
Cooperative and out-of-core execution of the irregular wavefront
propagation pattern on hybrid machines with IntelⓇ Xeon Phi™

Jeremias Gomes1, Alba C. M. A. de Melo1, Jun Kong2, Tahsin Kurc3, Joel H. Saltz3, and
George Teodoro1,3

1Department of Computer Science, University of Brasília, Brasília-DF, Brazil

2Department of Biomedical Informatics, Emory University, Atlanta, GA, USA

3Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA

Summary

The Irregular Wavefront Propagation Pattern (IWPP) is a core computing structure in several

image analysis operations. Efficient implementation of IWPP on the Intel Xeon Phi is difficult

because of the irregular data access and computation characteristics. The traditional IWPP

algorithm relies on atomic instructions, which are not available in the SIMD set of the Intel Phi. To

overcome this limitation, we have proposed a new IWPP algorithm that can take advantage of non-

atomic SIMD instructions supported on the Intel Xeon Phi. We have also developed and evaluated

methods to use CPU and Intel Phi cooperatively for parallel execution of the IWPP algorithms.

Our new cooperative IWPP version is also able to handle large out-of-core images that would not

fit into the memory of the accelerator. The new IWPP algorithm is used to implement the

Morphological Reconstruction and Fill Holes operations, which are operations commonly found in

image analysis applications. The vectorization implemented with the new IWPP has attained

improvements of up to about 5× on top of the original IWPP and significant gains as compared to

state-of-the-art the CPU and GPU versions. The new version running on an Intel Phi is 6.21× and

3.14× faster than running on a 16-core CPU and on a GPU, respectively. Finally, the cooperative

execution using two Intel Phi devices and a multi-core CPU has reached performance gains of

2.14× as compared to the execution using a single Intel Xeon Phi.

Keywords

Fill Holes; IntelⓇ Xeon Phi™; Irregular Algorithm Propagation Pattern; Morphological
Reconstruction

1 | INTRODUCTION

This paper presents efficient algorithms for the Irregular Wavefront Propagation Pattern

(IWPP)1 on Intel’s Xeon Phi (Intel Phi) co-processors. Our work is motivated by the

Correspondence: George Teodoro, Department of Computer Science, University of Brasília, Brasília-DF, 70910-900, Brazil.
teodoro@unb.br.

ORCID
George Teodoro http://orcid.org/0000-0001-6289-3914

HHS Public Access
Author manuscript
Concurr Comput. Author manuscript; available in PMC 2018 October 19.

Published in final edited form as:
Concurr Comput. 2018 July 25; 30(14): . doi:10.1002/cpe.4425.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://orcid.org/0000-0001-6289-3914

computational requirements of segmenting nuclei in whole slide tissue images (WSIs). WSIs

enable the quantitative study and characterization of the relationship between tissue

morphology at the sub-cellular level2 and disease mechanisms. Cancer, for example,

manifests itself through changes in nuclear morphology. Characterizing these changes and

correlating the characterization with clinical and genomic data can result in a better

understanding of disease onset and progression, leading to improvements in methods for

assessing response to treatment. While a WSI contains rich information, a typical analysis

pipeline with normalization, object segmentation, and feature computation stages can take

hours on a single CPU core; with modern digitizing microscope scanners, the pixel

resolution of a WSI can range from 50K×50K to over 100K×100K pixels. The high

computation demand poses as a major challenge to studies involving large datasets of WSIs

and has motivated our group to develop parallel computing techniques and systems to

accelerate this class of applications using high performance machines.1 Some core

operations in image analysis applications share a core computation structure called Irregular

Wavefront Propagation Pattern (IWPP).1 For instance, segmentation operations that use the

IWPP include: Morphological Reconstruction,3 Fill Holes,4 H-minima/maxima,4 Watershed,
5 and Distance Transform.6

The Intel Phi is becoming an increasingly popular and powerful processor and, as a

consequence, is an attractive platform for medical image analysis applications. Efficient

implementation of the IWPP on the Intel Phi is a complex task. The IWPP performs

computations by carrying out wave propagations from source grid points (image pixels) to

neighbor points. The waves are irregular in shape and propagations may occur into several

points of the domain. Moreover, the wave propagations are data dependent, and interaction

between waves may change the waves’ directions. The irregularity of the waves

propagations makes the IWPP a challenging pattern for efficient parallel execution, whereas

the use of atomic instructions in the original IWPP creates additional difficulties for

deploying it on the Intel Phi.7 The Intel Phi achieves its maximum performance when its

SIMD instructions are used. However, atomic instructions are not included in the Intel Phi

SIMD instruction set. In addition, hybrid machines with CPUs and one or more co-

processors are becoming more popular, and using all the available computing capacity (CPU

cores and co-processors) in a coordinated manner is critical to minimize application

execution time.

In this paper, we address these challenges of IWPP with new algorithmic strategies to

efficiently execute it on the Intel Phi and approaches to decompose the algorithm execution

into multiple processors. This paper extends our preliminary work8 with the introduction of

capabilities for cooperative execution, the ability to process large out-of-core images, and a

detailed evaluation of the proposed optimizations. The contributions of our work can be

summarized as follows:

• We developed a new parallel execution strategy of the IWPP that uses only non-

atomic SIMD instructions and, as a consequence, fully benefit from the Intel Phi.

• We extended the baseline IWPP to support processing of images using multiple

Intel Xeon Phis and CPUs in cooperation. This version of IWPP also enables the

Gomes et al. Page 2

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computation of large images using the co-processor, even when the co-processor

memory is not sufficient to store the entire image data (out-of-core).

• We have evaluated our propositions using the Morphological Reconstruction and

Fill Holes operations using a machine equipped with two Intel Phi co-processors

and a multi-core CPU. The results have shown that the new vectorized version is

up to 5.6× faster than the original IWPP on the Intel Phi. It also is about 6.2×

faster than the multi-core (16-core) CPU version. In addition, the execution using

a multicore CPUs and two Intel Xeon Phi devices cooperatively resulted in a

speedup of 2.2× vs a single Intel Xeon Phi. These performance gains

demonstrate the feasibility of using the Intel Xeon Phi to rapidly execute image

analysis operations.

We should note that the optimizations proposed in this work for efficient use of SIMD

instructions and thread-level parallelism will benefit other architectures. Modern processors,

such as the Intel Skylake, are also equipped with wide 512-bit vector processing units

(SIMD units) and have a large number of computing cores. The rest of this paper is

organized as follows. The motivation application is presented in Section 2. The original

IWPP is discussed in Section 3. The new and vectorized version of the IWPP is described in

Section 4. The strategy to cooperatively execute IWPP algorithms using multiple Intel Phi

processors and multi-core CPUs is discussed in Section 5. The experimental evaluation is

shown in Section 6, and the related work is detailed in Section 7. Finally, the conclusions

and future work are discussed in Section 8.

2 | BACKGROUND

This section provides an overview of the image analysis application that motivates our work

and presents details of the Intel Phi architecture. Our work targets the normalization,

segmentation, and feature computation stages for efficient execution because these are the

most compute intensive stages of our applications. Additional analysis phases that follow

these stages often deal with aggregate information.9 In the rest of this section, we describe

the motivating application domain (Section 2.1), the details of the fine-grain operations used

in each application stage in order to present the impact of accelerating IWPP to the entire

application workflow (Section 2.2), and discuss the Intel Phi processor architecture details

and the used programming models (Section 2.3).

2.1 | Microscopy image analysis

The use of high-resolution microscopy images facilitates the study of several diseases at

cellular and sub-cellular levels. The investigation of morphological changes in tissue images

at this scale can reveal important information about the disease mechanisms and, as a

consequence, may help on understanding response to treatment and complement genomic or

clinical data.2,9 Current digital microscopy scanner are able to collect images of tissue

specimens with a very high resolution. An uncompressed 8-bit color image with three-

channels may have over 50 GB, whereas a scanner can capture in the order of hundreds

images per day. This capacity of modern scanner has led to an increasing availability of

images in both public repositories and health care facilities. For instance, The Cancer

Gomes et al. Page 3

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Genome Atlas (TCGA) contains over 30,000 WSIs. As such, we expect that moderate size

studies using WSIs will handle thousands of images in a near future, creating a demand for

more efficient image analysis workflows and operations.

The compute intensive stages of the image analysis workflow are presented in Figure 1

along with the main internal operations used in each stage. The normalization is responsible

for correcting artifacts of the image scanning process, which, for instance, may result in

images with different color intensities. The segmentation is executed to extract cells and

nuclei contour information, and the feature computation stage is further applied to extract a

set of shape and texture features for each of the objects identified in the segmentation. The

resulting feature vector may have in the order of about 50-70 features per object. One of the

main challenges with the execution of the analysis workflow is the high computation

demand. Processing of a single image may take hours on a single CPU core. Thus, the

internal operations in computation intensive analysis stages are good candidates for

execution on co-processors to speed up application execution times.10

In the next section, we briefly describe the internal operations of the workflow, and the

importance of the IWPP-based operations to the application execution time.

2.2 | Details of core operations and impact of IWPP acceleration on analysis workflow

The fine-grain operations used in each of the compute intensive stages are shown in Table 1.

Additional details on the operations used by each of the application stages may be found in

our previous work.2,7 The “parallelism” column in the table shows the type of parallel

implementation (ie, data parallel, IWPP, and object parallel) suitable for each operation.

The operations in the normalization stage mostly employ data parallelism as they transform

images from different formats and normalize the color intensity. All these operations can

benefit from data or loop parallelism and can be easily parallelized for a multi-core CPU, a

GPU, or an Intel Phi. On the Intel Phi, the Intel Compiler is able to automatically identify

parallelism for these operations as well as for the data-parallel operations in the feature

computation stage.

The operations in the segmentation stage are still applied to image pixels, but most of them

employ the IWPP. Parallel execution of the IWPP requires active data elements (pixels),

which are non-uniformly and dynamically distributed in the image domain, to be processed

in parallel. The complex and dynamic wavefront propagation pattern makes efficient

parallelization a challenge. Current auto-parallelizing compilers (including the Intel

Compiler) fail to generate efficient parallel versions of these operations. Even manual

parallelization is very difficult with the SIMD instructions available in the Intel Phi.

The feature computation stage employs the IWPP, Data, and Object parallelisms. The object

parallelism is used when statistics are computed for multiple objects (cell or nuclei)

identified in the segmentation phase. The number of segmented objects in an input image or

image tile is typically very high. This allows for partitioning of the set of segmented objects

for concurrent and independent execution. This bag-of-tasks style execution strategy is

efficient and simplifies the deployment of the codes in a parallel setting.

Gomes et al. Page 4

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As shown in the table, the IWPP occurs in 5 out of 7 operations in the segmentation stage

and 1 operation in the feature computation stage. Thus, the IWPP represents over 85% of the

computation cost in the segmentation stage and about 40% of the entire application. This

demonstrates the relevance of the IWPP in image analysis; an efficient implementation of

the IWPP is critical to accelerate the entire image analysis application.

2.3 | Intel Xeon Phi

The Intel Phi co-processor is based on the Intel Many Integrated Core (MIC) architecture,

which consists of many simplified and power efficient computing cores equipped with a

512-bit vector processing unit (SIMD unit). In this architecture, the computing cores are

replicated to create multicore processors that are placed in a high performance bidirectional

ring network with fully coherent L2 caches. The MIC architecture combines features of

general-purpose CPUs and many-core processors or accelerators to provide an easy to

program and high-performance computing environment.12 It is based on a x86 instruction

set and supports traditional parallelization tools and communication models, such as

OpenMP (Open Multi-Processing), Pthreads (POSIX Threads Programming), and MPI

(Message Passing Interface).

This work used Intel Phi processors from the Knights Corner (KNC) and Knights Landing

(KNL) generations, as presented in Table 2. These devices can be deployed as co-processors

attached to the CPU through a PCIe channel. In this setup, the Intel Phi runs an application

in two modes: (i) the native mode allows for the user to directly access the co-processor to

run the application entirely from the device; (ii) in the offload mode, on the other hand, the

application is executed in the host CPU, but sections of the computation selected by the

developer using pragma commands are offloaded for execution within the co-processor. The

KNL can also be deployed as a standalone or bootable processor. This leads to significant

improvements for data-intensive applications as overheads of transferring data from CPU

and co-processor do not exist.

The characteristics of the Intel Phi devices used in this work are presented in Table 2. Both

KNC processors have the same number of computing cores, but differ in terms of the

processors clock frequency. The 7250 KNL, on the other hand, has more computing cores

and a higher clock frequency, which leads to higher computing capacity as compared with

the previous Intel Phi generation. Both generations support 512-bit SIMD instructions. The

KNC was built using the “Intel Initial Many Core Instructions” (IMCI). The KNL, on the

other hand, supports the AVX-512 instruction set, which is also used in mainstream

processors. Although IMCI and AVX are not equivalent, we can easily map our

implementation from one instruction set to the other because we use standard SIMD

instructions in our codes.

3 | IRREGULAR WAVEFRONT PROPAGATION PATTERN (IWPP) IN IMAGE

ANALYSIS

This section presents the IWPP and illustrates it in two image analysis operations:

Morphological Reconstruction and Fill Holes. The IWPP consists of a set of propagation

Gomes et al. Page 5

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

transformations applied on pixels of interest in an image. These propagations may result in a

pixel disseminating its value to a neighborhood. The neighborhood NG(p) of a pixel p is

defined using a structuring element G centered in p. A pixel q is said to be neighbor of p if

(q, p) ∈ G. Typical G structures include 4-/8-connected square grids, and the domain of

image pixels (DI) is rectangular. Image pixel values could be 0 or 1 in the binary case, gray

levels, or even be defined in a continuous scale.

The IWPP modifies the input by performing data propagations starting at a set of data

elements (active elements) that satisfy a propagation condition. These elements work as

sources of waves that, during computation, may modify neighbor pixels by disseminating

their values. If a pixel receives a wave propagation, it becomes part of the wavefront and is

inserted in the set of active elements, whereas a pixel that has just propagated information to

the neighborhood becomes inactive. There may be several waves active in the image domain

during execution. The propagation of a wave may interfere with other waves’ propagations.

This interference may create new waves or modify their directions.

An important property of the IWPP is that only active elements contribute to the output and,

as a consequence, should be processed. Thus, scanning the entire input domain to process

each element, as is employed in many regular image processing operations, will be

inefficient in the IWPP. A fast execution of this pattern involves storing and keeping track of

active elements. This is accomplished in our implementation by using queues or sets to save

active elements. The IWPP was first presented in the work of Teodoro et al1 and Algorithm

1 shows its computation structure.

Algorithm 1

Irregular Wavefront Propagation Pattern (IWPP)

Input: D: data elements in a multi-dimensional space

Output: D: stable set with all propagations reached

1: {Initialization Phase}

2: S ← subset active elements from D

3: {Wavefront Propagation Phase}

4: while S ≠Ø do

5: Extract ei·from S

6: Q ← NG(ei)

7: while Q ≠ Ø do

8: Extract ej from Q

9: if PropagationCondition(D(ei), D(ej)) = true then

10: D(ej) ← max/min(D(ei), D(ej))

11: Insert ej into S

12: end if

13: end while

14: end while

Gomes et al. Page 6

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The IWPP algorithm receives as input the image or data domain in which the computation

should be carried out and returns the data after all possible propagations were computed. In

its first phase, some preprocessing computations (not shown) may be carried out according

to the actual algorithm implemented in IWPP, and the wavefront or set of active elements are

identified and stored in S (line 2). After that, the propagation phase is executed in lines 4-14.

In this stage, while the set of active elements is not empty or all possible propagations were

computed, a given active element (ei) is removed from S and the neighbor elements (Q) of ei

are selected according to the structuring element G chosen by the user. Further, for each

neighbor ej of ei (lines 7-13), the propagation condition from ei to each ej is evaluated (line

9). If the condition is true, ei propagates its information to ej and the latter becomes part of

the active set of elements. The wavefront propagations are expected to be commutative and

atomic. The next sections present the instantiation of this pattern for two algorithms used to

evaluate our optimizations.

3.1 | Morphological reconstruction

Morphological reconstruction is an important operation frequently used in image

segmentation.3,13 It can be employed to derive information about shapes available in an

image, which could be, for instance, letters of scanned documents, cells in scanned tissue

images, or objects as cars or buildings in a satellite image. The morphological reconstruction

can extract, for instance, peak points or areas, bright regions, etc. The computation in this

operation is performed following a flood-filling strategy, which starts from marker images

and proceeds until it reaches values of another image called mask. Figure 2 illustrates the

process of morphological reconstruction in binary and grayscale images. The marker

intensity profile is propagated spatially but is bounded by the mask image intensity profile in

both examples. In the binary case, the operations removed a non-marked (seeded) object and

identified/removed peaks in the grayscale image.

Algorithm 2

Morphological Reconstruction Algorithm

Input: I:mask image, J: marker image

Output: J:reconstructed image

1: {Initialization Phase}

2: Scan I and J in raster order.

3: Let p be the current pixel

4:
 J(p) (max J(q), q ∈ NG

+(p) ∪ p) ∧ I(p)

5: Scan I and J in anti-raster order.

6: Let p be the current pixel

7:
 J(p) (max J(q), q ∈ NG

−(p) ∪ p) ∧ I(p)

8:
 if ∃q ∈ NG

−(p) J(q) < J(p) and J(q) < I(q)

9: queue.enqueue(p)

Gomes et al. Page 7

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

10: {Wavefront Propagation Phase}

11: while queue.empty() = false do

12: p ← queue.dequeue()

13: for all q ∈ NG(p) do

14: if J(q) < J(p) and I(q) ≠ J(q) then

15: J(q) ← min{J(p), I(q)}

16: queue.enqueue(q)

17: end if

18: end for

19: end while

The morphological reconstruction implementation using IWPP is presented in Algorithm 2.

As shown, this algorithm has an initialization phase in which raster and anti-raster scans are

performed to compute initial propagations. The NG
+ and NG

− denote the set of neighbors in

NG(p) that are reached before and after touching pixel p during a raster scan. These initial

passes on the image are part of the most efficient algorithm for this operation,3 and the

reasoning for applying them is that they may be able to resolve a large number of

propagations and reduce the amount of work performed in the actual IWPP phase. After

these scans, the pixels to satisfy the propagation condition are inserted into the wavefront

set, which is implemented into our algorithm using a regular First-In, First-Out queue.

Further, during the wavefront phase (lines 11-19), the algorithm continues by removing an

element p from the wavefront and trying to propagate the value of p to each of its neighbors

q. This condition checks whether the value of p (J(p)) is higher than the value of q (J(q)) and

if the value of q has not reached its limit or the mask value (I(p) ≠ I(q)). If the condition is

true, the information of p is propagated to q, and q is inserted into the set of active elements.

3.2 | Fill holes

The fill holes operation is also widely used in image analysis to remove/fill unwanted holes

in objects during image segmentation steps, but it may also be employed to make the image

more homogenized and smooth pixel value differences.4 Similarly to the morphological

reconstruction, the fill holes will perform a flood-filling, for instance, in a binary image that

stops when the boundaries of objects or mask values are reached. In this process, holes are

filled in binary images as dark areas inside objects receive propagation from surrounding

white areas, whereas lighter areas in grayscale images tend to propagate to darker ones.

Figure 3 presents an example of the fill holes use for binary and grayscale images. As may

be observed in the figure, in the binary image case, which was generated here by applying a

threshold-based segmentation on the original image, the execution of this operation will lead

to a resulting image without holes inside connected components. The use of the same

operation in a grayscale image, shown in the bottom part of the same figure, results in a

homogenized image in which lighter values propagate over dark areas. The use of this

operation is diverse in image processing workflows, and the implementation is similar to that

present for the morphological reconstruction, except that, in the initial phase, the fill holes

invert the input marker image to use it as a mask during the wavefront propagation step.

Gomes et al. Page 8

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 | THE DESIGN AND IMPLEMENTATION OF IWPP FOR THE INTEL XEON

PHI

This section presents our approach to efficiently execute the IWPP in the Intel Phi co-

processor. As previously discussed, the original IWPP requires the use of atomic

instructions, which are not available in the Intel Phi SIMD instruction set. The use of vector

instructions in the Intel Phi is essential to attain high performance because of the processors’

wide 512-bit vector registers and the associated vector instructions. Therefore, in order to

fully utilize the computing device for IWPP, we have proposed a novel algorithmic approach

that eliminates the use of atomic instructions and can take advantage of the SIMD

instruction to accelerate the IWPP in the Intel Phi.

The rest of this section is organized as follows. In Section 4.1, we present the new IWPP in

its sequential and non-vectorized form. The vectorized approach for the new IWPP is

discussed in Section 4.2. Further, in Section 4.3, we propose the extension of the vectorized

IWPP with the addition of thread-level parallelism and, in Section 4.4, we present an

additional execution strategy that reduces the amount of recomputation in the algorithm due

to the flood-filling pattern employed by the IWPP.

4.1 | New sequential IWPP

The main problem that prevented the use of vector instructions into the original IWPP,

presented in Algorithm 1, was the use of atomic instructions to avoid race conditions in its

parallel version. The race condition of the original IWPP occurs when multiple active

elements concurrently propagate their values to the same element in the image domain, as

presented in Figure 4(A). In this case, it is necessary to assert that the PropagationCondition
evaluation and the actual data propagation are atomic.

To address this problem, in the new sequential IWPP algorithm, we have inverted the

propagation direction. In this strategy, elements that receive propagation are first identified

and become active to update their own values in a second step. As such, each of the

identified elements will become a sink that captures the information from the neighborhood,

as presented in Figure 4(B). In this case, there will not exist two active elements in the

neighborhood trying to update a third common element in the domain with different values

in the thread-level parallel version of the algorithm. This approach allows us to eliminate the

use of atomic operations. However, one may notice that it is possible for a given element to

be inserted into the set of active ones (information receivers) multiple times. This would

potentially create another race condition resulting in multiple threads processing the same

element. However, as discussed in detail in Section 4.3, this will not require the use of

atomic instructions.

Algorithm 3

Redesigned IWPP

Input: D: data elements in a multi-dimensional space

Gomes et al. Page 9

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Output: D: stable set with all propagations reached

1: {Initialization Phase}

2: S ← subset active elements from D

3: {Wavefront Propagation Phase}

4: while currWave.empty() = false do

5: {Identification of elements receiving propagation}

6: for all p ∈ currWave do

7: for all q ∈ NG(p) do

8: if PropagationCondition(D(q), D(p)) = true then

9: nextWave.insert(q)

10: end if

11: end for

12: end for

13: {Propagation}

14: for all p ∈ nextWave do

15: for all q ∈ NG(p) do

16: D(p) ← max/min(D(q), D(p))

17: end for

18: end for

19: currWave ← nextWave

20: nextWave ←Ø

21: end while

The new redesigned IWPP is shown in Algorithm 3. The wavefront propagation phase,

which is the main focus for our optimizations, is divided into two steps in the new algorithm.

First, the active elements (stored into the currWave container) are processed in order to

identify those data elements that will receive propagation (lines 6 to 12). The ones identified

as information receivers are inserted into a new set of active elements (nextWave), which

also corresponds to those elements that will be part of the wave in the next propagation cycle

that starts in line 4. Further, the actual propagation takes place in lines 14 to 18. During this

stage, each element identified as an information receiver will verify the neighborhood

element from which it should receive information. Finally, after the propagation is

performed, the next set of active elements (currWave) receives the set containing the

information receivers in the current iteration of the wavefront propagation. This process

continues until the wavefront becomes empty and stability is reached.

4.2 | Vectorized version of new IWPP

This section describes our approach to vectorize the new IWPP algorithm presented in the

previous section. The vectorization focuses in the wavefront propagation phase and is

presented in Algorithm 4. This process starts with changes in the identification of elements

receiving propagations (lines 9 to 16). In this step, the addresses of the active elements in the

wavefront (currWave) are first loaded into a vector register (vecp - line 10) and replicated

into multiple positions of this vector. The number of positions is the same as the size of the

neighborhood considered. If the vector register is sufficient to store the neighborhood of

Gomes et al. Page 10

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiple active elements, more than one can be processed into a single pass. For sake of

simplicity, we present the algorithm as if a single p was processed per loop iteration.

Algorithm 4

Nfectorized IWPP algorithm

Input: D:data elements in a multi-dimensional space

Output: D:stable set with all propagations reached

1: vecshift ← Constant address distance from neighborhood

2: {Initialization Phase}

3: …

4: {Scan Phase}

5: …

6: {Wavefront Propagation Phase}

7: while currWave.empty() == false do

8: {Identification of elements receiving propagation}

9: for all p ∈ currWave do

10: vecp ← Extract active elements

11: vecaddr ← VecAdd(vecp, vecshift)

12: vecneigh ← Gather(D, vecaddr)

13: maskcond ← VectorPropagationCondition(vecp, vecneigh)

14: vecprefixSum ← PrefixSum(maskcond)

15: nextWave.Insert(vecaddr, maskcond, vecprefixSum)

16: end for

17: {Propagation}

18: for all q ∈ nextWave do

19: vecq ← Extract elements

20: vecaddr ← VecAdd(vecq, vecshift)

21: vecneigh ← Gather(D, vecaddr)

22: D(q) ← Max/MinReduce(vecq, vecneigh)

23: end for

24: currWave ← nextWave

25: nextWave ←Ø

26: end while

Further, vecp is added to a precomputed vector register (vecshift), which contains the shift

values necessary to compute the address of each neighbor element, considering the address

of p as a reference (line 11). The shift values will be, for instance, −1 for the left neighbor.

The vecshift for an 8-connected neighborhood is shown in Figure 5(A), which uses a Grid of

i × j elements (pixels in an image) to exemplify the effects of the vector instructions. Further,

using the addresses values computed for all neighbors, a gather instruction is used to load

them into vecneigh, as shown in line 12. In line 13, the propagation condition is computed

using p and its neighbors, and the results of this computation will be inserted into a mask

vector register whose values identify the cases in which the condition is evaluated true as 1.

In order to insert the elements that had the propagation evaluated true in the nextWave, we

Gomes et al. Page 11

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

first compute a prefix-sum of the mask register. Each entry of the vecprefixSum vector register

will indicate the position, starting from the last element stored into the nextWave queue, in

which the neighbor should be stored in case it is an information receiver. This insertion

process is illustrated in Figure 5(B).

After the elements receiving information are identified, the propagation is computed in lines

18 to 23. We extract the q element from the nextWave container (line 19), identify and read

its neighbors (lines 20 and 21), and compute the value from the neighborhood that should be

propagated to q (line 22). Such as, in the previous stages of the algorithm, multiple q
elements may be processed as long as their neighborhoods fit into the vector registers. It is

also important to highlight that the same element q could have been inserted multiple times

in the nextWave, and this could result in having replicas of an element being processed

concurrently within a single pass of the vectorized propagation. This will result into a data

race during the D(q) update. However, since the same neighborhood is read by each of the

replicas of q in the same instruction, the input information will be the same as well as the

result for any of the computations. As such, this race condition is classified as a benign14

race condition and will not influence the operation results.

4.3 | Extending the vectorized IWPP with thread-level parallelism

This section presents our approach to employ thread-level parallelism in IWPP. In this

parallelization, the vectorized IWPP algorithm is modified to divide the work by splitting the

initial set of wavefront elements identified in the initialization phase among threads. This

process is illustrated in Algorithm 5. Multiple domain partitions are created in line 4. This is

implemented by creating blocks of consecutive rows with size equals to number of rows in

the input domain divided by the number of threads. Further, in lines 6 to 8, the partitions are

independently processed by the available threads, which will insert the identified active

elements in their wavefront container copies (currWave[tid]).

Algorithm 5

Vectorized Thread-Level Parallel IWPP algorithm

Input: D:data elements in a multi-dimensional space; NT:number of threads used

Output: D:stable set with all propagations reached

1: vecshift ← Constant address distance from neighborhood

2: {Initialization Phase}

3: …

4: Dpartitions ← partition(D, NT)

5: tid ← getThreadld()

6: while Di ∈Dpartitions do in parallel

7: currWave[tid] ← subset active elements from Di

8: end while

9: {Wavefront Propagation Phase}

10: while currWave[tid].empty() == false do in parallel

11: {Identification of elements receiving propagation}

Gomes et al. Page 12

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

12: for all p ∈ currWave[tid] do

13: vecp ← Extract active elements

14: vecaddr ← VecAdd(vecp, vecshift)

15: vecneigh ← Gather(D, vecaddr)

16: maskcond ← VectorPropagationCondition(vecp, vecneigh)

17: vecprefixSum ← PrefixSum(maskcond)

18: nextWave[tid]. Insert(vecaddr, maskcond, vecprefixSum)

19: end for

20: {Propagation}

21: barrier

22: for all q ∈ nextWave[tid] do

23: vecq ← Extract elements

24: vecaddr ← VecAdd(vecq, vecshift)

25: vecneigh ← Gather(D, vecaddr)

26: D(q) ← Max/MinReduce(yecq, vecneigh)

27: end for

28: currWsve[tid] ← nextWave[tid]

29: nextWave[tid] ←Ø

30: end while

The actual propagation phase is presented in lines 10 to 30 of Algorithm 5. This phase is

executed in parallel and each thread will be responsible for carrying out propagations of

active elements stored in its corresponding container (currentWave[tid]). In order to

guarantee correctness, we have to assert that all active elements are identified before the

propagation is executed. The rest of the algorithm is very similar to the sequential version.

However, even though the threads start processing active elements from disjoint partitions of

the domain, a propagation may cross the partition. As a consequence, multiple threads may

be updating the same domain partition in parallel or even the same data element (D(q)) and,

as a consequence, a data race may also occur in line 26.

We present this data race in Figure 6(A) using the Morphological Reconstruction operation

as an example. As shown in the figure, the computation of the identification phase for both

threads will result in inserting ex in their nextWave. If the neighborhood of ex read by both

threads is the same, they will write the same information in D(q). This results into a benign

data race similar to that observed in the vectorization. On the order hand, a more complex

scenario occurs when ex is modified, for instance, by the propagations of another element

such as ex+2. In this case, the intermediate result of iteration z may differ depending on the

order in which propagations are carried out and threads read the neighborhood. This would

lead to one of two cases (C1 and C2) that are presented in Figure 6(A).

The first case (C1) is the more complicated configuration. Assume, for instance, that thread

1 reads neighbors of ex to the register and, after that thread 2 computes propagations of ex+1

and ex, the neighborhood values read by thread 1 will be outdated and the intermediate

results will be as shown in C1. In this configuration, the execution of the next iteration z + 1

(Figure 6(B)) would still contain ex+1 as an active element, and the propagation resulting

Gomes et al. Page 13

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from ex+1 will change the value of ex to 8 using the newest neighborhood. The second case

(C2) is the one in which both threads read the neighborhood of ex after it has been updated

as a consequence of processing propagations from ex+1. In this case, ex would be set to its

final value in iteration z (Figure 6(C)), and no additional propagation is identified in iteration

z + 1. In both cases, the result is the same and the data races observed here are benign and

could be classified as double checks.14

4.4 | Employing the downhill filter approach to increase the parallel efficiency

The original IWPP processes the active elements following a FIFO (First-In, First-Out) order

as employed by Vincent.3 The Downhill filter approach,15 on the other hand, has shown that

the FIFO approach could lead to unnecessary recomputation of propagations, which occurs

when an element is modified multiple times due to the interaction among wavefronts. Thus,

the Downhill filter approach proposed a propagation order in which elements receiving

propagation attain their final value after a single propagation. As such, it is able to eliminate

recomputations. This was attained by building a priority queue in which elements with

higher values propagate first.

This approach is also interesting in our parallel versions of IWPP because it reduces the

possibilities of increasing the recomputation as a consequence of using multiple threads.

This increasing occurs in the FIFO approach because as threads start to interact within the

data domain, there is a chance that threads will compute propagations using a less updated

domain as compared to the sequential version. This problem is worsened as the number of

threads increases. In this case, the improvements in the algorithm throughput (elements

computed per time unit) due to parallelism may not result in reducing the execution time at

the same rate. However, if the Downhill filter is used, elements with higher values will be

processed earlier and recomputation will be minimized, benefiting the parallelism efficiency.

In order to take advantage of the ideas proposed in the Downhill filter approach, we have

modified the IWPP to allow for the user to select between a FIFO or priority-based container

(also called heap) to store active elements. In this case, a regular priority container such as

provided by the C++ Standard Template Library (STL)16 is used.

5 | COOPERATIVE AND OUT-OF-CORE EXECUTION ON HYBRID MACHINES

A significant number of state-of-the-art high-end computing machines are being built using

powerful multi-core CPUs and one or more co-processors. In order to fully take advantage

of the computing power of these machines, it is important to cooperatively use all available

devices. However, the collective use of heterogeneous processors to solve a problem may be

a very challenging task. In the case of IWPP, it requires: (i) a parallelization scheme of the

IWPP that allows for partitioning the computation without affecting the output results and

(ii) a careful division of the computation among the CPU and co-processors. The division of

the input image into smaller partitions also allows for the co-processors to be used to execute

large images that would not fit entirely in the device memory. The rest of this section first

presents an overview of the parallelization approach for IWPP that allows for multiple

processors to compute a single image (Section 5.1). Further, in Section 5.2, we discuss the

implementation of this parallelization approach.

Gomes et al. Page 14

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.1 | Overview of the parallelization and data partition approach

The cooperative parallel approach we developed divides the input data domain into

partitions that are assigned for independent execution in the available devices. The devices

carry out local wavefront propagations in parts of the subdomain assigned to them, and a

merging phase is executed to assemble the original image and correct border artifacts. In

other words, the merging of the problem sub-solutions should consider that a wavefront

could have propagated from one partition to another. The propagations among partitions are

called inter-partition wavefront propagations, whereas the propagations within a given

partition are named here as intra-partition.

Therefore, in the overall solution, the intra-partition and inter-partition steps are executed

until at least a single propagation exists between partitions. This asserts that the computation

will end only when a stable solution has been reached. Figure 7 shows an example of the

processing steps using this strategy and the morphological reconstruction algorithm. First,

the input image is divided into two partitions (Figure 7(A)), which are processed

independently to compute intra-partition wavefront propagations (Figure 7(B)), inter-

partition propagations are computed (Figure 7(C)), and another round of intra-partition

computations are executed to generate the final image (Figure 7(D)). In this example, the

final result (stability) was obtained with a single inter-partition propagation round, but more

iterations may be required in other cases. The same approach can be used in all IWPP

algorithms, which is possible because the operations performed by IWPP are commutative

and monotonically increasing/decreasing.

5.2 | Cooperative execution and implementation details

5.2.1 | Overall workflow—The cooperative execution is built on the data partition

observations and execution scheme presented in the previous section, which shows that an

image can be divided for execution as long as a post-processing is performed to correct

border artifacts. Therefore, our overall strategy was designed by decomposing the main steps

previously described into a workflow of stages shown in Figure 8, which consists of data

partition, the computation of propagation within each partition, and inter-partition

propagation to allow for information to migrate from partitions.

In this workflow, the image is first divided into multiple disjoint partitions in the “Image

Division” stage. This partitioning schemes only creates metadata describing the bounding

boxes of the partitions in the original input data buffer. This avoids creating unnecessary

copies of the input data domain. Further, an instance of the “Intra-Partition Propagation”

stage is instantiated for each input data partition to execute the intra-partition wavefront

computations. The “Intra-Partition Propagation” is by far the most expensive stage of the

workflow, and its instances can be executed by the CPUs or Intel Phis or both concurrently.

Moreover, when all “Intra-Partition Propagation” instances have finished their execution, the

“Inter-Partition Propagation” stage is executed to carry out propagations between the

partitions of the input data and resolve propagations that start from active element resulting

from these inter-partition propagations.

Gomes et al. Page 15

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although it is possible to create multiple copies of the “Inter-Partition Propagation” stage,

we have noticed that its computation is very lightweight and, as such, it is more efficiently

executed by a single stage instance that executes in the CPU using multiple computing cores.

In order to execute the workflow, we developed a workflow manager system that coordinates

the stages execution and asserts that dependencies among stage instances are respected.

5.2.2 | Work division—To efficiently utilize multiple computing devices cooperatively, it

is necessary to minimize the load imbalance between “Intra-Partition Propagation” stage

instances assigned to different processors. In our implementation, this is addressed in the

“Image Division” stage that creates partitions of the original input domain with sizes that are

proportional to the computing power of the devices. This division considers the entire CPU

with its the multiple cores as a single device (CPUm), and each of the j Intel Phis as another

device (Phij). Further, using the performance of the single core execution as a baseline, we

compute speedups of the (SCPUm
= TimeCPUsequential

/TimeCPUm
) and of each j-th Intel Phi

(SPhi j
= TimeCPUsequential

/TimePhi j
). These speedup calculations are obtained in profiling

phase carried out before the actual execution of the cooperative runs and should be provided

by the user.

Given the speedups calculated for all processors, we can estimate the proportion of the

machine computing power that is delivered by each processor. This value is used to calculate

the ratio of the image domain (partition size) that will be assigned to each device. For

instance, if a CPU and one or more Intel Phi co-processors are used, the ratio of the input

data domain assigned to the CPU is RCPUm
= SCPUm

/(SCPUm
+ ∑ jSPhi j

), whereas the j-th

Intel Phi will compute a ratio RPhi j
= SPhi j

/(SCPUm
+ ∑ jSPhi j

). The actual computation

workflow is dispatched for execution with our Task Execution Engine (TEE - see Figure 8),

which will guarantee that dependencies are resolved before the actual execution of stage

instances (tasks). It also assigns one computing thread per computing device, and this thread

will communicate with the TEE scheduler to receive partitions that should be processed in

that device.

5.2.3 | Discussion and limitations—There are important decisions that we had to take

during the development of the partitioning scheme that may substantially affect its

performance. For instance, we have considered the CPU as a single device instead of

considering each computing core as a device. The main reason for using this strategy is that

a smaller number of partitions is created in this approach (one per CPU instead of one per

CPU-core) and, as a consequence, it reduces the inter-partition propagations.

We have also created a single partition per processor as our default strategy instead of

creating multiple partitions. This decision has been made based on the observation that the

largest the partition is, the better tends to be the processors efficiency. This approach,

however, is modified if the entire partition or image sub-domain assigned to a co-processor

does not fit in its memory. In this case, we will create smaller partitions to allow execution

of large images, and these smaller partitions are computed recursively by dividing partitions

Gomes et al. Page 16

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

into half of their sizes until they do not fit in the co-processor memory. As one may have

noticed, in the current version of our solution, we assume that the memory of the CPU will

be sufficient to store the entire input domain/image. As a future work, we intend to remove

this limitation with a hierarchical execution scheme in which other storage layers could also

be used.

6 | EXPERIMENTAL EVALUATION

The experimental evaluation was carried out using the Morphological Reconstruction and

Fill Holes algorithms and the images collected and used in our early brain tumor research

initiatives.17 The experimental results were repeated 10 times and a variance not higher than

1% was observed. We have also employed four machines: The first machine is configured

with two 8-core Intel Xeon E5-processors with 2.6 GHz, 64 GB of RAM, and one Intel

Xeon Phi 7120P. The second machine hosts two 8-core Intel Xeon E5-processors with 2.7

GHz, 20 MB of L3, 32 GB of RAM, and two Intel Xeon Phi SE10P. The third machine is

equipped with a 8-core Intel Xeon E5-processor with 2.7 GHz, 20 MB of L3, 32 GB of

RAM, one GPU Nvidia Tesla K20. The last machine contains an Intel Phi 7250 which is

used as a standalone (or bootable) processor. The first machine is used for most of the

experiments, whereas the second machine is employed in experiments involving the

cooperative execution. The third machine, on the other hand, was used to measure and

compare the performance of the target operations in GPU devices. The input images vary in

size and tissue coverage. Tissue coverage refers to the percentage of the image area covered

with tissue (see Figure 9 for examples of different tissue coverage).

In order to evaluate the performance of the proposed methods, we have compared the

implementations to efficient CPU3 and GPU1,18 implementations of the IWPP.We have also

benchmarked the processors using the STREAM benchmark19 to compute regular memory

access bandwidth. The memory bandwidth with these benchmarks are presented in Table 3.

The processors were benchmarked with the intention of collecting additional information

used to explain the performance of the target operations.

6.1 | Impact of vectorization

This section evaluates the performance gains of the proposed vectorized IWPP as compared

to the original non-vectorized version. The experiments were carried out using the Intel Phi

SE10P and 4K×4K input images with different coverage characteristics, as illustrated in

Figure 9. In addition, we have employed the IWPP with a regular FIFO queue structure to

store the wavefront elements and have evaluated the Morphological Reconstruction and Fill

Holes operations.

As presented in Figure 10, both operations have significantly benefited from the vectorized

version of IWPP. The speedups attained on top of the non-vectorized versions of the

operations are up to 5.17× and 5.63×, respectively, for the Morphological Reconstruction

and Fill Holes. Although the gains are high, they are not linear with respect to the number of

data elements that fit into a vector register of the Intel Phi (16). A smaller gain was expected

because of the larger number of instructions executed by the vectorized version as compared

to the non-vectorized. For instance, the vectorized version requires an additional instruction

Gomes et al. Page 17

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to load the input data elements to a vector register and a more complex strategy to compute

the position of elements into the queue (prefix-sum).

6.2 | Performance of operations for different input sizes and tissue coverage

These experiments evaluate the impact of the input image size and tissue coverage to the

overall performance of the operations on the Intel Phi SE10P as compared to the sequential

execution on the CPU. This evaluation presents and discusses the performance of the

Morphological Reconstruction with the FIFO queue only because the Fill Holes results are

very similar. The results are presented in Figure 11. As shown, the performance gains of the

Intel Phi parallelization are significant for all configurations, but the improvements increase

for images with larger coverage and size. This occurs because larger coverage and image

sizes lead to more computations, which, in turn, better offsets the initialization overheads

and exploits the parallelism of the co-processor. However, it is important to notice that using

images bigger than 8K×8K has not led to a substantial performance improvement.

6.3 | Comparison of Intel Phi-based vectorized IWPP to efficient CPU and GPU versions

This section presents the performance of our proposed approach on the Intel Phi SE10P,

7120P, and 7250 as compared to other efficient implementations for multi-core CPUs and

GPUs.1 The multi-core CPU version was executed on Intel E5-processors with 2.6 GHz and

employed the 16 computing cores available. The SE10P and 7120P devices are equipped

with 61 cores, but the latter has a higher clock rate. The GPU used is the NVIDIA K20.

Details about the co-processors are presented in Table 3. We have also compared different

strategies for processing the wavefront elements: (i) FIFO that processes elements in the

order in which they are inserted into the wavefront and (ii) Priority that uses the Downhill

strategy to first compute elements with higher intensity values.

The performance of all versions of IWPP for the Morphological Reconstruction operation in

the processors evaluated is presented in Figure 12. As shown, the multi-core CPU version

was able to scale well as it attained speedups of about 14× on top of the sequential version.

Further, as we compare the different Intel Phi devices, it was observed that the 7120P

improved the performance of the operations in about 1.14× as compared to the SE10P when

using either the FIFO or Priority (Downhill) approaches. This improvement is consistent

with the differences in the computation capabilities of the devices. Further, the 7250 Intel

Phi is about 2× faster than the 7120P. This improvement is mainly due to the much higher

memory bandwidth of the 7250 (Table 3). The GPU version attained a slightly better

performance than the 7120P Intel Phi with FIFO, but the use of the Priority container leads

the 7120P to a performance that is about 1.6× superior than the GPU. The improvements

with the Downhill approach are a consequence of processing less elements in the wavefront

as compared to the execution using the FIFO strategy. It is worth noting that we have

implemented IWPP for GPUs using an efficient priority queue proposed by He et al,20 but it

did not lead to performance improvements on top of the FIFO case because of the higher

costs of executing/managing this structure in the GPU. Finally, the 7250 has achieved higher

performance than the K20 GPU for all configurations. It is 6.21× faster than the multi-core

CPU configuration for 16K × 16K images.

Gomes et al. Page 18

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.4 | Effects of cooperative execution

These experiments look at the performance of cooperative execution on CPU and Intel Xeon

Phi and use input images with 24K × 24K and 32K × 32K pixels. The experiments were

executed on our computing setting equipped with two 8-core Intel Xeon E5-processors with

2.7 GHz and two Intel Xeon Phi SE10P co-processors. This configuration provides a more

appropriate environment for the cooperative execution evaluation. This machine is also

equipped with a faster CPU as compared to the one used in previous sections.

We evaluated five versions of the Morphological Reconstruction: (i) the single core

sequential CPU version, (ii) the CPU multithreaded version, (iii) the version with

cooperative execution that uses one Intel Phi and the multiple CPU cores available, (iv) the

cooperative version that employs two Intel Phi co-processors, and (v) the cooperative

version with two Intel Phi co-processors and the CPU cores. One CPU core was reserved for

managing each Intel Xeon Phi co-processor. The results reported include all overheads, for

instance, the data transfer times between the CPU and the co-processors, the division of the

input data domain, and the correction of border effects.

First, in Table 4, we present the amount of work assigned to each processor type in

cooperative execution using heterogeneous processors. The partitioning strategy, as

described in Section 5, considered the computing power of each of the processors to

compute the work division. The performance results are presented in Figure 13. The

combined use of co-processors significantly improved performance in all settings. The

execution using two co-processors achieved speedups of about 1.78 ×(32K × 32K image) as

compared to runs with a single co-processor. The main limitation for attaining higher

performance gains is the growth in the data transfer costs between the CPU and the co-

processors when multiple devices are used. In this case, the co-processors try to access and

transfer data concurrently using the same communication channels,21 which results in a

contention that increases in 1.54× the data transfer times. The performance improvements

with the use of CPU and one or two co-processors are proportional to the amount of

computation assigned to the CPU in both cases. This shows that the data partition strategy

was effective in assigning computation to the devices.

7 | RELATED WORK

The IWPP resembles graph scan algorithms with multiple sources, which have been the

target of a number of recent research projects that implemented, for instance, Breadth-First

Search (BFS).22,23 Hong et al22 presented approaches to minimize the load imbalance that

occurs when processing graphs in which the number of edges may vary from vertices. Tao et

al23 described the acceleration of BFS in the Intel Phi with techniques to use SIMD

instructions in this operation. However, their work uses atomic instructions in some phases

of the algorithm, ie, the expansion of nodes, which poses as a limiting factor to attain

maximum performance in the Intel Phi. Although efficient in their scenarios, both

optimizations would have little impact to improve IWPP because: (i) the graph in which the

information propagates in IWPP is composed of image pixels and the neighborhood is

balanced (size of the structuring element used); and (ii) the use of atomic instructions limits

the gains with vectorization in the IWPP.

Gomes et al. Page 19

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The Morphological Reconstruction and Fill Holes were defined in the work of Vincent,24

which described the efficiency of using a queue (FIFO) queue to track active elements. A

parallel CPU cluster-based version of Morphological Reconstruction was developed in the

work of Laurent and Roman,25 while other works used devices such as Field-Programmable

Gate Arrays (FPGAs) and GPUs to implement this operation.26–28 A common limitation

with these solutions is that they were not built on top of the must efficient sequential

algorithm that uses queues. Instead, they use less efficient versions of the algorithm that

repeatedly scan the entire image domain, for instance, using raster and anti-raster strategies

until at least a single pixel/element propagates during a pass. This strategy tends to be

inefficient because, even if a few pixels are active, the scan will unnecessarily touch all

elements in the domain.

The approach proposed on this work, on the other hand, is built on top of the most efficient

versions of Morphological Reconstruction and Fill Holes. The first GPU accelerated

implementation of the efficient version these algorithms (using queues) was presented in the

works of Teodoro et al,1,18 whereas in other work of Teodoro et al,7 authors presented an

initial non-vectorized version of the IWPP on the Intel Phi. Both works have been used as

baselines in our performance evaluation in which the vectorized IWPP proposed in this work

attains better performance.

The use of hybrid machines equipped with accelerators is an increasingly important topic.
29–35 At the same time that these machines offer several opportunities for accelerating

general purpose applications, they also create new challenges with respect to their efficient

use. Several previous works have developed run-time systems29,33–35 that simplify the use of

GPU and CPUs by providing strategies to schedule operations and by optimizing data

transfers among these devices. Other strategies, on the other hand, tried to develop domain

specific run-time systems, for instance, for application that perform generalized reductions31

or Stencil computations.36 In our work, we also built a framework for efficient execution of

a domain specific operation (IWPP). However, the division of work in IWPP required a

complex approach that is implied in the redesign of the algorithm, whereas most of the

previous works deal with operations in which there are several fine-grain and independent

tasks that are partitioned for parallel execution in the available processors.29,31,35,37

8 | CONCLUSIONS AND FUTURE DIRECTIONS

The use of WSIs in clinical and research studies can reveal interesting cellular and sub-

cellular characteristics of several disease mechanisms, for instance, in cancer. However

informative, these datasets of images are very large and the computation of a single image

can take hours in a regular desktop machine, and a medium scale study would include

processing hundreds of WSIs. This high computation demand requires the use of parallel

machines to accelerate image analysis workflows and enable a quick processing and

inspection of these datasets.

Therefore, in this paper, we have proposed and implemented an efficient version of IWPP

for the Intel Phi co-processor and hybrid machines. The IWPP is a common computation

structure found in several image analysis operations typically employed in image

Gomes et al. Page 20

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

segmentation, whose optimization can significantly improve the performance of our

motivating application that processes WSIs. This new IWPP presented several optimizations

that include: a redesigned algorithmic solution that employs vectorization, the use of thread-

level parallelism, the evaluation of different strategies to process wavefront elements, and

cooperative execution on hybrid machines equipped with CPUs and Intel Phi co-processors.

The optimizations have been thoroughly evaluated to show, for instance, that the vectorized

version of IWPP proposed in this paper attains a performance gain of up to about 5.6× on

top of the original algorithm on the Intel Phi. We have also compared our propositions to the

most efficient implementation on CPUs and GPUs, which shows that our approach is about

3.14× more efficient than the GPU based solution.1 The cooperative execution has

demonstrated to be efficient in using multiple processors together. In an execution using two

Intel Phi co-processors and a multi-core CPU, we have attained a speedup of up to 4.86× on

top of the multi-core CPU version of Morphological Reconstruction. This level of

performance is a key aspect to allow for the computation of large datasets of WSIs as

required in real-world studies.

In the future work, we intend to improve the performance of our IWPP execution framework

by extending and deploying our solutions in a cluster environment. This work will involve

looking into the data domain partition hierarchically, such that a domain partitioned for

computation in multiple nodes of the distributed environment would have to be repartitioned

for cooperative execution within each machine equipped with multiple processors. This

approach will also consider that data exchange among nodes should be minimized because

of the higher costs involved. We envision to address this problem with different tile padding

strategies, which could include using overlapping tiles with overlap sizes that vary according

to the cost of communication among nodes in the system. This leads to an interesting trade-

off of reducing the communication demands as the overlap increases with the cost of

processing overlapping areas multiple times.

Acknowledgments

This work was supported in part by 1U24CA180924-01A1 from the National Cancer Institute (NCI),
R01LM011119-01 and R01LM009239 from the U.S. National Library of Medicine (NLM), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES), and National Institutes of Health (NIH) K25CA181503. This research used resources provided by the
XSEDE Science Gateways program under grant TG-ASC130023.

Funding information

National Cancer Institute (NCI), Grant/Award Number: 1U24CA180924-01A1; U.S. National Library of Medicine
(NLM), Grant/Award Number: R01LM011119-01, and R01LM009239; Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES);
National Institutes of Health (NIH), Grant/Award Number: K25CA181503; XSEDE Science Gateways, Grant/
Award Number: TG-ASC130023

References

1. Teodoro G, Pan T, Kurc T, Kong J, Cooper L, Saltz J. Efficient irregular wavefront propagation
algorithms on hybrid CPU-GPU machines. Parallel Comput. 2013; 39(4–5):189–211. [PubMed:
23908562]

Gomes et al. Page 21

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Kong J, Cooper LA, Wang F, et al. Machine-based morphologic analysis of glioblastoma using
whole-slide pathology images uncovers clinically relevant molecular correlates. PLOS One. 2013;
8(11):e81049. [PubMed: 24236209]

3. Vincent Luc. Morphological grayscale reconstruction in image analysis: applications and efficient
algorithms. IEEE Trans Image Process. 1993; 2(2):176–201. [PubMed: 18296207]

4. Soille Pierre. Morphological Image Analysis: Principles and Applications. 2nd. Secaucus, NJ:
Springer-Verlag New York, Inc; 2003.

5. Vincent L, Soille P. Watersheds in digital spaces an efficient algorithm based on immersion
simulations. IEEE Trans Pattern Anal Mach Intell. 1991; 13(6):583–598.

6. Vincent L. Paper presented at: IEEE International Conference on Computer Vision and Pattern
Recognition. Maui, HI: 1991. Exact Euclidean distance function by chain propagations.

7. Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Paper presented at: IEEE 28th International Parallel
and Distributed Processing Symposium (IPDPS). Phoenix, AZ: 2014. Comparative performance
analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: a case study from microscopy image analysis.

8. Gomes JM, Teodoro G, de Melo A, Kong J, Kurc T, Saltz JH. Paper presented at: 2015 27th
International Symposiumon Computer Architecture and High Performance Computing (SBAC-
PAD). Florianopolis, Brazil: 2015. Efficient irregular wavefront propagation algorithms on Intel (R)
Xeon Phi (TM).

9. Cooper L, Kong J, Gutman D, et al. An integrative approach for in silico glioma research. IEEE
Trans Biomed Eng. 2010; 57(10):2617–2621. [PubMed: 20656651]

10. Teodoro G, Pan T, Kurc T, et al. Region templates: data representation and management for high-
throughput image analysis. Parallel Comput. 2014; 40(10):589–610. [PubMed: 26139953]

11. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal
Quant Cytol Histol. 2001; 23(4):291–299. [PubMed: 11531144]

12. Jeffers J, Reinders J. Intel Xeon Phi Coprocessor High-Performance Programming. Boston, MA:
Elsevier Waltham; 2013.

13. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. Natick, MA:
MathWorks; 2010. Morphological reconstruction.

14. Narayanasamy S, Wang Z, Tigani J, Edwards A, Calder B. Paper presented at: Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and Implementation. San
Diego, CA: 2007. Automatically classifying benign and harmful data races using replay analysis.

15. Robinson K, Whelan PF. Efficient morphological reconstruction: a downhill filter. Pattern Recogn
Lett. 2004; 25(15):1759–1767.

16. Musser DR, Derge GJ, Saini A. STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library. 2nd. Boston, MA: Addison-Wesley, Longman Publishing Co, Inc;
2001.

17. Saltz JH, Kurc T, Cholleti S. , et al. Paper presented at: Annual Symposium of American Medical
Informatics Association 2010 Summit on Translational Bioinformatics (AMIA-TBI). Washington,
DC: 2010. Multi-scale, integrative study of brain tumor: In silico brain tumor research center.

18. Teodoro G, Pan T, Kurc TM, Kong J, Cooper L, Saltz JH. A Fast Parallel Implementation of
Queue-Based Morphological Reconstruction Using GPUs. Atlanta, GA: Emory University; 2012.

19. McCalpin JD. Memory bandwidth and machine balance in current high performance computers.
IEEE Computer Society Technical Committee on Computer Architecture Newsletter. 1995:19–25.

20. He X, Agarwa LD, Prasad SK. Paper presented at: 19th International Conference on High
Performance Computing (HiPC). Pune, India: 2012. Design and implementation of a parallel
priority queue on many-core architectures.

21. Newburn CJ, Dmitriev S, Narayanaswamy R. , et al. Paper presented at: IEEE 27th International,
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW). Cambridge,
MA: 2013. Offload compiler runtime for the Intel (R) Xeon Phi coprocessor.

22. Hong S, Kim SK, Oguntebi T, Olukotun K. Paper presented at: Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming. San Antonio, TX: 2011.
Accelerating CUDA graph algorithms at maximum warp.

Gomes et al. Page 22

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

23. Tao G, Yutong L, Guang S. Paper presented at: 2013 IEEE 27th International on Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW). Cambridge, MA: 2013.
Using MIC to accelerate a typical data-intensive application: the breadth-first search.

24. Vincent L. Mathematical Morphology in Image Processing. Optical engineering New York, NY:
Marcel-Dekker; 1992. Morphological algorithms.

25. Laurent C, Roman J. Paper presented at: Third International Conference on Vector and Parallel
Processing, VECPAR ‘98. London, UK: 1999. Parallel implementation of morphological
connected operators based on irregular data structures.

26. Karas P. Efficient Computation of Morphological Greyscale Reconstruction. In: Matyska L,
Kozubek M, Vojnar T, Zemcík P, Antos D, editorsSixth Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS’10) – Selected Papers. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2011. 54–61. OpenAccess Series in
Informatics (OASIcs). Vol. 16. MEMICS; 2010. 54

27. Jivet I, Brindusescu A, Bogdanov I. Image contrast enhancement using morphological
decomposition by reconstruction. WSEAS Trans Cir Sys. 2008; 7(8):822–831.

28. Anacona-Mosquera O, Vinhal G, Sampaio RC, Teodoro G, Jacobi RP, Llanos CH. Paper presented
at: 30th Symposium on Integrated Circuits and Systems Design (SBCCI). Fortaleza, Brazil: 2017.
Efficient hardware implementation of morphological reconstruction based on sequential
reconstruction algorithm.

29. Luk CK, Hong S, Kim H. Paper presented at: 42nd International Symposium on Microarchitecture
(MICRO). New York, NY: 2009. Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping.

30. Augonnet C, Thibault S, Namyst R, Wacrenier PA. Paper presented at: 15th International Euro-Par
Conference on Parallel Processing. Delft, The Netherlands: 2009. StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures.

31. Ravi VT, Ma W, Chiu D, Agrawal G. Paper presented at: Proceedings of the 24th ACM
International Conference on Supercomputing. Tsukuba, Japan: 2010. Compiler and runtime
support for enabling generalized reduction computations on heterogeneous parallel configurations.

32. Huo X, Ravi VT, Agrawal G. Paper presented at: 18th International Conference on High
Performance Computing (HiPC). Bangalore, India: 2011. Porting irregular reductions on
heterogeneous CPU-GPU configurations.

33. Bueno J, Planas J, Duran A. , et al. Paper presented at: IEEE 26th International Parallel Distributed
Processing Symposium (IPDPS). Shanghai, China: 2012. Productive programming of GPU
clusters with OmpSs.

34. Rossbach CJ, Currey J, Silberstein M, Ray B, Witchel E. Paper presented at: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ‘11. Cascais, Portugal:
2011. PTask: Operating system abstractions to manage GPUs as compute devices.

35. Gautier T, Lima JVF, Maillard N, Raffin B. Paper presented at: 2013 IEEE International
Symposium on Parallel and Distributed Processing. Boston, MA: 2013. Xkaapi: A runtime system
for data-flow task programming on heterogeneous architectures.

36. Holewinski J, Pouchet LN, Sadayappan P. Paper presented at: Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ‘12; 2012. Venice, Italy: High-performance
code generation for stencil computations on GPU architectures.

37. Augonnet C, Aumage O, Furmento N, Namyst R, Thibault S. StarPU-MPI: task programming over
clusters of machines enhanced with accelerators. In: Träff JL, Benkner S, Dongarra J,
editorsRecent Advances in the Message Passing Interface: The 19th European MPI Users’ Group
Meeting (EuroMPI 2012). Vol. 7490. Vienna, Autria: Springer; 2012. Lecture Notes in Computer
Science

Gomes et al. Page 23

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 1.
Microscopy Image Analysis Workflow with normalization, segmentation and feature

computation stages and their internal fine-grain operations

Gomes et al. Page 24

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 2.
Examples of morphological reconstruction in binary and grayscale images. A, Binary

morphological reconstruction. The mask image limits the propagations starting in patches

from the marker image; B, Grayscale morphological reconstruction in 1 dimension. The

marker image intensity profile is represented as the green line, and the mask image intensity

profile is represented as the blue line. The final image intensity profile after reconstruction is

the red line. The arrows show the directions of propagations from the marker intensity

profile to the mask intensity profile. The red region represents changes introduced by the

morphological reconstruction

Gomes et al. Page 25

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 3.
Fill holes in a binary and in a grayscale image. Connected components (those with

surrounding border) are filled and noise is reduced

Gomes et al. Page 26

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 4.
Example race condition in the original IWPP algorithm A, when active elements (T1 and T2)

propagate their values to a common element, and; B, inversion of the propagation direction

with the new IWPP: elements receiving (T1 and T2) information become active and collect

the information from their neighbors

Gomes et al. Page 27

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 5.
Illustration of the vectorized steps of the IWPP in a Grid with i×j pixel elements. The part A,

presents the process of loading 8-connected neighborhood for two elements p and p′; B,

refers to the insertion of elements receiving information into the nextWave queue container

Gomes et al. Page 28

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 6.
Benign data race for Morphological Reconstruction algorithm. The computation of an image

may lead to different intermediate results C1 and C2 in iteration z of the IWPP. However, the

computation in iteration z + 1 will achieve the same output results. A, Computation for the

input in iteration z may lead to scenarios C1 and C2 depending in the order in which

Threads 01 and 02 process their wavefront element; B, Scenario C1 during iteration z + 1; C,

Scenario C2 during iteration z + 1

Gomes et al. Page 29

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 7.
IWPP decomposition of the image input domain for parallel execution using multiple

devices. The image is divided into sub-domains/partitions that are processed independently.

The partitions are then merged and inter-partition propagations are computed to generate the

correct output results. A, Input image divided into two partitions; B, Results after intra-

partitions computed independently; C, Inter-partition wave propagations; D, Output image

after changes resulting from inter-partition wave propagations.

Gomes et al. Page 30

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 8.
Computation workflow for the IWPP execution on multiple computing devices

Gomes et al. Page 31

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 9.
Raw images with different tissue coverage.

Gomes et al. Page 32

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 10.
Speedups attained by the proposed vectorized IWPP as compared to the original non-

vectorized approach as the image tissue coverage is varied

Gomes et al. Page 33

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 11.
Speedups of the Morphological Reconstruction on the Intel Phi SE10P vs the sequential

CPU execution as the input image size and tissue coverage are varied

Gomes et al. Page 34

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 12.
Comparative performance of IWPP on multiple processors using the Morphological

Reconstruction and images with 100% coverage. The speedups are computed using the

sequential version of the operation as a reference.

Gomes et al. Page 35

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 13.
Evaluation of Cooperative Execution on Heterogeneous Processors. A CPU core is reserved

to manage the co-processors whenever it is used

Gomes et al. Page 36

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gomes et al. Page 37

TABLE 1

Operations used in each of the application main stages and their parallelism strategy

Operations Description Parallelism

Normalization Phase

Seg FG dist Segment foreground from background w/discriminant functions Data

RGB2LAB Convert from RGB to LAB Data

TransferI Map color distribution of an image to that of the target image Data

LAB2RGB Convert from LAB to RGB Data

Segmentation Phase

Covert RGB to grayscale Covert a RGB image into a grayscale image Data

Morphological Open Opening removes small objects and fills holes in foreground Data

Morphological Reconstruction Flood-fill a marker image that is limited by a mask image IWPP

Area Threshold Remove objects outside an area range IWPP and Reduction

Fill Holes Fill holes objects w/a flood-fill starting at selected points IWPP

Distance Transform Compute min distance from foreground pixels to background IWPP

Watershed Separate overlapping objects IWPP

Feature Computation Phase

BWLabel Label components (objects) of a mask image with the same value IWPP

Color Deconvolution11 Separate multi-stained biological images in different channels Data

Gradient Compute image gradient in x, y Data

Sobel Edge Compute Sobel Edge Data

Object Features Compute statistics (mean, median, max, etc) for each object Object

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gomes et al. Page 38

TABLE 2

Characteristics of the Intel Phi processors used

Processor Name Cores Freq.

SE10P KNC 61 1.10 GHz

7120P KNC 61 1.33 GHz

7250 KNL 68 1.60 GHz

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gomes et al. Page 39

TABLE 3

Processors characteristics

K20 GPU SE10P 7120P 7250

Number of cores 2496 61 61 68

Processor core clock (MHz) 706 1100 1330 1600

Bandwidth - Regular access (GB/s) 148 160 177 460

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gomes et al. Page 40

TABLE 4

Ratio of the input data domain assigned to each processor type

Devices 1 Phi + CPU (multithread) 2 Phi + CPU (multithread)

Size Phi (%) CPU (%) Phi (%) CPU (%)

24K × 24K 71 29 84 16

32K × 32K 70 30 82 18

Concurr Comput. Author manuscript; available in PMC 2018 October 19.

	Summary
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Microscopy image analysis
	2.2 | Details of core operations and impact of IWPP acceleration on analysis workflow
	2.3 | Intel Xeon Phi

	3 | IRREGULAR WAVEFRONT PROPAGATION PATTERN (IWPP) IN IMAGE ANALYSIS
	Table T1
	3.1 | Morphological reconstruction

	Table T2
	3.2 | Fill holes

	4 | THE DESIGN AND IMPLEMENTATION OF IWPP FOR THE INTEL XEON PHI
	4.1 | New sequential IWPP

	Table T3
	4.2 | Vectorized version of new IWPP

	Table T4
	4.3 | Extending the vectorized IWPP with thread-level parallelism

	Table T5
	4.4 | Employing the downhill filter approach to increase the parallel efficiency

	5 | COOPERATIVE AND OUT-OF-CORE EXECUTION ON HYBRID MACHINES
	5.1 | Overview of the parallelization and data partition approach
	5.2 | Cooperative execution and implementation details
	5.2.1 | Overall workflow
	5.2.2 | Work division
	5.2.3 | Discussion and limitations

	6 | EXPERIMENTAL EVALUATION
	6.1 | Impact of vectorization
	6.2 | Performance of operations for different input sizes and tissue coverage
	6.3 | Comparison of Intel Phi-based vectorized IWPP to efficient CPU and GPU versions
	6.4 | Effects of cooperative execution

	7 | RELATED WORK
	8 | CONCLUSIONS AND FUTURE DIRECTIONS
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11
	FIGURE 12
	FIGURE 13
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4

