

Virtualizing Lifemapper Software Infrastructure for
Biodiversity Expedition

Nadya Williams
University of California, San Diego

9500 Gilman Dr., MC 0444
La Jolla, CA 92093, USA

+1 858-534-1820
nadya@sdsc.edu

Aimee Stewart
KU Biodiversity Institute

1345 Jayhawk Blvd
Lawrence, KS 66045, USA

+1 785-864-2233
aimee.stewart@ku.edu

Phil Papadopoulos
University of California, San Diego

9500 Gilman Dr., MC 0505
La Jolla, CA 92093, USA

+1 858-822-3628
phil@sdsc.edu

ABSTRACT
One of the activities of the Pacific Rim Applications and Grid
Middleware Assembly (PRAGMA) is fostering Virtual
Biodiversity Expeditions (VBEs) by bringing domain scientists
and cyber infrastructure specialists together as a team. Over the
past few years PRAGMA members have been collaborating on
virtualizing the Lifemapper software. Virtualization and cloud
computing have introduced great flexibility and efficiency into IT
projects. Virtualization provides application scalability,
maximizes resources utilization, and creates a more efficient,
agile, and automated infrastructure. However, there are downsides
to the complexity inherent in these environments, including the
need for special techniques to deploy cluster hosts, dependence on
virtual environments, and challenging application installation,
management, and configuration. In this paper, we report on
progress of the Lifemapper virtualization framework focused on a
reproducible and highly configurable infrastructure capable of fast
deployment.

Lifemapper is a complex biological software infrastructure
developed by the Biodiversity Institute at The University of
Kansas that creates and maintains an archive of species
distribution maps calculated from public specimen data and a
suite of data and tools for biodiversity researchers that calculate
single and multi-species distribution predictions and macro-
ecological analyses. Our goal is to create a viable virtualization
solution that can be easily adopted and reused by scientists at
multiple institutions and projects. This solution 1) allows fast
deployment of ready-made cluster images; 2) reproduces the
complete Lifemapper processing pipeline on demand at multiple
sites and in different hosting environments; and 3) enables
scientists to perform Lifemapper-facilitated data processing on
restricted-use data, very large datasets, or other unique data.

A key contribution of this work is describing the practical
experience in taking a complex, clustered, domain-specific, data
analysis and simulation system and making it available to operate
on a variety of system configurations. Uses of this portability
range from whole cluster replication to teaching and
experimentation on a single laptop. System virtualization is used

to practically define and make portable the full application stack,
including all of its complex set of supporting software.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
domain-specific architectures, patterns.

General Terms
Design

Keywords
Big data, Bioinformatics, Biodiversity computing, BISON,
client/server, cloud deployment, GBIF, iDigBio, KVM,
Lifemapper, macroecology, PRAGMA, pipeline, Rocks clusters,
virtual image, VirtualBox, VBE.

1. INTRODUCTION
Data on species distributions is a core resource for biodiversity
studies and using it effectively requires innovation in the way it is
managed for research analyses. The Lifemapper Project [1] has
innovated processing and analysis of species information resulting
in a modular platform capable of modeling of individual species
distributions as well as models of patterns of biological diversity.
Analyzing continental and global scale properties and patterns of
the biological diversity of natural communities of plant and
animal species involves the creation of large data sets derived
from models of species distribution which are in turn computed
from historical species occurrence data and observations on
species. These data sets are ideal for research in macroecology,
the science of analyzing biological diversity on continental and
global scales and has proven useful for revealing key biological
and geographical features of the distribution and diversity of
species.

Currently only Lifemapper developers have a good understanding
of the software installation, initial data population,
communications setup and usage, but both institutions and
scientific researchers have requested individualized Lifemapper
instances to communicate with a local or remote compute
resource containing restricted or specialized data for their own
archive. Virtualizing the software components greatly aided and
simplified the steps for creating a targeted Lifemapper instance.

2. LIFEMAPPER – MAIN COMPONENTS
Lifemapper is a complex biological software infrastructure
consisting of three independent components that communicate
with each other to process biological data: (1) LmServer for data
management and communications; (2) LmCompute for
calculations; and (3) various client applications including a plugin

to the open source GIS application QGIS [10]. Lifemapper data is
made up of two primary types of data - user data and the
Lifemapper Archive. To create the Lifemapper Archive, the data
pipeline starts with species occurrence data from a data aggregator
(e.g. GBIF, iDigBio, BISON) and computes Species Distribution
Models (LmSDM) based on accepted taxonomic names as defined
by the provider. This occurrence data is combined with observed
or modeled climate layers and processed to produce the LmSDM
portion of the Lifemapper Archive, freely available for query and
download. LmCompute and LmServer share these operations.
LmCompute requests jobs from LmServer, executes them, then
posts the results back to LmServer where data are written to
storage and metadata to the PostgreSQL database. Two
applications on LmCompute underlie SDM calculations:
openModeller [5][8][9] and MaxEnt [4][7]. From LmServer, a
user can access original and computed species data and metadata
through the Lifemapper website or with one a client, such as the
QGIS plugin. Figure 1 illustrates the separation between the two
primary components, LmServer, on which the Data Pipeline
continuously updates species data, assembles job packages for
computation and stores results in the Lifemapper Archive, and
LmCompute, on which processes are executed.

Figure 1. Lifemapper architecture.

A primary goal is to make Lifemapper components portable,
easily deployable and scalable. We achieved this via incremental
virtualization of the Lifemapper components. Bringing "big data"
or data with usage restrictions into a virtualized environment
further complicates implementation. One strategy for handling
big or restricted data is to bring computations to the data:
employing virtual servers and clusters to run applications in the
location of the data rather than bringing the data to an application.

3. LIFEMAPPER VIRTUALIZATION
3.1 Software packaging as a Rocks roll
The original Lifemapper install was on Ubuntu-based hosts at the
Biodiversity Institute in the Kansas University. Like most legacy
system that are fairly complex it requires a large set of
dependencies to be installed and configured, and all compilation
and configuration was done using homegrown scripts and
developers knowledge.

As a first step, we chose to move the Lifemapper installations to
Rocks clusters [6] because the Rocks toolkit allows us to
provision a physical (or virtual) cluster in an efficient,
programmable, configurable way in a very short time. The
resulting robust cluster is in a known state and has a known
modular software stack and with automatic configuration of
database, web server and job scheduler components needed for
various Lifemapper components.

We reviewed the installation at Kansas University’s Biodiversity
Institute and created a build process enabling a fast turnaround
from software update to server availability. For this, we
completed full refactoring of the Lifemapper software stack and
automated the software build and install process via Rocks rolls.
Rocks roll [2] is a powerful method to add software packages to
the cluster; a roll contains software packages as RPMs, possible
extensions to cluster command line structure, and a set of
instructions to automatically configure the software based on the
cluster node functionality or role and on its physical layout.
Packaging an application as a roll greatly facilitates its
installation, configuration and update and enables a convenient
sharing of the resulting software roll with other users. Creating the
application roll enables the application portability and deployment
in reproducible and reliable way and makes application
integration into the cluster seamless and automatic. For
Lifemapper, we chose to create separate rolls for the LmCompute
and LmServer components.

3.2 LmCompute virtualization
The first logical component for virtualization was LmCompute.
For PRAGMA 25 our goal was to separate the components and
deploy LmCompute as a virtual cluster at SDSC.

We created a lifemapper roll for LmCompute and deployed
several instances of it as separate clusters to handle jobs with
unique software or data requirements. The roll installs all the
required software and prerequisites for this component, and
configures the cluster to use a specific LmServer host. After the
roll is installed, the cluster is ready to run Lifemapper jobs. The
cluster frontend pulls the jobs from LmServer and dispatches
them to the compute nodes via a job submitter script.

Roll building and installing is mostly automated so recreating a
roll with a software update and applying it to an existing
installation is now a much more efficient and trouble free process.
The roll packaging system reduces the cost of installing,
configuring and replicating the LmCompute component. Figure 2
illustrates how the software integration and installation
complexity is now encapsulated in the development-production
pipeline:

Figure 2. Rocks rolls reduce the time between software
updates and server availability.

The roll helped to drastically reduce the time spent on software
build and configuration and automated nearly all hands-on tasks
eliminating the burden of integration of hardware and software for
the compute component. Building and testing a new compute
resource became trivial and there is little difference between
building virtual or physical resources because Rocks treats virtual
hardware as another type of physical hardware. LmCompute roll
source is available on PRAGMA’s github
(github.com/pragmagrid/lifemapper). Using the roll we can now
create a custom, portable and easily deployable cluster. During
PRAGMA 25 we demonstrated our streamlined and automated
build process, deployed a virtual cluster at SDSC that was running
LmCompute component and processing Lifemapper jobs that
were created on the original, non-refactored, LmServer at The
University of Kansas. In addition, we extended the code to
produce process-specific provenance logging for Lifemapper jobs
using Indiana University’s KARMA provenance collection tool.

3.3 LmServer Virtualization
As the Lifemapper project considers more efficient data storage
and query, it will need to experiment with different physical disks,
dataset organizations and layouts, and file formats. This will
require a few instances of a portable and reproducible LmServer
to test under various conditions. While essential for researching
the best strategies for the data store, a portable LmServer also
addresses two other specific needs. First, it allows colleagues in
the PRAGMA VBE at the University of Florida to use recently
acquired satellite data licensed only to physical storage at Florida.
Florida researchers requested a local installation of Lifemapper to
compute high quality species models using this restricted satellite
data. A portable LmServer would complete the Lifemapper
system, and allow data assembly, cataloging, storage, and
computation to operate independently at a location other than its
origin in Kansas. Second, other data aggregators would benefit
from having a self-contained Lifemapper system that could
operate solely on their data. These institutions desire a local copy
of the LmServer to manage data storage, retrieval, data and
analysis web services, and website, to create their own
institutional SDM or RAD archive focused solely on their data or
region. These LmServer installations can be self-contained
(installed locally with LmCompute on an institutional cluster) or
can be distributed and utilize any available Lifemapper
LmCompute installations.

These specific needs are solved by additional Lifemapper
virtualization. For PRAGMA 26, we decoupled the web server
and database server from the KU-specific implementation and
created a lifemapper-server roll (source is available at
github.com/pragmagrid/lifemapper-server) enabling a build
process for a configurable and easily deployable virtual server.

The server software has many dependencies to be satisfied both
during roll build time and during installation. In our lifemapper-
server roll we created an end-to-end build, install and configure
process that automates the entire lifecycle of application
management and enables: (1) fast software updates or rollback;
(2) simple packaging and reliable robust deployment; (3) VM
provisioning where building a virtual host is no different than
building a physical host; (4) a hardened installation process and
full integration with the underlying cluster via customizable
configuration files.

For PRAGMA 27, we automated Lifemapper server data and
metadata seeding for a test dataset, then initiated data computation
on the LmCompute, and confirmed that LmServer provided jobs
to LmCompute and data to end users.

We now have an installation where both the data management and
communication functions of LmServer can reside on the same or
different hosts using the same lifemapper-server roll. This
provides portability, easy deployment, and the flexibility to make
custom installations depending on the specific site needs.

3.4 Using Different Virtualization
Technologies
The generalized approach for running scientific applications in
PRAGMA is to create virtual machines (VMs) with all software to
run the applications and to start VM instances at new sites. This
approach is intended to leverage the infrastructure and application
virtualization and to reduce the complexity and labor-intensive
application management and host instantiation. Many PRAGMA
sites can participate as resource providers and deploy VMs
prepared elsewhere on their infrastructure. One of our goals is to
support the portable Lifemapper server using different
virtualization technologies. The first virtualization solution we
chose is Kernel-based Virtual Machine (KVM [3]), ideal for
Rocks-based clusters. Our second virtualization solution involves
creating a VM with VirtualBox [11] on a laptop. Laptop
installations are the first step towards allowing scientific
expeditions to use Lifemapper in the field.

3.4.1 KVM
KVM is a full virtualization solution for Linux on x86 platform
and is ideal for clusters. Rocks cluster management provides tools
via the KVM roll for virtual cluster management and deployment.
The Rocks KVM roll allows users to create and deploy virtual
hosts and virtual clusters reliably and efficiently and then add
previously created software rolls as needed. We can build multiple
virtual clusters with identical or different setups depending on the
desired cluster configuration. Running virtual clusters in KVM for
the Virtual Biodiversity Expedition resulted in multiple
advantages: (1) larger instance sizes that are limited only be the
hosting hardware specification; (2) long lasting instances used by
multiple external clients; (3) dynamic input data; (4) multiple
virtual clusters; (5) dynamically grow clusters based on
computational needs.

3.4.2 VirtualBox
VirtualBox, a free and Open Source software, is a powerful x86
and AMD64/Intel64 virtualization product that runs on Linux,
Windows, OSX and is ideal for laptops. Running virtual images
on a laptop has some drawbacks. For some users, networking
setup may not be trivial. In addition, laptop hardware often limits
the storage and memory available to virtual images. However,
benefits offset these limitations. The VBEs need special purpose
or short-lived instances as well as unique input data. VirtualBox
instances are also well suited for teaching or situations there is no
network connection. The instantiation of virtual cluster ready-
made images can be accomplished in very few steps.

3.4.3 Virtualization scenarios
While multiple virtualization technologies provided us with
different virtual clusters deployment options, the next challenge
was to provide a consistent implementation that poses very few
challenges for the users; easy to adopt and install. Our solution
was to create Rocks Virtual Clusters for both KVM and
VirtualBox, allowing developers to develop in the same
environment as production systems are deployed. While the
provisioning of the cluster is different in KVM and VirtualBox,
the image building can have the same flow. In addition,
virtualized images allow us to leverage the PRAGMA developed

tools pragma_boot and cloud scheduler for automated cluster
startup, overlay networks or Software Defined Networks (SDNs).
These tools set up data networks and create virtual machines and
clusters with the capability to be deployed in EC2.

For PRAGMA 27 we created KVM and VirtualBox clusters and
deployed them in the following 3 scenarios:

1. Two KVM virtual clusters, LmCompute and LmServer
at SDSC on physical hardware running Rocks 6.1.1.

2. A single VirtualBox cluster with both LmServer and
LmCompute components installed on a laptop.

3. Two VirtualBox clusters, LmServer and LmCompute at
SDSC

Figure 3. Lifemapper Virtual Clusters Scenarios for VBE.

We use Rocks rolls for all cluster software encapsulating difficult
application installation and configuration. With the rolls, we know
our system real time status: installed software, versions, and
configurations. The resulting robust system can be reliably built
and rebuilt.

By creating virtual machines and virtual clusters using Rocks in
both KVM and VirtualBox virtualization environments, we
virtualized the infrastructure improving hardware utilization and
scalability. The flexibility and efficiency of virtual servers
allowed easier testing and experimenting because the virtual
images can be easily replicated, exported and moved to other
sites, facilitating deployment on shared PRAGMA cloud
resources and allowing for deployment of multiple LmCompute
clusters across the multiple sites as needed.

4. Distributed computing and Geographically
Restricted Data Resources
The sharing of software, data and computational capabilities
across international networks in a trusted environment provides a
great opportunity for biodiversity and other researchers. We must
adapt technologies to be responsive to international agreements on
data restrictions, use and distribution. The integration of data
resources with virtual clusters becomes a vital component of VBE
and PRAGMA is committed to address the technical issues of data
and application sharing among collaborators and hosting sites
through virtualization.

For PRAGMA 28, we addressed both geographically restricted
data resources, and geographically distributed software
components. Commercial satellite imagery data from Kinabalu

(Borneo, Malaysia) was geographically restricted to the
University of Florida (UF). The PRAGMA Testbed sites were
used for instantiating distributed Lifemapper software
components. SDSC created Lifemapper virtual images for all
components then migrated the LmServer virtual cluster to another
site at SDSC and the LmCompute virtual cluster to the UF site.
Both new clusters were re-instantiated at their respective new
sites. The restricted data was installed on a host at UF that is not a
part of the PRAGMA Testbed then connected to the LmCompute
virtual cluster using Vine private network.

Figure 4 illustrates the infrastructure used to distribute Lifemapper
components and connect them to restricted data:

Figure 4. Infrastructure for Lifemapper virtualization.

We deployed LmCompute at the same location as the restricted
input data, while the PRAGMA network setup simplified
authentication and data permissions. The resulting Lifemapper
workflow is illustrated in Figure 5:

Figure 5. Lifemapper on PRAGMA Testbed.

5. SUMMARY
The PRAGMA Virtual Biodiversity Expedition (VBE) is designed
to use advanced technology to address pressing biological
questions about species distributions and adaptations in extreme
environments. This paper described a programmatic approach to
creating and deploying virtual images on the PRAGMA Testbed.

Automating development cycles via Lifemapper rolls we are able
to improve the quality of the applications and easily install
Lifemapper on physical or virtual clusters on demand. We can use
the same ISO image to install the Lifemapper components on
physical or virtual clusters and reduce the time cost from hours
and days needed to build the software by hand to 15 minutes of
roll installation. We automated time-intensive and repetitive tasks,
reducing the risks associated with software releases and updates
and facilitating faster development and scale up. The benefits of
creating virtual cluster images result from using a well defined

LmCompute)
Cluster)!

)rocks/201.sdsc.edu)

LmCompute)
Cluster)!LmCompute)
Cluster)!

LmDbServer!

LmWebServer)

)rocks/204.sdsc.edu)

public)
network)

KVM:)2)virtual)clusters)

LmCompute)
Cluster)!

)fe2.public)

LmCompute)
Cluster)!LmCompute)
Cluster)!

LmDbServer!

LmWebServer)

)fe.public)

NAT)
network)

VBox:)2)virtual)clusters)

private)
network)

LmDbServer!

LmWebServer)

)fe.public)

LmCompute)
Cluster)!LmCompute)
Cluster)!LmCompute)

node)!

)fe.compute)

VBox:)1)virtual)cluster)

LmCompute)
!

build process from development to production deployment,
seamlessly integrating software and hardware.

The virtual machines and clusters can be used for real time
experiments as well as training mechanisms. The “make once, eat
all week” approach allows us to create a complete system as an
end-to-end solution while greatly reducing the cost of installing,
configuring and replicating.

We envision following this experiment with more general use-
cases deploying Lifemapper and other science applications in
dynamic workflows. This approach can serve as a blueprint and
used for other scientific applications and Virtual Biodiversity
Expeditions and provide this new installation capability to other
users.

All the source code for the rolls and the Lifemapper components
is publically available on the github to PRAGMA and non-
PRAGMA users alike.

5.1 Future work
Our goal in this work is to create a viable virtualization solution
that can be easily adopted and reused by scientists at other
institutions and projects. Several next steps are already underway:

• Continue modularizing Lifemapper code to
accommodate alternate input data by simplifying data
initialization and population. We must formalize the
requirements for fully described data allowing easy use
of different input datasets (iDigBio, GBIF, BISON,
individual researcher, etc.) and switching among them.
Extend the pipeline to enable dynamic multi-species
pattern analyses of a Lifemapper instance populated
with data of Mount-Kinabalu, Malaysia. New
Lifemapper modules enabling batch processing, editing
pipeline workflows, spatial queries and archive subsets
for dynamic macroecological analysis will facilitate
more complete biodiversity analyses of the region. The
BISON and iDigBio user communities will be able to
create Lifemapper installations on their own once this
modularization is complete.

• Create an infrastructure bridging Indonesia and other
PRAGMA sites with a dedicated LmServer for our
Indonesian colleagues.

• Finalize the networking between LmServer and
LmCompute components on a single VC on a laptop.
This will facilitate the use of Lifemapper in the field or
offline with newly collected field data.

• Incorporate different networking scenarios in the
Lifemapper virtual infrastructure facilitated by advances
in overlay networks in the PRAGMA Experimental
Network Testbed. This can enable a deployment

scenario when a single LmCompute cluster is
distributed across multiple sites.

6. ACKNOWLEDGMENTS
This work is funded in part by National Science Foundation
(PRAGMA grant number 1234953, Lifemapper grant numbers
BIO/ABI 1356732, BIO/ABI 1458422, Rocks grant numbers
OCI-1032778 and OCI-0721623, iDigBio grant number EF-
1115210) and USGS (Lifemapper grant number BISON
G14AC00285).

7. REFERENCES
[1] Beach, J.H., A.M. Stewart, C.J. Grady and J.A. Cavner,

2015. Lifemapper. [Computational services and software
for species distribution modeling and biodiversity pattern
analysis]. Web site: http://www.lifemapper.org

[2] Bruno G, Katz MJ, Sacerdoti FD and Papadopoulos PM
(2004) Rolls: modifying a standard system installer to
support user-customizable cluster frontend appliances. In
Proceedings of the IEEE International Conference on
Cluster Computing, San Diego, CA, September.

[3] Kernel-based Virtual Machine. http://www.linux-kvm.org

[4] MaxEnt. http://www.cs.princeton.edu/~schapire/maxent

[5] OpenModeller. http://openmodeller.sourceforge.net

[6] Papadopoulos, P. M. 2011. Extending clusters to Amazon
EC2 using the Rocks toolkit. The International Journal of
High Performance Computing Applications. August 2011
vol. 25 no. 3, 317-327. DOI=
http://hpc.sagepub.com/content/25/3/317

[7] Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006.
Maximum entropy modeling of species geographic
distributions. Ecological Modelling 190:231-259.

[8] Muñoz, M.E.S., Giovanni, R., Siqueira, M.F., Sutton, T.,
Brewer, P., Pereira, R.S., Canhos, D.A.L. & Canhos, V.P.
2009. openModeller: a generic approach to species' potential
distribution modelling. GeoInformatica doi: 10.1007/s10707-
009-0090-7.

[9] Muñoz, M. E. S., R. De Giovanni, M. F. de Siqueira, T.
Sutton, P. Brewer, R. S. Pereira, D. A. L. Canhos, and V. P.
Canhos. 2011. openModeller: a generic approach to species'
potential distribution modelling. GeoInformatica 15: 111-
135. doi:10.1007/s10707-009-0090-7.

[10] QGIS. http://www.qgis.org

[11] VirtualBox. http://www.virtualbox.org

