruments, “Code composer studio ide.”
http://www.ti.com/tool/ccstudio, 2011. [Online;
accessed 19-July-2016].

[31] ARM, “Ds-5 development studio.”
http://ds.arm.com, 2014. [Online; accessed
19-July-2016].

[32] K.-J. Lee, A. Su, L.-F. Chen, J.-W. Jhou, J. Kuo, and
M. Liu, “A software/hardware co-debug platform for
multi-core systems,” in ASIC (ASICON), 2011 IEEE
9th International Conference on, pp. 259–262, IEEE,
2011.

[33] J. K. A. P. Su, K.-J. Lee, J. Huang, G.-A. Jian, C.-A.
Chien, J.-I. Guo, and C.-H. Chen, “Multi-core
software/hardware co-debug platform with arm
coresightâĎć, on-chip test architecture and axi/ahb

bus monitor,” in VLSI Design, Automation and Test
(VLSI-DAT), 2011 International Symposium on,
pp. 1–6, IEEE, 2011.

[34] B. Scherer and G. Horvath, “Trace and debug port
based watchdog processor,” in Instrumentation and
Measurement Technology Conference (I2MTC), 2012
IEEE International, pp. 488–491, IEEE, 2012.

[35] L. Yuan, W. Xing, H. Chen, and B. Zang, “Security
breaches as pmu deviation: detecting and identifying
security attacks using performance counters,” in
Proceedings of the Second Asia-Pacific Workshop on
Systems, p. 6, ACM, 2011.

[36] G. Lefebvre, B. Cully, M. J. Feeley, N. C. Hutchinson,
and A. Warfield, “Tralfamadore: unifying source code
and execution experience,” in Proceedings of the 4th
ACM European conference on Computer systems,
pp. 199–204, ACM, 2009.


	2017_Verge_Hardware-assisted_software_event_tracing

