
ECP Milestone Report

A Survey of MPI Usage in the U. S. Exascale Computing Project

WBS 2.3.1.11 Open MPI for Exascale (OMPI-X) (formerly WBS
1.3.1.13), Milestone STPM13-1/ST-PR-13-1000

David E. Bernholdt1,∗, Swen Boehm1, George Bosilca2,
Manjunath Gorentla Venkata1, Ryan E. Grant3, Thomas Naughton1,

Howard P. Pritchard4, Martin Schulz5,6, and Geoffroy R. Vallee1

1Computer Science and Mathematics Division, Oak Ridge National Laboratory
2Innovative Computing Laboratory, University of Tennessee, Knoxville

3Center for Computing Research, Sandia National Laboratories
4Ultrascale Research Center, Los Alamos National Laboratory

5Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
6Institut für Informatik, Technical University of Munich, Germany

∗Author for correspondence. Email: bernholdtde@ornl.gov

Originally released 2017-10-13, last updated 2018-06-27

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP Milestone Report
A Survey of MPI Usage in the U. S. Exascale Computing Project
WBS 2.3.1.11 Open MPI for Exascale (OMPI-X) (formerly WBS

1.3.1.13), Milestone STPM13-1/ST-PR-13-1000

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

Originally released 2017-10-13, last updated 2018-06-27

Exascale Computing Project (ECP) iii STPM13-1/ST-PR-13-1000

ECP Milestone Report
A Survey of MPI Usage in the U. S. Exascale Computing Project
WBS 2.3.1.11 Open MPI for Exascale (OMPI-X) (formerly WBS

1.3.1.13), Milestone STPM13-1/ST-PR-13-1000

Approvals

Submitted by:

David E. Bernholdt, Oak Ridge National Laboratory Date
STPM13-1/ST-PR-13-1000

Approval:

Rajeev Thakur, Argonne National Laboratory Date
Director, Software Technologies
Exascale Computing Project

Exascale Computing Project (ECP) iv STPM13-1/ST-PR-13-1000

Revision Log

Version Creation Date Description Approval Date
1.0 2017-10-13 Original, based on ExasMPI Workshop paper

submission, adding original questionnaire and
raw free text responses.

1.1 2018-06-27 Updated to reflect version of paper accepted
for publication (DOI: 10.1002/cpe.4851) in a
special issue of Concurrency and Computing:
Practice and Experience for the 2017 ExaMPI
Workshop proceedings. Light revisions from
v1.0

Exascale Computing Project (ECP) v STPM13-1/ST-PR-13-1000

EXECUTIVE SUMMARY

The Exascale Computing Project (ECP) is currently the primary effort in the United States focused on
developing “exascale” levels of computing capability, including hardware, software and applications. In order
to obtain a more thorough understanding of how the software projects under the ECP are using, and planning
to use the Message Passing Interface (MPI), and help guide the work of our own project within the ECP,
we created a survey. Of the 97 ECP projects active at the time the survey was distributed, we received 77
responses, 56 of which reported that their projects were using MPI. This paper reports the results of that
survey for the benefit of the broader community of MPI developers

Exascale Computing Project (ECP) vi STPM13-1/ST-PR-13-1000

TABLE OF CONTENTS

Executive Summary vi

List of Tables viii

1 Introduction 1

2 Motivation 2

3 Overview of Survey 2

4 Survey Results 4
4.1 Application Demographics . 4
4.2 Basic Performance Characterization . 6
4.3 MPI Usage Patterns . 6
4.4 MPI Tools Ecosystem . 10
4.5 Memory Hierarchy Details . 12
4.6 Accelerator Details . 13
4.7 Resilience . 14
4.8 Use of Other Programming Models . 16
4.9 MPI with Threads . 16

5 Conclusions 19

A Complete Survey Questions 22

B Raw Free Text Responses 30

Exascale Computing Project (ECP) vii STPM13-1/ST-PR-13-1000

LIST OF TABLES

1 Summary information about the ECP MPI survey. For convenience, the table also indicates
the specific sections of this paper and tables where the corresponding results are presented. . 2

2 A breakdown of the numbers of ECP projects and number of those projects responding to
the survey, based on the organizational breakdown used within the ECP. The “Using MPI”
column lists the number of projects reporting that they are actually using MPI, which is the
set analyzed in the remainder of this paper. 3

3 Non-MPI Applications . 4
4 Application Demographics . 5
5 Basic Performance Characterization . 7
6 MPI Usage Patterns – Part A . 8
7 MPI Usage Patterns – Part B . 9
8 MPI Tools Ecosystem . 11
9 Memory Hierarchy Details . 12
10 Accelerator Details . 13
11 Resilience . 15
12 Other Programming Models . 17
13 MPI with Threads . 18
14 Application Demographics . 22
15 Non-MPI Applications . 23
16 Basic Performance Characterization . 23
17 MPI Usage Patterns – Part A . 24
18 MPI Usage Patterns – Part B . 25
19 MPI Tools Ecosystem . 26
20 Memory Hierarchy Details . 26
21 Accelerator Details . 27
22 Resilience . 27
23 Other Programming Models . 28
24 MPI with Threads . 29
25 Application Demographics . 30
26 Non-MPI Applications . 31
27 Basic Performance Characterization – Part A . 32
28 Basic Performance Characterization – Part B . 33
29 Basic Performance Characterization – Part C . 34
30 MPI Usage Patterns . 34
31 MPI Tools Ecosystem . 35
32 Resilience . 36
33 Other Programming Models . 37
34 MPI with Threads . 38

Exascale Computing Project (ECP) viii STPM13-1/ST-PR-13-1000

1. INTRODUCTION

This paper summarizes the results of a survey of current and planned Message Passing Interface (MPI) usage
patterns among applications and software technology efforts that are part of the Exascale Computing Project
(ECP).

The ECP [1] is currently the primary project in the United States developing “exascale” levels of computing.
It is a collaborative effort of two organizations within the the U.S. Department of Energy (DOE), the Office
of Science and the National Nuclear Security Administration (NNSA), though applications originating from
other U.S. agencies are represented as well. The ECP is officially chartered with accelerating the delivery of
a capable exascale computing ecosystem to provide breakthrough modeling and simulation solutions that
address the most critical challenges in scientific discovery, energy assurance, economic competitiveness, and
national security1. In the context of ECP, exascale is defined as computing systems 50 times faster than the
nation’s most powerful supercomputers in use in 2016, when the project was started.

ECP is focused on three areas of activity:

Application Development (AD) supports application and cross-cutting co-design activities to advance
applications readiness for exascale problems, exascale software stacks and exascale hardware environ-
ments.

Software Technology (ST) aims at building a comprehensive software stack to support the productive
development of (performance) portable applications across diverse exascale architectures.

Hardware Technology (HT) supports the vendor and national laboratory research and development
activities required to develop node and system designs for at least two capable exascale systems with
diverse architectural features.

Two of these three areas (AD and ST) include a wide range of efforts that touch on, interface with or rely
on MPI (or alternative inter-node communication mechanisms). Hence, it is critical for us, as one of the
providers of MPI to ECP, to characterize the usage of existing MPI mechanisms within this particular exascale
community. Further, to spur a more focused development of future MPI capabilities it is equally critical to
identify what types of new constructs applications may need on their quest towards exascale.

MPI is a critical communication API for applications in the high performance computing (HPC) area,
and is used extensively by applications of interest to the Department of Energy and ECP. Since its initial
introduction in 1994, the MPI standard has been regularly updated to increase its relevancy to parallel
applications, to include more versatile and scalable constructs, but also to standardize the best practices
put forward by application developers. The most recent version of the MPI standard, 3.1 [2], was released
in 2015, and the MPI standardization body, the MPI Forum, is actively working towards future versions.
MPI provides different communication techniques for point-to-point communication as well as a rich suite of
collective operations. Point-to-point communication occurs between two processes, while collective operations
involve all processes in a given application/job or subsets thereof. Such sets of processes are managed using
a concept called communicators, which are structures that allow for communication isolation and software
encapsulation. Point-to-point communications can take two different approaches to communication: the
traditional and most commonly used send/receive semantics, which is referred to as two-sided communication,
requires explicit participation by both the source and the target process. The source calls a send operation
that sends the message to the target and the target must call a receive operation, which either can dictate
where the incoming message is coming from or can receive messages from any eligible process. The other
main point-to-point communication method is called Remote Memory Access (RMA), which is a one-sided
communication method. RMA only requires the involvement of either the source or the destination process
to move data to or from the calling node.

The ST area of ECP includes two efforts specifically focused on providing implementations of MPI with
exascale capabilities: OMPI-X, which is includes five institutions, led by Oak Ridge National Laboratory, and
includes the authors of this paper, focuses on extending the Open MPI [3, 4] implementation and ExaMPI,
which is led by Argonne National Laboratory, targets MPICH [5, 6]. In order to gain a general perspective
of how ECP projects are using MPI and how they plan to use it in their exascale versions, we undertook a
survey and summarize its results here.

1https://exascaleproject.org/exascale-computing-project/

Exascale Computing Project (ECP) 1 STPM13-1/ST-PR-13-1000

https://exascaleproject.org/exascale-computing-project/

Table 1: Summary information about the ECP MPI survey. For convenience,
the table also indicates the specific sections of this paper and tables where the
corresponding results are presented.

Survey Group Questions Results Presented

Project demographics 1–17 Sec. 3 Table 2
Application demographics 18–26 Sec. 4.1 Table 4
Non-MPI applications 27–30 Sec. 3 Table 3
Basic performance characterization 31–34 Sec. 4.2 Table 5
MPI usage patterns 35–41 Sec. 4.3 Tables 6, 7
MPI tools ecosystem 42–47 Sec. 4.4 Table 8
Memory hierarchy details 48–49 Sec. 4.5 Table 9
Accelerator details 50–52 Sec. 4.6 Table 10
Resilience 53–55 Sec. 4.7 Table 11
Use of other programming models 56–57 Sec. 4.8 Table 12
MPI with threads 58–64 Sec. 4.9 Table 13

2. MOTIVATION

The results of a broad survey of current MPI and planned exascale MPI usage patterns among many different
U.S. DOE applications and software technologies efforts as part of ECP provide a unique perspective. They
highlight MPI integration issues and challenges into target applications and are useful to both ECP projects
and MPI implementors and researchers. The results of our investigation show that MPI will not only remain
relevant in the exascale era, but will continue to be embraced by the HPC community for its flexibility,
portability and efficiency. Nevertheless, multiple new additions to the standard and optimizations are highly
desired by the exascale application community. The survey also shows the most commonly used functions
as well as those that are in the greatest need for further optimization, providing a wealth of information to
researchers on topics of interest to MPI applications. In addition to the open research questions on how to
solve challenges facing MPI for exascale applications, there are a number of interesting engineering challenges
that must be overcome. The best solutions for issues facing MPI on its path to exascale capabilities are
those that match the semantics needed for next generation applications. Understanding the needs of these
applications and their methods, for which they are intending to use MPI, is crucial for innovating practical
communication library solutions. This survey provides the information necessary to determine how MPI
extension proposals should be structured for a maximum long term utility, as well as highlighting areas in
which further investigation is needed to determine solutions that continue to reflect the needs of applications.

Motivation for some of the questions on the survey was found in current open questions before the MPI
Forum. Significant topics under consideration for MPI standardization include fault tolerance, thread usage
with MPI interfaces and the requirements for thread network addressability, GPU integration in MPI as well
as the refinement of Remote Memory Access (RMA) capabilities. This paper describes the current state of
the art in terms of needs for these features, as well as capturing feature set requests that are not currently in
debate for future MPI specification versions, like active messages.

3. OVERVIEW OF SURVEY

The survey was designed to gather information on a per-project basis from across the ECP2. It included 64
questions, organized into 11 groups, as summarized in Table 1.

Each respondent’s path through the survey depended on their answers to certain questions. For example,
the “non-MPI applications” section was completed only by those projects indicating that they were not using

2Formally, the ECP is a single large project with a work breakdown structure (WBS) that runs four, and in some places
five, levels deep. The scope and funding levels of these lowest levels of the WBS are in line with what most researchers would
think of as a standalone research and development project. As such, we tend to think of the ECP as a coordinated collection
of individual projects. Hence, for simplicity, we use the term project to refer to a level-4 or level-5 element of the Exascale
Computing Project and ECP to refer to the overarching effort as a whole.

Exascale Computing Project (ECP) 2 STPM13-1/ST-PR-13-1000

Table 2: A breakdown of the numbers of ECP projects and number of those
projects responding to the survey, based on the organizational breakdown used
within the ECP. The “Using MPI” column lists the number of projects reporting
that they are actually using MPI, which is the set analyzed in the remainder of
this paper.

Number of
Project Category ECP efforts Responses Using MPI

Application Development (total) 36 28 28
Science and Energy Appl, 25 20 20
NNSA Applications 5 3 3
Other Agency Applications 1 1 1
Co-Design 5 4 4

Software Technologies (total) 61 49 28
Prog. Models and Runtimes 13 8 2
Tools 13 8 4
Libraries and Frameworks 13 13 10
Data Mgmt. and Workflows 10 10 7
Data Analysis and Vis. 5 3 2
System Software 6 6 3
Resilience and Integrity 1 1 0

Overall Total (AD+ST) 97 77 56

MPI. While the majority of questions were multiple choice with either one or multiple responses allowed,
some questions allowed for free-form responses. Individual questions will be presented as part of the survey
results below.

The survey was constructed and made available to participants using Google Forms, and received responses
between 19 May 2017 and 28 July 2017. The survey was not anonymous. Principal investigators of ECP AD
and ST projects were contacted and asked to have someone knowledgeable from their team complete the
survey. Respondents were asked to identify both themselves and the effort for which they were responding.
They were also asked if they were willing to be contacted for follow-up discussions. A secondary purpose for
the survey was to identify projects that might be useful partners in the co-design of exascale MPI capabilities
and implementations. As our work progresses, we envision contacting willing project teams for deeper
requirements gathering, testing of appropriate capabilities or enhancements.

Table 2 summarizes the number of projects and the number of survey responses received, organized
according to the ECP’s structure. The number of efforts listed in each category is based on the efforts for
which we were able to obtain contact information for the principal investigator, and excluded efforts that
were not directly technical. It is also worth noting that the ECP is fluid, in that additional efforts are being
launched as gaps are identified, so this survey effectively represents a snapshot of the ECP taken in May 2017.

Naturally, not all of the ECP efforts use MPI. Table 3 summarizes the responses to several questions
we asked of those efforts that indicated that they were not using MPI. All 21 projects meeting this criteria
were in the ST area of ECP (Q30). We consider this natural, as the “software technologies” area of the ECP
includes numerous efforts focused on runtimes, tools, and other software that provides alternatives to MPI,
that are node-local, or that target system software used by multiple applications. Responses to Q27 confirm
this expectation, listing primarily node-local parallel programming models. In response to a question as to
whether they had been “driven away” from using MPI (Q28), the only direct response indicated that “The
lack of standard or consistent ABIs is an ongoing problem for performance tools.” Only one MPI-based
third-party library, MDHIM3 was mentioned as a dependency by these non-MPI projects (Q29).

To provide the most useful statistics for the survey results, in the remainder of this paper we exclude the
non-MPI projects from our analysis, and focus on the efforts corresponding to the last column of Table 2.

3Because we cannot know for certain if we’ve identified the correct software, we do not attempt to provide bibliographic
citations for software mentioned in responses to the survey.

Exascale Computing Project (ECP) 3 STPM13-1/ST-PR-13-1000

Table 3: Non-MPI Applications

No. Question and Responses AD ST Overall

27 What parallel programming models are you using (node level and global)? * (text)
CUDA (3); Current prototype does use MPI. Production version will use Mercury/Margo (1);
Kokkos (2); Most of our work is thread-local (1); Node level (1); None (2); Not applicable (4);
OpenMP (3); Project is primarily about a build tool. We may use MPI for parallel builds, but
more likely we’ll coordinate through parallel filesystem. (1); Qthreads (1); TBB (1); UPC++
(1); threads (1);

28 Are there issues with the MPI standard or implementations which have pushed you
away from using MPI in your application? (text)

No (6); Not applicable (3); Separation of concerns: intra-node vs. inter-node parallelism (1); The
lack of standard or consistent ABIs is an ongoing problem for performance tools (1); We are not
an application, so we don’t need MPI (1);

29 What third-party libraries that your application depends upon use MPI? * (text)
None (8); Unknown (1); Not applicable (2); QEMU (1); MDHIM (1);

30 Do you expect the exascale version of your application to use MPI? * (single)
Yes 0 1 1
No 0 20 20

4. SURVEY RESULTS

The following sections present and discuss the results of the survey following the structure of the survey itself.
The detailed tables of results follow a common format. Question numbers are listed primarily to provide a
short, unique identifier for each question. The main text of the question is shown in bold face font. An
asterisk (*) following the question indicates that a response was required. In some cases, questions included
additional context or explanations, which is not shown here, for the sake of space, but can be found in full in
Appendix A.After that, in parenthesis, is the type of response allowed. “Single” means that only a single
answer could be chosen. “Multiple” indicates that any number of answers (including zero) could be marked.
“Text” denotes text fields that allowed a free-form response. In some cases, multiple choice questions also
had an “other” option, which allowed free-form text responses in addition to the choices provided. These are
denoted as “single+text” or “multiple+text”.

Results for multiple choice questions are presented as percentages of the number of projects in the category
(AD, ST and Overall). If answers were not required or multiple answers were accepted, totals may be over or
under 100%.

Results for free-form text responses were analyzed and summarized by the authors, attempting to preserve
the key features of the response while consolidating similar responses as much as possible. We present separate
sets of results for the AD and ST projects on the expectation that they may be qualitatively different. In the
interest of space, we do not attempt to provide an “Overall” summary that merges the AD and ST summaries.
Text summaries include the number of times a point was mentioned in all of the responses, rather than
percentages of the numbers of projects. Raw versions of the free-form responses are included in Appendix B.

4.1 Application Demographics

We asked eight questions to get some basic background information about the various ECP projects, as shown
in Table 4, in order to better understand the context in which the projects were using MPI.

Overall, a significant majority (61%) of the projects involve multiple applications or libraries versus
single applications or libraries (Q18). Though the AD projects were more strongly dominated by multiple
applications (68%). From this point onward, we use “application” as a generic term, whether the project
involves one or more distinct applications, libraries, tools, etc.

The vast majority of projects expect the exascale version of their application to use MPI as well (Q20).
Only one project is transitioning to the Legion runtime environment as a goal of their project.

Exascale Computing Project (ECP) 4 STPM13-1/ST-PR-13-1000

Table 4: Application Demographics

No. Question and Responses AD ST Overall

18 Does your project involve a single application/library or several that you consider to
be distinct? * (single)
Single application/library 32% 46% 39%
Multiple distinct applications/libraries 68% 54% 61%

20 Do you expect the exascale version of your application to use MPI? * (single)
Yes 96% 89% 93%
No 4% 11% 7%

21 If your anwer above was "no", why not? (text)
AD: Project plan is to use Legion, with MPI as a backup.
ST: More interested in remote procedure calls than message passing.

22 Do you have an abstraction layer that hides the MPI calls? Or do most of your devel-
opers write MPI calls directly? * (single)
Abstraction layer 79% 46% 62%
Direct MPI calls 21% 54% 38%

23 Do you have mini-applications that capture the MPI behavior of your application? If
so, are they available to the community? (single)
Yes, and they are available to the community 43% 39% 41%
Yes, but they’re limited availability 29% 11% 20%
No 29% 50% 39%

24 What programming languages do you call MPI from? * (multiple+text)
C 50% 71% 61%
C++ 82% 68% 75%
Fortran 46% 25% 36%
Python 2% 2% 3%
Other responses
PETSc 4% 0% 2%
Tcl 4% 0% 2%

25 What additional languages would you like to be able to call MPI from? (text)
AD: Julia (2 mentions), Python (1), C/C++ (1)
ST: none

26 What third-party libraries that your application depends upon use MPI? * (text)
AD: ADIOS (1 mention), ADLB (1), AMReX (1), basic graph libraries (1), CGNS (1), CNTK (1),

Global Arrays (1), HDF5 (6), hypre (3), MFEM (1), Metis (1), mpi4py (1), NetCDF (1), PETSc
(1), ParaView/Catalyst (1), pio (1), pNetCDF (2), Silo (1), SuperLU-Dist (1), Trilinos (3)

ST: ADIOS (1), BLAS (1), CGNS (1), clang (1), DIY (2), HDF5 (2), hypre (2), MKL-Cluster
(1), Mercury (2), NetCDF (1), PETSc (1), pNetCDF (2), PTScotch (1), Pardiso (1), PatMetis
(1), Polly (1), ROMIO (1), SLATE (1), ScaLAPACK (BLACS, PBLAS) (1), SuperLU_dist (1),
TSan (1), Trilinos (4), zlib (1)

Exascale Computing Project (ECP) 5 STPM13-1/ST-PR-13-1000

We see that most applications (62%) use an abstraction layer to hide MPI calls (Q22), though this is
much stronger in the AD projects (79%) than ST (46%).

Since mini-applications have become recognized as a very useful way for researchers outside of a given
project to interact with applications that might otherwise be too large or complex to deal with, we asked
the ECP projects whether they had mini-applications that reflected the MPI-related behaviors of their
applications (Q23). We found that 71% of AD projects have mini-applications, but only 50% of ST projects
do. For both groups, approximately two-thirds of the mini-applications are made available to the community,
while the remainder have limited availability.

We asked all projects which programming languages they use to make MPI calls (Q24) and found some
different patterns. Among the AD projects, 82% report using C++, and roughly half report using each of
C and Fortran (multiple answers were accepted for this question, so the implication is that many projects
use more than one programming language and make MPI calls from more than one). For the ST projects
C dominated (71%) with C++ as a close second (68%). Although Python is in general quite popular in
HPC programming, only a small fraction of projects reported making MPI calls from Python. When asked
what additional languages they would like to be able to call MPI from (Q25), Julia was mentioned twice.
Additional responses to Q25 mentioned Python and C/C++, which we interpret as indicating that projects
are not currently calling MPI from these languages, but would like to in the future.

In Q26, we asked about MPI-based third-party dependencies for the responding projects. Not surprisingly,
since this was a free-text question, we received a wide range of responses. However, several points seem
noteworthy. First, for both AD and ST projects, HDF5 (6 mentions in AD and 2 in ST) and I/O libraries
in general (ADIOS, CGNS, pNetCDF, pio, Silo) figured prominently. Second, various numerical libraries
(AMReX, hypre, PETSc, SuperLU-Dist, Trilinos, MKL-Cluster, Paradiso, SLATE, ScaLAPACK) were also
frequently mentioned. We observe that although we asked specifically about MPI-based third-party libraries,
many of the responses do not, in fact, utilize MPI, although we list them for completeness.

4.2 Basic Performance Characterization

Table 5 presents four questions intended to obtain some very basic information related to the performance of
applications using MPI.

Q31 asked whether production usage of the application was dominated by small or large messages, with 8
kB being the dividing line. In this case, responses were split roughly equally between small, large and both
as dominating.

Half of the AD projects consider their application to be limited by message latency (Q32), with roughly
one-third indicating that both bandwidth and/or message rate were limiting (multiple answers were allowed).
For the ST projects, the results are somewhat different, with bandwidth being the top bottleneck (46%),
followed by latency (39%). Of the free-text additional responses offered, we note that 11% of ST projects
indicated MPI-based I/O was a bottleneck. These came from projects specifically working on I/O tools,
under the “Data Management and Workflows” area of ECP.

We asked an open-ended question about one aspect of MPI that could be optimized to improve the
performance of the project’s application (Q33). Among the AD projects, improvements in latency received
the most mentions (5), while being mentioned only once among the ST projects. Various aspects of collective
operations were also prominent among the requests of both AD (4) and ST (7) projects. A number of other
requests pertained in some way to threading (6 AD, 2 ST).

Finally, we asked what impact network topology had on applications (Q34). Only one AD project reported
that they were actively mapping MPI ranks to resources based on network topology. Many projects have not
found network topology to be an issue (13 AD, 11 ST), while a significant minority have found it to be an
issue (9 AD, 9 ST).

4.3 MPI Usage Patterns

We asked a total of seven questions aimed at understanding which aspects of the MPI standard applications
are using, and in what ways. Table 6 presents the first three questions. These pertain to the aspects of the
MPI standard applications are currently using (Q35) and expect to use in their exascale versions (Q37), as
well as which areas of the standard they’re currently using in performance-critical sections of their applications

Exascale Computing Project (ECP) 6 STPM13-1/ST-PR-13-1000

Table 5: Basic Performance Characterization

No. Question and Responses AD ST Overall

31 Is your application (when run in production) typically dominated by small or large
messages? (single+text)
Small (< 8 kB) 29% 25% 27%
Large (>= 8 kB) 36% 39% 38%
Other responses
Both 32% 32% 32%
All to all in subcommunicators 4% 0% 2%
Unknown 0% 4% 2%

32 Do you consider your application (when run in production) to be constrained by (mul-
tiple+text)

Message latency 50% 39% 45%
Message bandwidth 36% 46% 41%
Message rate 32% 14% 23%
Don’t know 11% 1% 7%
Other responses
Depends 0% 14% 7%
I/O 0% 11% 5%
Load imbalance 4% 4% 4%

33 If there were one aspect of MPI that could be optimized to improve the performance
of your application, what would you prioritize? (text)
AD: ability to saturate network bandwidth from a single MPI rank (1 mention); asynchronous
collectives (1); barrier in shared memory context (2); better fine grain support and dynamic
tasking (1); collectives (2); convex partitions (1); don’t know (2); fault tolerance (1); hardware
all-reduce (1); interoperability with local threading and global task-based runtimes (1); latency
(5); memory hierarchy support (1); MPI+X abstraction (1); multithreaded asynchronous (1);
optimize data block size (1); predicted latency and bandwidth, available during execution (1);
RMA (1); shared-memory MPI (1); thread multiple (1); thread support (2)

ST: all-reduce (blocking and non-blocking) (3 mentions); all-to-all (1); bandwidth for repartitioning
of data (1); collectives (2); controlling rendezvous threshold (1); CPU use makes MPI untenable
for remote procedure calls (2); dealing with large numbers of outstanding requests (1); don’t
know (2); latency (1); local collectives (1); MPI-IO aggregations based on topology (1); relaxing
2 GB limit on I/O (1); startup time at extreme scale (1); task support (1); thread support (2);

34 Is the performance of your application particularly sensitive to the network topology
and the specific mapping of MPI processes to that topology? (text)
AD: don’t know (2 mentions); has been measured (1); measurement variability is too high to
give a clear picture (1); no (12); only expected effects of topology on collectives (1); using
topology-aware mapping may give up to 15% improvement (1); yes (7); yes, due to latency (1);
yes, for non-contiguous/non-convex partitions (1);

ST: don’t know (3 mentions); expect application/user to handle topology issues (1); no (11); yes
(6); yes, for I/O forwarding or direct I/O operations (2); yes, for non-contiguous/non-convex
partitions (1);

Exascale Computing Project (ECP) 7 STPM13-1/ST-PR-13-1000

Table 6: MPI Usage Patterns – Part A

No. Questions

35 What aspects of the MPI standard do you use in your application in its current form?
* (multiple)

36 What aspects of the MPI standard appear in performance-critical sections of your
current application? * (multiple)

37 What aspects of the MPI standard do you anticipate using in the "exascale" version of
your application? * (multiple)

Q35: Current Usage Q37: Exascale Usage Q36: Performance Critical
Responses AD ST Overall AD ST Overall AD ST Overall

Point-to-point com-
munications

96% 79% 88% 89% 71% 80% 93% 75% 84%

MPI derived
datatypes

25% 21% 23% 21% 21% 21% 14% 7% 11%

Collective communi-
cations

86% 75% 80% 96% 68% 82% 64% 64% 64%

Neighbor collective
communications

14% 14% 14% 32% 25% 29% 7% 11% 9%

Communicators and
group manage-
ment

68% 54% 61% 61% 50% 55% 29% 7% 18%

Process topologies 14% 7% 11% 32% 11% 21% 4% 4% 4%
RMA (one-sided
communications)

36% 7% 21% 50% 36% 43% 21% 7% 14%

RMA shared win-
dows

18% 7% 12% 21% 18% 20% 7% 7% 7%

MPI I/O (called di-
rectly)

25% 18% 21% 21% 18% 20% 4% 7% 5%

MPI I/O (called
through a third-
party library)

32% 21% 27% 36% 25% 30% 7% 11% 9%

MPI profiling inter-
face

11% 0% 14% 11% 21% 16% 0% 4% 2%

MPI tools interface 0% 4% 2% 0% 18% 9% 0% 0% 0%

Exascale Computing Project (ECP) 8 STPM13-1/ST-PR-13-1000

Table 7: MPI Usage Patterns – Part B

No. Question and Responses AD ST Overall

38 What is the dominant communication in your application? Check all that apply, recognizing
that many applications have different communication patterns in different phases. (multiple)
Each process talks to (almost) every other process 25% 21% 23%
Processes communicate in fixed "neighborhoods" of limited size 46% 46% 46%
Processes communicate in "neighborhoods" of limited size that may

change in different phases of the application or evolve over the course
of a run

42% 36% 39%

Communication is largely irregular 18% 21% 20%
39 Can your application take advantage of non-blocking point-to-point operations... (mul-

tiple)
To overlap communication with computation? 89% 71% 80%
To allow asynchronous progress? 64% 64% 64%
To allow event-based programming? 43% 29% 36%

40 Can your application take advantage of non-blocking collective operations... (multiple)
To overlap communication with computation? 71% 46% 59%
To allow asynchronous progress? 46% 29% 38%
To allow event-based programming? 25% 14% 20%

41 Is MPI providing all the communication semantics required by your application? If
not, what is missing? (multiple+text)
MPI covers all my needs 43% 43% 43%
Active messages 32% 14% 23%
Persistent communications (communications with the same arguments,
repeatedly executed, potentially allowing additional optimization if
exposed to the MPI layer)

21% 14% 18%

Other responses
Don’t know 4% 4% 4%
Exploring Legion as an alternative 4% 0% 2%
GPU-to-GPU communications 4% 0% 2%
Improved threading support 0% 4% 2%
Interoperability with GASNet 4% 0% 2%
Job-to-job communications 0% 7% 4%
Load balancing 4% 0% 2%
Reductions with variable sized abstract types 4% 0% 2%
Remote procedure calls 0% 4% 2%

Exascale Computing Project (ECP) 9 STPM13-1/ST-PR-13-1000

(Q36). The responses allowed for these questions are mostly based on chapters of the MPI specification, with
a few additional, more specific features added.

Although the proportions differ between the AD and ST projects, we see that point-to-point communi-
cations (88% overall), collective communications (80%) and communicators and group management (61%)
strongly dominate the MPI features used in the current versions of applications (Q36). In the exascale
versions of the applications (Q37), the same three dominate, though at somewhat different levels (80%, 82%
and 55%, respectively). At exascale, we also note a marked rise in the (planned) use of RMA (43% for
communications, 20% for shared windows, up from 21% and 12%) as well as neighbor collectives (29%, up
from 14%) and process topologies (21%, up from 11%). MPI I/O tends to be called more often through
third-party libraries than directly (27% vs. 21% for current applications, 30% vs 20% for exascale). Overall
35% of projects report using MPI I/O in either form, and 12% of projects use it in both forms. Looking at
which features of the specification appear in current performance-critical sections of code (Q36), we see that
point-to-point and collective communications strongly dominate (84% and 64%), which is not surprising.

Comparing AD to ST responses in Table 6, we see noticeable drops in both point-to-point and collective
communications for the ST projects compared to the AD projects. Since these drops are not compensated by
an uptick in an alternative communication mechanism (RMA), we have to assume that there is a qualitative
difference in the perception of MPI usage within the applications of the two groups. Comparing other
responses, there appears to be significantly less use of some features by the ST projects compared to AD
(process topologies, RMA) in current applications, though it appears that many ST projects plan to use RMA
in the exascale version of their applications. Comparing the MPI features appearing in performance-critical
code sections (Q36) between AD and ST projects, we observe that derived data types, communicators and
group management, and RMA are notably more prevalent in AD usage than ST.

Table 7 presents the remaining four questions in this section. In terms of communications patterns
(Q38), fixed neighborhoods of limited size dominate (46% overall), though more dynamic, but still limited
neighborhoods run a close second (39%). All-to-all and irregular patterns represent a significant minority of
the patterns reported (23% and 20%, respectively).

Non-blocking operations in MPI can be used to achieve several different goals, which we inquired about
relating to both point-to-point (Q39) and collective (Q40) operations. In both cases, the primary goal
in using non-blocking versions of these operations was to overlap communication with computation (80%
overall for point-to-point, 59% for collectives). For point-to-point operations, allowing asynchronous progress
was also a strong motivation (64%), though for collectives, it was not as strong (38%). There are also a
significant minority of projects using non-blocking operations to facilitate event-based programming (36% for
point-to-point, 20% for collectives). Comparing AD and ST responses for these questions, we see that ST
projects overall report less usage of non-blocking point-to-point operations than AD projects, however, for
collective operations, their usage patterns are more similar.

We also asked an open-ended question about whether MPI was providing the communications semantics
required by the applications (Q41). We included two possible responses, active messages and persistent
communications, based on historical and recent interest in these topics in the MPI Forum. We also allowed
projects to add their own responses. Overall, 43% of projects responded that MPI covered all of their
communication needs. 23% expressed interest in active messages, and 18% in persistent communications
(with AD projects notably more interested in both than ST). Since persistent point-to-point operations have
been part of the MPI standard for the last decade, this interest might be interpreted as specifically focusing
on persistent collectives, which are still under discussion by the MPI Forum. Alternatively, it is possible that
users are not sufficiently aware of the established capabilities, and some outreach would be useful.

The only additional topic that appeared more than once in the free-text responses pertained to job-to-job
communications. This is a challenging topic, but the MPI Sessions working group is considering changes to
the standard that might make it easier to address this issue [7]. Sessions could make it possible to assemble
inter-communicators using information obtained from the system job manager. Other responses indicated
interest in improved threading support, more capabilities for reductions and remote procedure calls.

4.4 MPI Tools Ecosystem

Table 8 presents the questions and responses received to six questions focusing on the use of tools with and/or
for MPI applications. These questions were motivated primarily by discussions underway in the MPI Forum

Exascale Computing Project (ECP) 10 STPM13-1/ST-PR-13-1000

Table 8: MPI Tools Ecosystem

No. Question and Responses AD ST Overall

42 If you are using performance tools with MPI, how often do you encounter the need to
use multiple tools during the same application run? (single)
Often 0% 4% 2%
Occasionally 36% 14% 25%
Never 18% 25% 21%
Don’t use performance tools with MPI 43% 54% 48%

43 Are there any MPI-related improvements you’d like to see for debuggers and other
"correctness" tools? (text)

AD: ability to call out to external tools (1 mention); better resolution for tracking message sizes
(1); better scalability (1); current tools give either too much or too little detail (1); information
about collective and reduction operations (1); mixed programming modes (1); MPI core file for
offline replay within debug tools (1); no (1); race-condition analysis (1);

ST: better scalability (1 mention); no (1); no opinion (1);
44 Are there any MPI-related improvements you’d like to see for performance tools? (text)

AD: better scalability (2 mentions); current tools give either too much or too little detail (1);
differentiation between time in MPI library and time on the wire (1); MPI reduction for user
profiling tools (1); no (1); upgrade to mpiP (1);

AST: analysis of time messages spend in each state (1 mention); autotuning in MPI-T (planned)
(1); better scalability (1); like MPE+ jumpshot, other tools are too complicated (1); no (1);

45 Are you using the MPI Profiling Interface for anything other than running performance
analysis tools? If so, please briefly describe your use. (text)
AD: extract communication matrix for topology-aware mappping (1 mention); no (4);
ST: capture MPI traces for use in simulations (1 mention); Darshan (1); no (3); noise injection for
debugging (1); record/replay for debugging (1);

46 What is your level of interest in having access to internal MPI performance data? Infor-
mation could include items like function call time, load balance information, memory
use, message queue information, network counters, etc. (single)
1 (Little or no interest) 11% 18% 14%
2 21% 7% 14%
3 11% 25% 18%
4 39% 18% 29%
5 (Very interested) 18% 29% 23%

47 Which particular types of internal MPI information would you find useful? (multi-
ple+text)
Function call time 50% 46% 48%
Load balance 68% 57% 62%
Memory use 54% 57% 55%
Message queue information 57% 46% 52%
Network counters 39% 43% 41%
Other responses
Wait time information 4% 0% 2%
Information for different message sizes 4% 0% 2%
Time spent in different states 0% 4% 2%
Tag matching times 0% 4% 2%
MPI-IO two-phase aggregator locality 0% 4% 2%
MPI-IO communication between processes and aggregators 0% 4% 2%

Exascale Computing Project (ECP) 11 STPM13-1/ST-PR-13-1000

Table 9: Memory Hierarchy Details

No. Question and Responses AD ST Overall

48 Do you expect to explicitly manage the memory hierarchy in your application? (single)
Yes, I expect to explicitly allocate or migrate data in different memory
regions

79% 68% 73%

No, I expect to rely on system mechanisms to place and migrate data 21% 21% 21%
49 Do you expect to exchange data between different memory regions on different nodes,

using MPI? For example, data in main memory on one node is sent to non-volatile memory on the
other? Or directly to the memory of an accelerator device on the other node? (single)
Yes 50% 43% 46%
No 14% 21% 18%
Don’t know 11% 14% 12%

targeting new interfaces to support tools as well as our own ECP project’s plan to improve tool support
within Open MPI.

From Q42, we first learn that only about half of all projects use performance tools at all, which is clearly
a disappointing number and requires additional dissemination efforts — the use of performance tools will be
critical if one wants to achieve exascale level performance. However, this is not the target of this survey or
the task of the MPI implementation projects and requires additional efforts in other areas of ECP.

Of the 52% of the projects that do use performance tools, however, more than half (or 27% of all projects)
have at least the occasional need to use multiple performance tools during a single application run. This is
especially noteworthy, since this is a feature that the interfaces in the current MPI standard do not support
and matches an ongoing discussion in the MPI Forum to extend and modernize the MPI profiling interface.

Q43 and Q44 ask about MPI-related improvements desired for correctness and performance tools,
respectively. There were a number of requests for better scalability, which we interpret as more about the
tools themselves than MPI per se. There were a number of other interesting suggestions, but overall, the low
number of responses suggests that users are relatively satisfied with what MPI provides to support tools.

In Q45, we asked for uses of the MPI Profiling Interface (PMPI) other than traditional performance
analysis tools. One AD project reported using it to obtain the application’s communication matrix in order to
map MPI ranks to resources with an awareness of the network topology. On the ST side, several other tools
or capabilities utilizing the interface were mentioned. This question is also related to the question above on
multiple tool uses (Q42), since the use of the PMPI interface for “internal” use within the application would
require multi-tool capabilities to either combine these uses or to add performance monitoring on top of it.

Q46 and Q47 were focused on the recently introduced MPI tools information interface (MPI_T) and what
types of information users would like to see available through it4. In Q47, we see that load balance, memory
use and message queue information were of interest to more than half of the projects, with function call
time and network counters were requested by slightly less than half of the projects. The additional free-form
responses to this question were interesting in that there was no commonality between the AD and ST projects,
although the “wait time information” and “time spent in different states” might overlap. Q46 shows that
overall 52% of projects are interested or very interested in having access to internal MPI performance data.

4.5 Memory Hierarchy Details

Modern node architectures for extreme-scale systems contain a variety of memory technologies, including
DRAM, high bandwidth memory (HBM) and non-volatile memory, and these memories have varying
performance and scaling attributes. The amount of memory and how the memories are organized varies
between systems and generations of systems. This memory architecture trend is expected to continue into the
exascale era. To understand the needs of MPI applications such as how they expect to move data between
these memories, and what they expect from the MPI standard and implementations, we asked two questions

4The MPI_T interface only provides the API to access MPI internal information; each MPI implementation decides what
information is offered through the interface

Exascale Computing Project (ECP) 12 STPM13-1/ST-PR-13-1000

Table 10: Accelerator Details

No. Question and Responses AD ST Overall

50 Does your application currently run on GPU accelerators, or do you expect the “exas-
cale” version to? (single)
Yes 93% 68% 80%
No 7% 25% 16%

51 Do you want to be able to make MPI calls directly from within your GPU kernels (as
opposed to only from the host CPU)? (single)
Yes 43% 29% 36%
No 11% 21% 16%
Don’t know 39% 18% 29%

52 In productions runs, how do you expect to deploy your application? (single)
One MPI rank per GPU, with CPU resources potentially being shared
or divided among multiple MPI ranks

25% 11% 18%

MPI ranks assigned to CPUs (or CPU cores), GPUs potentially shared
or divided among multiple MPI ranks

36% 32% 34%

Don’t know 32% 25% 29%

about the extent to which this architectural characteristic might need to be addressed more explicitly in MPI,
as shown in Table 9.

First, we asked if they expect to explicitly manage memory hierarchy in their software or expect the
system mechanisms to manage the memory hierarchy for them. Overall, projects indicated strongly (73%)
that they expect to explicitly manage memory placement and movement. This suggests that MPI users
may desire some control over memory allocations done internally by MPI implementations, both in terms
of placement and perhaps in limiting memory usage as part of higher level management of those resources.
Additionally, MPI implementations should expect to be called with data residing in various locations within
the memory system, and should sensibly handle operations that involve multiple memory areas, be it the
locations of different data objects or the operational need to move data to different memory areas.

Then, we asked, if they expected to move data between local node and remote node memory using
MPI. For example, moving data from main memory on one node to a remote node’s non-volatile memory
or accelerator memory. Most users (46%) responded that they do expect to be able to communicate data
between different memory areas via MPI.

4.6 Accelerator Details

As GPUs became prevalent in the extreme-scale systems, MPI implementations have enabled several optimiza-
tions to aid the efficient movement of data between CPU and GPU memories. The objective of the survey
questions in this section was to learn the extent of GPU usage by applications. Then, we were interested to
understand how applications tend to use GPU resources and what MPI optimizations the users expect. We
asked three questions, which are presented in Table 10.

An overwhelming 93% of AD projects and 68% of ST projects responded that their application either
currently runs on GPU accelerators, or the exascale version is expected to. However, a significant minority of
ST projects (25%) do not have plans to port to GPU accelerators.

For teams who were using the GPUs for their software, we asked more detailed questions on their usage
and optimizations they expected from the MPI implementations. Q51 asks whether applications expect
to make MPI calls from within GPU kernels. Among AD projects, 43% responded affirmatively, and 39%
responded that they didn’t know, with only 11% indicating that they did not expect to make MPI calls from
GPU kernels. The ST projects were more conservative, with only 29% expressing their desire to call MPI
from within the GPU, 18% aren’t sure, and 21% do not plan to call MPI from the GPU. These responses
have significant implications for the need to better integrate MPI into the GPU environment.

In GPU-based systems, the MPI operations might be performed on buffers that are either in the CPU or
the GPU memory. Without any optimizations for data transfer operations, the contents of the buffer on the

Exascale Computing Project (ECP) 13 STPM13-1/ST-PR-13-1000

GPU memory is required to be copied to the CPU memory. Also, the message preparation and triggering
of data transfer is currently done only by a thread or process on the CPU, i.e., a CUDA thread cannot
send the message. Currently, MPI implementations take advantage of hardware capabilities and support
mainly two optimizations: GPUDirect and GPU-Async. The GPUDirect enables the MPI implementations
to post the data into the GPU memory. The message has to be prepared by the CPU (process or thread on
the CPU), while the data can reside in either the CPU or GPU memory [8]. The GPU-Async capability,
which improves upon GPUDirect, relaxes the requirement that the CPU thread has to trigger the message
transfer. With GPU-Async, the CPU prepares the message while CPU or GPU thread can trigger the message
transfer [9]. Another optimization explored by researchers is a capability where the GPU thread prepares
and triggers the data transfer [10, 11]. This capability removes the need for an application to switch from
GPU execution (CUDA kernel) to CPU execution context for data exchange, potentially leading to huge
performance improvements.

The last question of this section (Q52) was focused on the deployment of applications in a multi-GPU
system. There is a trend in accelerator-based systems to incorporate more than one accelerator per node
(as in the coming Summit and Sierra systems at ORNL and LLNL). For such systems, MPI jobs can be
configured with one MPI process per GPU (sharing or partitioning the CPU resources on the node), or to tie
the MPI processes to CPU resources (e.g., cores, NUMA domains or sockets) and share the GPUs among the
MPI processes on the node. Both AD and ST projects indicated a preference for sharing the GPUs (35% AD,
32% ST), while a minority anticipated deploying one MPI process per GPU (25% AD, 11% ST). A sizable
fraction of respondents, however, do not yet have clear plans in this area (32% AD, 25% ST).

4.7 Resilience

Resilience has been a long-standing concern for the HPC community overall, and the topic of discussions
and proposals in the MPI community for a number of years now. In an effort to get some basic information
about how the ECP community plans to deal with resilience, and some of the features of their applications
that might be exploited in order to provide greater resilience, we asked three questions, which are shown in
Table 11.

The first of these questions (Q53) asks directly how projects plan to deal with fault tolerance in their
applications. We offered four pre-set answers, and allowed respondents to add their own. Only one project
indicated that their application was already fault tolerant. The overwhelming majority of AD projects (61%)
plan to use checkpoint/restart for resilience, though only half as many ST projects (32%) plan to use it.
Many (18% AD, 25% ST) don’t have clear plans for resilience at present, and a fair number (7% AD, 18%
ST) don’t plan to worry about fault tolerance at all. Of the user-provided responses, several indicated the
use of checkpoint/restart in combination with other approaches (6% overall). Both the User-Level Fault
Mitigation (ULFM) [12] and “ReInit” approaches under discussion in the MPI Forum were also mentioned as
solutions. Besides that, a number of other approaches to resilience were mentioned. One response identified
MPI itself as a vulnerability and indicated their intent to avoid using it as a strategy for resilience.

A common resilience strategy when running MPI applications is to allocate “spare” nodes to the job so
that if one fails, a spare can be utilized to restart the job without having to return the job to the queue.
However, this strategy may be undesirable to the extent that the spare nodes add to the cost of the job,
but may sit idle for the duration of the job if no node failures occur. Q54 asks whether applications have
flexibility to utilize different numbers of processes, either dynamically, during execution, or when restarting
from a checkpoint. Just 16% of applications indicated that they can dynamically adapt the number of MPI
processes they use, which might allow them to run through a node failure. 54% of AD projects, but only 25%
of ST projects indicated the ability to restart from checkpoints on a different number of nodes. This would
allow the job to shrink on failures rather than paying for spare nodes that might be mostly idle. And many
(46% AD, 68% ST) indicated no flexibility in the number of processes, leaving the sparing strategy as their
only option to allow an immediate restart without re-queuing.

Finally, we asked whether applications could continue past a data loss or corruption without an explicit
restart (Q55). Overall, most projects indicated they could not (36% AD, 57% ST). Some could, but only in
specific sections of the code (39% AD, 21% ST), while a smaller number could do this more broadly (25%
AD, 18% ST).

Exascale Computing Project (ECP) 14 STPM13-1/ST-PR-13-1000

Table 11: Resilience

No. Question and Responses AD ST Overall

53 How do you plan to make your application fault tolerant? (single+text)
It is already fault tolerant 4% 0% 2%
I plan to use checkpoint/restart 61% 32% 46%
Don’t know 18% 25% 21%
I’m not going to worry about fault tolerance 7% 18% 12%
Other responses
Avoid use of MPI 0% 7% 4%
Data checksums between memory and storage 0% 4% 2%
Legion capabilities in addition to checkpoint/restart 4% 0% 2%
Local-failure/local-recovery 0% 4% 2%
MPI Reinit 4% 0% 2%
MPI ULFM 4% 0% 2%
MPI fault tolerance feautres in addition to checkpoint/restart 4% 0% 2%
Selective reliability 0% 4% 2%
Skeptical programming 0% 4% 2%
Task-based capabilities in addition to checkpoint/restart 4% 0% 2%
Task-based rollback/recovery, replication 0% 4% 2%
Treat as proper distributed system, with group membership 0% 4% 2%

54 Is your application "malleable" with respect to the number of processes (assuming MPI
can "run through" faults, as needed)? (multiple)

Yes, it can change the number of processes dynamically, during execution 18% 14% 16%
Yes, it can change the number of processes when restarting from a
checkpoint made on a different number of processors

54% 25% 39%

No 46% 68% 57%
55 Can your application be organized to continue past (limited) data loss or corruption

without an explicit restart? (single)
Yes 25% 18% 21%
Only limited sections 39% 21% 30%
No 36% 57% 46%

Exascale Computing Project (ECP) 15 STPM13-1/ST-PR-13-1000

4.8 Use of Other Programming Models

In order to better understand how MPI is being combined with other programming models, we asked two
questions, which are shown in Table 12.

Q56 asks the core question, seeking information on both node-level and global programming models
alongside MPI, with both being “active” at the same time. This was intended to remove from consideration
cases such as coupled multiphysics applications in which components using different programming models
run in succession. The pre-set responses represent the various programming models that are the subject of
various ECP ST projects. We also accepted additional free-text responses. Among the AD projects, OpenMP
is the most prominent response (57%), with Kokkos or RAJA (25%), and UPC++ (21%) as the next two.
After that, comes CUDA or CUDA Fortran (14%), followed by Pthreads, Global Arrays, and OpenACC, each
with 11% of responses. Among the ST projects, Pthreads (36%) beats out OpenMP (32%) for the top spot,
followed by Kokkos or RAJA (18%) and Legion (11%). Note that Kokkos and RAJA can utilize a variety of
the other programming models on the backend, and some responses may have listed both Kokkos/RAJA and
the backends they typically utilize.

We also asked projects an open-ended question about what their experience has been to date with mixing
programming models (Q57). From the AD projects, we received very few responses, generally indicative of
success. There were more responses from the ST projects, and more indications of problems (4 mentions),
particularly around resource sharing (3). Five responses indicated success with MPI+OpenMP (2) and other
combinations. However of those responses also noted that they rarely saw MPI+threads outperforming
MPI-only runs.

4.9 MPI with Threads

MPI has many different modes of threading support, concentrating on thread serialization techniques with MPI.
Full multi-threaded support in MPI implementations lags single-threaded modes in terms of performance.
Improvements are currently being proposed or are in discussion for MPI inclusion that aim to address
performance and usability of multiple threads with MPI libraries. The seven questions shown in Table 13 are
designed to determine the current state of multi-threaded use of MPI and determine if applications needs
are currently met by MPI multi-thread support. In addition to this, applications developers were asked
about how they want to use threads with MPI, specifically if MPI needs to be called in parallel regions (e.g.,
calling MPI inside an OpenMP loop). This is important to understand as current best practices use parallel
loops followed by serialized access to MPI. In some cases algorithms may more easily use MPI if they can
call MPI from individual threads. These questions are meant to probe the usability of the current interface.
The Endpoints proposal [13] being considered by the MPI Forum allows for per thread addressability on the
target and allows each individual thread to have its own rank. This significantly expands the MPI process
space of a given application, and therefore questions were included to determine if this functionality is of
great use to applications. If this is not required other alternatives such as Finepoints [14] could be useful to
applications as it allows highly concurrent threading without targeting thread addressability (only processes
are addressable).

The overwhelming majority of both AD (79%) and ST (93%) projects either currently use, or plan to use,
multiple threads within an MPI process (Q58). When asked which of the MPI threading options they’re
currently using (Q59), results for all three modes were represented at similar levels (18% each), with the
exception of MPI_THREAD_MULTIPLE, which is used by 32% of ST projects. 25% of projects report that they
don’t know which threading mode they’re using, which makes it likely they’re using a regular MPI_Init
call rather than an MPI_Init_thread, meaning that they’re using a non-multi-threaded mode. It is worth
observing that only 79% of AD projects answered this question at all, so there a number of projects for which
we do not have information.

In response to the follow-up question about whether they would prefer to be using a different threading
mode than they’re currently using (Q60), the most common preference was MPI_THREAD_MULTIPLE (9 mentions
each among AD and ST projects), with performance cited as the most common reason for not using it (5
AD, 0 ST). In Q61, we asked whether applications would benefit from being able to change threading modes
in different sections of an application. Interestingly, among the AD projects, more would like to be able to
change modes (39% vs. 29%), while among ST projects most would not benefit from changing threading
modes (46% vs 25%).

Exascale Computing Project (ECP) 16 STPM13-1/ST-PR-13-1000

Table 12: Other Programming Models

No. Question and Responses AD ST Overall

56 Do you use any other programming models (node-level or global) along side MPI (i.e.
both are active at the same time), currently or in your "exascale" version? (multi-
ple+text)
None 7% 7% 7%
OpenMP 57% 32% 45%
Kokkos or RAJA 25% 18% 21%
Pthreads 11% 36% 23%
Global Arrays 11% 4% 7%
Legion 4% 11% 5%
UPC++ 21% 4% 11%
PaRSEC 7% 4% 4%
Other responses
Agency 4% 0% 2%
Argobots 0% 4% 2%
CUDA or CUDA Forrtan 14% 7% 11%
Charm++ 0% 4% 2%
DARMA 0% 4% 4%
Mercury 0% 7% 4%
OCCA 0% 4% 2%
OpenACC 11% 4% 7%
Swift 4% 0% 2%
TBB 0% 4% 2%
Thrust 7% 0% 4%

57 If you already have tried to combine MPI with task-based programming models, please
comment on your experience to date. (text)

AD: Currently using block-synchronous hand-off between Legion and MPI. Thread safety would be
most helpful MPI improvememnt (1 mention); Good success so far, would lke to be able to run
efficiently with THREAD_MULTIPLE (1); Ok (1); Swift supports multiple MPI task configurations
(1);

ST: Experimenting with node-level runtimes (OpenMP, Kokkos, C++17, etc.) (1 mention);
Huge problem, particularly resource management across programming models, including CPUs,
NUMA domains, GPUs, etc. (1); Legion+MPI working (1); Many gotchas and pitfalls. More
interoperbaility/integration is needed. Better methods for joint resource management are needed
(1); No trouble combining MPI outside of parallel regions with OpenMP tasks (1); No trouble
combining OpenMP tasks with MPI (1); Performance is difficult to achieve. Hard to get MPI
progress while asynchronous tasks are executing (1); QUARK+MPI (MPI seems to do a better
job of overlapping/pipelining) (1); Very messy. Have to stop one programming model worlrd to
switch to the other. Slow, error-prone, difficult to code (1); Works reasonably well for strong
scaling if there is a sufficiently large amount of data. However MPI+threads rarely out-performs
MPI-only (1);

Exascale Computing Project (ECP) 17 STPM13-1/ST-PR-13-1000

Table 13: MPI with Threads

No. Question and Responses AD ST Overall

58 Do you currently use or plan to use multiple threads within an MPI process? (single)
Yes 79% 93% 86%
No 21% 7% 14%

59 Which MPI threading option are you using? (single)
MPI_THREAD_MULTIPLE 18% 32% 25%
MPI_THREAD_FUNNELED 18% 18% 18%
MPI_THREAD_SERIALIZED 18% 18% 18%
I don’t know 25% 25% 25%

60 Would you prefer to be using a different MPI threading option? If so, which one, and
what forced your current choice? (text)

AD: Depends on adopted programming model (1 mention); No (1); Not threading now. Would
prefer Multiple due to small messages, but not always performant (1)l THREAD MULTIPLE
would be great, but we can deal with a more limited model if it provides performance and
interoperability (1); We are exploring different options (1); Would prefer MPI_THREAD_MULTIPLE
(3); Would prefer MPI_THREAD_MULTIPLE. But not using it because of poor performance. (4);

ST: Currently funneling, would prefer thread multiple (2 mentions); Not currently threading in MPI,
using OpeMP, OpenACC, and CUDA (1); Not mixing now. Would prefer Multiple for greatest
flexibility (1); Sometimes run thread multiple because required by a dependency (1); We don’t
care too much, but want something that gives performance (1); Would like to be able to do MPI-
IO MPI_File_Write_At in MPI_THREAD_MULTIPLE (1); Would prefer MPI_THREAD_MULTIPLE (2);
Would prefer MPI_THREAD_MULTIPLE if it became standard on all supercomputers (1); Would
prefer that MPI_THREAD_MULTIPLE worked with non-blocking collectives (2);

61 Would your application benefit from using different MPI threading options in different
sections of the code? (single)
Yes 39% 25% 32%
No 29% 46% 38%

62 Is it important for you to be able to make MPI calls from within multi-threaded regions
of your application? If so, which types of communications are performed? (multiple)
No communication in multi-threaded regions 25% 11% 18%
Point-to-point 46% 43% 45%
RMA (one-sided) 25% 32% 29%
Collectives 11% 29% 20%

63 Do you require thread addressability on the target side (delivery of data to specific
threads) for certain kinds of operations? (multiple)
No communication in multi-threaded regions 54% 50% 52%
Point-to-point 18% 11% 14%
RMA (one-sided) 14% 11% 12%
Collectives 4% 11% 7%

64 Do you need high-level control over the placement of threads and MPI processes?
(multiple)

Yes, using mpirun (or equivalent) on the command line 61% 43% 52%
Yes, via the job manager 29% 18% 23%
No 0% 32% 16%

Exascale Computing Project (ECP) 18 STPM13-1/ST-PR-13-1000

Our goal of determining if Endpoints and/or Finepoints solutions could be viable exascale MPI concurrency
interfaces led to several questions in the survey as well. In Q62, we asked respondents if it was important
to be able to make MPI calls from multi-threaded regions of code. This would indicate an interest in
Finepoints/Endpoints types of interfaces. Overall, 45% of respondents said that they would make point-
to-point MPI calls from within multi-threaded regions, 29% would make RMA calls, and 20% would call
collectives. 18% of projects did not consider it important to be able to make MPI calls from within
multi-threaded regions. There were fairly significant differences between the AD and ST projects in their
desire to use collectives within multi-threaded regions (11% vs 29%), and in the fraction of projects not
interested in MPI in multi-threaded regions (25% vs 11%). A majority (52%) of projects indicated that they
did not need thread-level addressability on the target side of communications (Q63), indicating that the
Finepoints proposal might be a suitable solution for them, while much smaller fractions indicated the need for
thread-level addressability in point-to-point, RMA and collective operations (14%, 12%, and 7%). Finepoints
and Endpoints are complimentary solutions, therefore these results motivate pursuing both for exascale.

Finally, a clear majority indicated the need for high-level control over placement of threads and MPI
processes via either the command line (mpirun or equivalent) (52%) or the job manager (23%).

5. CONCLUSIONS

This paper presents a summary of a survey conducted within the ECP community to gain information about
how the MPI standard is currently used and how the various ECP projects are planning on using it to achieve
exascale. Additionally, the survey captured requirements stated by the ECP projects as well as potential
improvements needed in MPI implementations.

The first conclusion of the survey is the confirmation that MPI remains a critical building block in the
exascale ecosystem, for both application (AD) and software stack (ST) projects. However, the survey also
highlights that most ECP projects do not interact with MPI directly, but instead use it through libraries or
an abstraction layer. Our survey further confirms that the capabilities of interest are, in most cases, covered
by point-to-point and collective communications, even if one-sided communication (RMA) is gaining interest
in the context of exascale.

Many of the results of our survey are of particular interest to specific audiences.
MPI Forum. C++ has gained a lot of traction in the HPC community and became the most common

language from which to invoke MPI among the ECP projects surveyed. This is not necessarily a plea to
reenact the MPI C++ bindings removed in MPI 3.0. but it clearly indicates a shift in the programming
languages used, at least in the ECP community, which will need to be addressed by the MPI standardization
body. Key follow-up questions that might help inform further consideration on this topic would include
whether C++ programmers are simply using the C binding of MPI and consider that adequate, or whether
they prefer an approach that is more consistent with the features and capabilities of C++ in comparison
to C. For those using a C++ binding layer, it would be useful to know the origin and completeness of the
binding, in order to better understand the level of effort users are putting into developing and maintaining
C++ bindings outside of the standard.

Nearly half of projects reported that MPI covered all of their communication needs. There was significant
interest in active messages and persistent communications (the latter may refer to persistent collectives, or
it may be an indication that users are not familiar with the persistent point-to-point capabilities already
available). Job-to-job communications were also requested.

Checkpoint/restart remains the most widely used resilience strategy among the projects surveyed, though
a significant number of projects do not yet have clear plans for resilience. Some responses expressed interest in
both the User-Level Fault Mitigation and ReInit approaches. Few projects can adapt the number of processes
on which they run, either dynamically or on restart, so for most users, a strategy involving spare nodes is the
only way to restart without re-queuing.

Current or planned use of threads (especially OpenMP, Pthreads, Kokkos or RAJA) together with MPI is
nearly universal among the responses. Nearly half of responses indicated that they would like to be able to
make MPI calls from within multi-threaded regions of code. However a majority of responses also indicated
that they did not need thread-level addressability on the target side of communications. These results
motivate continued pursuit of both of the complementary Finepoints and Endpoints approaches for exascale.

Exascale Computing Project (ECP) 19 STPM13-1/ST-PR-13-1000

MPI Implementors. Developers of ECP applications seem ready to embrace some of the latest additions
or improvements to the MPI Standard and expect to make significantly more use of RMA, neighbor collectives
and process topologies in exascale versions of their codes. Exascale-ready implementations of these capabilities
are therefore necessary in the near term.

The relevance of MPI+threads, the strong desire of many projects to use MPI_THREAD_MULTIPLE, and
complaints about the current performance overheads suggest that improving the performance of MPI
implementations for multi-threaded use cases would widely be beneficial and appreciated.

Tool Developers. The most significant message for tool developers is that half of the projects responding
do not actually use any performance tools. This suggests that latest efforts by the MPI Forum to improve tools
support have not been yet embraced by the user community and therefore additional effort on dissemination
of and education about available tools may be warranted.

MPI Users. The majority of the projects responding to the survey have produced mini-application
reflecting MPI-related behaviors of their applications. These are considered a useful way to interact with
researchers outside the project, and a critical tool to assess the capabilities and performance of MPI
implementations.

Crosscutting. The increasing use of accelerator-based node architectures (GPUs or other types) and
the growth of complex memory architectures, which are not simply hierarchical, are both very significant in
the responses. Users expect to explicitly manage memory placement and movement, including the ability to
move data directly into different memory spaces while moving it between nodes. Similarly, there is significant
interest in being able to make MPI calls directly from accelerator kernels (though similar numbers of projects
don’t know whether they will need this capability). These results certainly have implications for MPI
implementors and hardware vendors, and possibly also for the MPI Forum.

However, it is also important to note there was a great deal of variation in the answers to many of the
questions in our survey, which points to the richness and complexity of the exascale ecosystem, with many
languages, diverse requirements and expectations for both the MPI specification and for implementations.
Is that complexity a risk? How does the MPI standard need to evolve to address it and still guarantee
performance and scalability? The same can be said about resilience where checkpoint/restart is still the
preferred option: can checkpoint/restart scale to exascale? Can checkpoint/restart handle the many failures
that some predict for exascale systems?

Effectively addressing the needs of applications as they transition to adapt to increasingly complex
hardware capabilities is critical for the future of any programming paradigm, including MPI. While this
task is certainly broader than the specific types of platforms and/or applications associated with the ECP,
it provides an exciting opportunity to address some of the most extreme requirements in terms of scale
and heterogeneity. In this context, providing support to application developers in their quest to become
exascale-ready requires a detailed understanding of their needs and how these needs will evolve. At the same
time, we must also be a partner for application teams to help them efficiently explore existing MPI constructs
and, when necessary, provide them with missing capabilities critical for their success.

Nevertheless, we still face the same old dilemma on what should come first: should the application take the
risk of trying experimental MPI constructs that are not yet standardized, or should the MPI standardization
community provide constructs that might not be helpful to application developers for the foreseeable future.
With this survey we tried to cover both fronts and to build a solid middle-ground between the MPI community
and application developers. We hope that this forms a basis to begin a more concerted discussion on how
MPI should evolve to retain its role of a portable and efficient environment for scientific applications at
extreme scales and to continue to be the defining force in parallel computing.

ACKNOWLEDGEMENTS

This research was supported by the Exascale Computing Project (ECP 17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This work was carried out in part at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for
the U.S. Department of Energy under contract number DE-AC05-00OR22725.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Exascale Computing Project (ECP) 20 STPM13-1/ST-PR-13-1000

This work was performed in part at Los Alamos National Laboratory, supported by the U.S. Department
of Energy contract DE-FC02-06ER25750.

Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] Exascale computing project. https://exascaleproject.org/, September 2017.

[2] Message Passing Interface Forum. MPI: A message-passing interface standard version 3.1. available at
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, June 2015.

[3] Open MPI: Open source high performance computing. https://www.open-mpi.org/, June 2017.

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J.
Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next
generation MPI implementation. Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, September 2004.

[5] MPICH high-performance portable MPI. https://www.mpich.org/, September 2017.

[6] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland, Hajime Fujita, Yanfei
Guo, Tomislav Janjusic, Dmitry Durnov, Michael Blocksome, Min Si, Sangmin Seo, Akhil Langer,
Gengbin Zheng, Masamichi Takagi, Paul Coffman, Jithin Jose, Sayantan Sur, Alexander Sannikov,
Sergey Oblomov, Michael Chuvelev, Masayuki Hatanaka, Xin Zhao, Paul Fischer, Thilina Rathnayake,
Matt Otten, Misun Min, and Pavan Balaji. Why is mpi so slow? analyzing the fundamental limits
in implementing mpi-3.1. SC’17: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Denver, Colorado, USA, 2017. to appear.

[7] Daniel Holmes, Kathryn Mohror, Ryan E Grant, Anthony Skjellum, Martin Schulz, Wesley Bland, and
Jeffrey M Squyres. Mpi sessions: Leveraging runtime infrastructure to increase scalability of applications
at exascale. Proceedings of the 23rd European MPI Users’ Group Meeting, pages 121–129, 2016.

[8] NVIDIA. Gpudirect. https://developer.nvidia.com/gpudirect, 2015.

[9] Davide Rossetti. Gpudirect: Integrating the gpu with a network interface. http://on-
demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf.

[10] Sreeram Potluri, Davide Rossetti, Donald Becker, Duncan Poole, Manjunath Gorentla Venkata, Oscar
Hernandez, Pavel Shamis, M. Graham Lopez, Mathew Baker, and Wendy Poole. Exploring openshmem
model to program gpu-based extreme-scale systems. Revised Selected Papers of the Second Workshop on
OpenSHMEM and Related Technologies. Experiences, Implementations, and Technologies - Volume 9397,
2015.

[11] Sreeram Potluri, Anshuman Goswami, Davide Rossetti, Manjunath Gorentla Venkata, Neena Imam, and
Chris J. Newburn. Gpu-centric communication on nvidia gpu clusters with infiniband: A case study
with openshmem (to appear). December 2017.

[12] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. Post-failure
recovery of MPI communication capability: Design and rationale. International Journal of High
Performance Computing Applications, 27(3):244–254, 2013.

[13] James Dinan, Ryan E Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev
Thakur. Enabling communication concurrency through flexible mpi endpoints. The International Journal
of High Performance Computing Applications, 28(4):390–405, 2014.

[14] Ryan Grant, Anthony Skjellum, and Purushotham V Bangalore. Lightweight threading with mpi
using persistent communications semantics. Technical report, Sandia National Laboratories (SNL-NM),
Albuquerque, NM (United States), 2015.

Exascale Computing Project (ECP) 21 STPM13-1/ST-PR-13-1000

https://exascaleproject.org/
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.open-mpi.org/
https://www.mpich.org/

A. COMPLETE SURVEY QUESTIONS

Tables 14 through 24 present the full set of questions from the survey (excluding the section that establishes
the identity of the project and respondant).

The tables follow a common format. The main text of the question is shown in bold face font. An
asterisk (*) following the question indicates that a response was required. In some cases, questions included
additional context or explanation. After that, in parenthesis, is the type of response allowed. “Single” means
that only a single answer could be chosen. “Multiple” indicates that any number of answers (including zero)
could be marked. “Text” denotes text fields that allowed a free-form response. In some cases, multiple
choice questions also had an “other” option, which allowed free-form text responses in addition to the choices
provided. These are denoted as “single+text” or “multiple+text”.

Table 14: Application Demographics

No. Question and Responses

18 Does your project involve a single application/library or several that you consider to
be distinct? * This refers to applications/libraries actively developed within your project, not to
third-party software you may be using. (single)
Single application/library
Multiple distinct applications/libraries

Important Note: Hereafter, we’ll use the term application to mean the aggregation of all applica-
tions and/or libraries being developed within your ECP project, but excluding third-party libraries
that you depend upon but do not contribute to from your project.

19 Does your application currently use MPI? * (single)
Yes
No

20 Do you expect the exascale version of your application to use MPI? * (single)
Yes
No

21 If your anwer above was "no", why not? (text)
22 Do you have an abstraction layer that hides the MPI calls? Or do most of your

developers write MPI calls directly? * (single)
Abstraction layer
Direct MPI calls

23 Do you have mini-applications that capture the MPI behavior of your application? If
so, are they available to the community? (single)
Yes, and they are available to the community
Yes, but they’re limited availability
No

24 What programming languages do you call MPI from? * (multiple+text)
C
C++
Fortran
Python
Other

25 What additional languages would you like to be able to call MPI from? (text)
26 What third-party libraries that your application depends upon use MPI? Please list

library names, or respond "none". (text)

Exascale Computing Project (ECP) 22 STPM13-1/ST-PR-13-1000

Table 15: Non-MPI Applications

No. Question and Responses

27 What parallel programming models are you using (node level and global)? * (text)
28 Are there issues with the MPI standard or implementations which have pushed you

away from using MPI in your application? (text)
29 What third-party libraries that your application depends upon use MPI? * Please list

library names, or respond "none" or "unknown" if appropriate. (text)
30 Do you expect the exascale version of your application to use MPI? * (single)

Yes
No

Stop filling out this form.

Table 16: Basic Performance Characterization

No. Question and Responses

We realize that applications often exhibit a mixture of characteristics. Please answer based on what
is most important to the performance of your application.

31 Is your application (when run in production) typically dominated by small or large
messages? (single+text)
Small (< 8 kB)
Large (≥ 8 kB)
Other

32 Do you consider your application (when run in production) to be constrained by
(multiple+text)

Message latency
Message bandwidth
Message rate
Don’t know
Other

33 If there were one aspect of MPI that could be optimized to improve the performance
of your application, what would you prioritize? (text)

34 Is the performance of your application particularly sensitive to the network topology
and the specific mapping of MPI processes to that topology? If so, please describe the
platform(s)/network(s) where you have experienced issues. If not, please just answer "no" (text)

Exascale Computing Project (ECP) 23 STPM13-1/ST-PR-13-1000

Table 17: MPI Usage Patterns – Part A

No. Question and Responses

35 What aspects of the MPI standard do you use in your application in its current form?
* (multiple)

Point-to-point communications
MPI derived datatypes
Collective communications
Neighbor collective communications
Communicators and group management
Process topologies
RMA (one-sided communications)
RMA shared windows
MPI I/O (called directly)
MPI I/O (called through a third-party library, such as HDF5 or pNetCDF)
MPI profiling interface
MPI tools interface

36 What aspects of the MPI standard appear in performance-critical sections of your
current application? * (multiple)
Point-to-point communications
MPI derived datatypes
Collective communications
Neighbor collective communications
Communicators and group management
Process topologies
RMA (one-sided communications)
RMA shared windows
MPI I/O (called directly)
MPI I/O (called through a third-party library, such as HDF5 or pNetCDF)
MPI profiling interface
MPI tools interface

37 What aspects of the MPI standard do you anticipate using in the "exascale" version
of your application? * (multiple)
Point-to-point communications
MPI derived datatypes
Collective communications
Neighbor collective communications
Communicators and group management
Process topologies
RMA (one-sided communications)
RMA shared windows
MPI I/O (called directly)
MPI I/O (called through a third-party library, such as HDF5 or pNetCDF)
MPI profiling interface
MPI tools interface

Exascale Computing Project (ECP) 24 STPM13-1/ST-PR-13-1000

Table 18: MPI Usage Patterns – Part B

No. Question and Responses

38 What is the dominant communication in your application? Check all that apply, recognizing
that many applications have different communication patterns in different phases. (multiple)
Each process talks to (almost) every other process
Processes communicate in fixed "neighborhoods" of limited size
Processes communicate in "neighborhoods" of limited size that may change in different phases of
the application or evolve over the course of a run

Communication is largely irregular
39 Can your application take advantage of non-blocking point-to-point operations... (mul-

tiple)
To overlap communication with computation?
To allow asynchronous progress?
To allow event-based programming?

40 Can your application take advantage of non-blocking collective operations... (multiple)
To overlap communication with computation?
To allow asynchronous progress?
To allow event-based programming?

41 Is MPI providing all the communication semantics required by your application? If
not, what is missing? (multiple+text)
MPI covers all my needs
Active messages
Persistent communications (communications with the same arguments, repeatedly executed,
potentially allowing additional optimization if exposed to the MPI layer)

Other

Exascale Computing Project (ECP) 25 STPM13-1/ST-PR-13-1000

Table 19: MPI Tools Ecosystem

No. Question and Responses

42 If you are using performance tools with MPI, how often do you encounter the need
to use multiple tools during the same application run? (single)
Often
Occasionally
Never
Don’t use performance tools with MPI

43 Are there any MPI-related improvements you’d like to see for debuggers and other
"correctness" tools? (text)

44 Are there any MPI-related improvements you’d like to see for performance tools?
(text)

45 Are you using the MPI Profiling Interface for anything other than running perfor-
mance analysis tools? If so, please briefly describe your use. (text)
Note: MPI 3.0 introduced a new interface for tools (MPI_T) that’s intended to allow a view into
information about the MPI implementation itself and related low-level information. The next two
questions are designed to gauge interest in expanding those capabilities. The capabilities suggested
below would potentially be accessible to applications, making calls directly on the MPI_T interface,
or to tools (e.g., performance tools) that could be extended to access the new information.

46 What is your level of interest in having access to internal MPI performance data? In-
formation could include items like function call time, load balance information, mem-
ory use, message queue information, network counters, etc. (single)
1 (Little or no interest)
2
3
4
5 (Very interested)

47 Which particular types of internal MPI information would you find useful? (multi-
ple+text)
Function call time
Load balance
Memory use
Message queue information
Network counters
Other

Table 20: Memory Hierarchy Details

No. Question and Responses

48 Do you expect to explicitly manage the memory hierarchy in your application? (single)
Yes, I expect to explicitly allocate or migrate data in different memory regions
No, I expect to rely on system mechanisms to place and migrate data Skip to question 50.

49 Do you expect to exchange data between different memory regions on different nodes,
using MPI? For example, data in main memory on one node is sent to non-volatile memory on
the other? Or directly to the memory of an accelerator device on the other node? (single)
Yes
No
Don’t know

Exascale Computing Project (ECP) 26 STPM13-1/ST-PR-13-1000

Table 21: Accelerator Details

No. Question and Responses

50 Does your application currently run on GPU accelerators, or do you expect the “ex-
ascale” version to? (single)
Yes
No Skip to question 53.

51 Do you want to be able to make MPI calls directly from within your GPU kernels (as
opposed to only from the host CPU)? (single)
Yes
No
Don’t know

52 In productions runs, how do you expect to deploy your application? We anticipate that
different accelerator-based architectures may offer different ratios of CPUs (or CPU cores) to GPUs.
Assuming that the offload programming model continues to be used, do you expect your deployment
model to be driven by the GPUs, or the CPUs (or CPU cores)? (single)

One MPI rank per GPU, with CPU resources potentially being shared or divided among multiple
MPI ranks

MPI ranks assigned to CPUs (or CPU cores), GPUs potentially shared or divided among multiple
MPI ranks

Don’t know

Table 22: Resilience

No. Question and Responses

53 How do you plan to make your application fault tolerant? (single+text)
It is already fault tolerant
I plan to use checkpoint/restart
Don’t know
I’m not going to worry about fault tolerance
Other

54 Is your application "malleable" with respect to the number of processes (assuming
MPI can "run through" faults, as needed)? (multiple)
Yes, it can change the number of processes dynamically, during execution
Yes, it can change the number of processes when restarting from a checkpoint made on a different
number of processors

No
55 Can your application be organized to continue past (limited) data loss or corruption

without an explicit restart? For example, an iterative method that still converges, or a domain
decomposition with fewer samples, etc. (single)
Yes
Only limited sections
No

Exascale Computing Project (ECP) 27 STPM13-1/ST-PR-13-1000

Table 23: Other Programming Models

No. Question and Responses

56 Do you use any other programming models (node-level or global) along side MPI
(i.e. both are active at the same time), currently or in your "exascale" version?
(multiple+text)

None
OpenMP
Kokkos or RAJA
Pthreads
Global Arrays
Legion
UPC++
PaRSEC
Other

57 If you already have tried to combine MPI with task-based programming models, please
comment on your experience to date. What works and doesn’t work? What needs to change
on the MPI side to make it better? (text)

Exascale Computing Project (ECP) 28 STPM13-1/ST-PR-13-1000

Table 24: MPI with Threads

No. Question and Responses

58 Do you currently use or plan to use multiple threads within an MPI process? For
example, using OpenMP, Pthreads, Qthreads, Cilk, Argobots, or other threaded programming
models (single)
Yes
No (Stop filling out this form.)

59 Which MPI threading option are you using? (single)
MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED
MPI_THREAD_SERIALIZED
I don’t know

60 Would you prefer to be using a different MPI threading option? If so, which one, and
what forced your current choice? (text)

61 Would your application benefit from using different MPI threading options in different
sections of the code? (single)
Yes
No

62 Is it important for you to be able to make MPI calls from within multi-threaded
regions of your application? If so, which types of communications are performed?
(multiple)

No communication in multi-threaded regions
Point-to-point
RMA (one-sided)
Collectives

63 Do you require thread addressability on the target side (delivery of data to specific
threads) for certain kinds of operations? (multiple)
No communication in multi-threaded regions
Point-to-point
RMA (one-sided)
Collectives

64 Do you need high-level control over the placement of threads and MPI processes?
(multiple)

Yes, using mpirun (or equivalent) on the command line
Yes, via the job manager
No

Exascale Computing Project (ECP) 29 STPM13-1/ST-PR-13-1000

B. RAW FREE TEXT RESPONSES

The following tables present the raw responses to those questions that allowed free-response inputs. The
tabular structure corresponds to those used earlier in the document, but only those question with text
responses are included. Individual responses are separated with semicolons (;). In some cases, small changes
have been made to the case and punctuation of the responses, and they have been reordered to group similar
responses together.

The sections on Memory Hierarchy Details and Accelerator Details have no free-response questions.

Table 25: Application Demographics

No. Question and Responses

21 If your anwer above was "no", why not? (text)
AD: We are supposed to use Legion for parallelization, with MPI as backup if Legion turns out
to be inappropriate.

ST: MPI supports message passing, I am more interested in RPCs; MPI supports message passing,
I am more interested in RPCs; This is one option;

24 What programming languages do you call MPI from? * (multiple+text)
AD: petsc interface; Tcl
ST: none

25 What additional languages would you like to be able to call MPI from? (text)
AD: C/C++; Julia; none at present; Perhaps directly from python and julia; none; none;
ST: We supply interfaces for users in C, C++ and Fortran. While we do perform MPI calls for our
portion of the solves, we expect that users also call MPI for problem-specific communication.
Therefore we would like that all of C, C++ and Fortran be able to call MPI directly; none, I
prefer not to use MPI; none, I prefer not to use MPI; none;

26 What third-party libraries that your application depends upon use MPI? Please list
library names, or respond "none". (text)
AD: ADLB; AMReX; Basic graph libraries; CNTK; Global Arrays; GridPACK, PETSc; HDF5;
Hypre, Metis, MFEM; MFEM relies on hypre, Nek relies only on MPI; Petsc; TRILINOS,
PARAVIEW/CATALYST, HDF5, HYPRE; Trilinos, HDF5, ADIOS, Silo; Trilinos, SuperLU-
Dist, HDF5, NetCDF, pNetCDF, CGNS; mpi4py; none; none; none; none; none; none; none;
none; none; none; parallel HDF5; petsc interface to other libraries; pio, pnetcdf, hdf5; trilinos;

ST: BLAS; DIY; Hdf5, ADIOS, DIY; I am not sure, but anything Trillinos is linked with,
e.g., ScaLAPACK; Mercury currently has a MPI implementation; Mercury currently has a
MPI implementation; NetCDF, pNetCDF, HDF5, CGNS, MKL-Cluster; PnetCDF, ROMIO;
ScaLAPACK (BLACS, PBLAS), ParMetis, PTScotch; Trilinos is itself a collection of libraries.
We provide access to other MPI-enabled libraries, specifically hypre, SuperLU_dist, Pardiso;
Trilinos, PETSc, SLATE; Trilinos; We do not "depend" on these per-se, but we support
interfaces to PETSc, HYPRE, SuperLU_MT, KLU and LAPACK. Of these, PETSc and
HYPRE use MPI; We’re OS and runtime project. We evaluate many MPI applications to
evaluate how well our OS and runtimes work. These MPI apps often depend on frameworks
such as Trilinos and Sierra and the many third party libraries they incorporate (HDF5, NetCDF,
libmesh, DTK, ...); hypre; none (at present); none directly; none; none; none; none; none; none;
none; none; none; none; zlib, Polly, TSan, clang;

Exascale Computing Project (ECP) 30 STPM13-1/ST-PR-13-1000

Table 26: Non-MPI Applications

No. Question and Responses

27 What parallel programming models are you using (node level and global)? * (text)
AD: none
ST: CUDA, TBB; Current prototype does use MPI. Production version will use Mercury/Margo;

Currently none, tools run serial (databases, metadata capture, etc); Kokkos layered on OpenMP,
Threads, CUDA, Qthreads; Kokkos, OpenMP, CUDA; Most of our work is thread-local and
and then is run in parallel using any parallel programming model; None. The Tools & Dev
Env does not have software like this; OpenMP, CUDA; The main project in HPCDE is Spack.
It’s written in Python. For Parallel builds we *may* use MPI but more likely we’ll coordinate
through the parallel filesystem and not require a particular MPI or resource manager; We are
implementing a new PGAS Model: UPC++; We work on the operating system, and interface
with the parallel programming model from the bottom; na; node level; not applicable; system
software / middleware, not application;

28 Are there issues with the MPI standard or implementations which have pushed you
away from using MPI in your application? (text)
AD: none
ST: The lack of standard or consistent ABIs is an ongoing problem for performance tools; We

are not an application, so we don’t need MPI; n/a; n/a; na; no, We provide node level kernels
for MPI+X codes; no, but I currently have no need for MPI; no, this project is specifically
focusing on node-level parallel; no. Spack has 139 packages that directly depend on MPI and
248 that can depend on it transitively; no; no; separation of concerns: intra-node vs. inter-node
parallelism;

29 What third-party libraries that your application depends upon use MPI? * Please list
library names, or respond "none" or "unknown" if appropriate. (text)
AD: none
ST: "abinit, adept-utils, adios, adlbx, alquimia, amrex, arpack-ng, automaded, bertini, boost,

boxlib, caliper, callpath, cbench, cgm, charm, chombo, cntk, conduit, converge, cosmomc, cp2k,
cram, dakota, darshan-runtime, dealii, dtcmp, elemental, elk, elpa, esmf, espresso, espressopp,
everytrace, exodusii, extrae, fastmath, fenics, fftw, flann, foam-extend, funhpc, gasnet, globalar-
rays, gmsh, grackle, gromacs, h5hut, h5part, hdf5, hmmer, hoomd-blue, hpctoolkit, hpl, hpx5,
hypre, icet, ior, isaac, julia, kripke, lammps, lbann, libcircle, libmesh, libnbc, libquo, libsplash,
lulesh, lwgrp, lwm2, mdtest, meep, meme, mesquite, mfem, mitos, moab, mpe2, mpibash,
mpifileutils, mpileaks, mpip, multiverso, mumps, muster, netgauge, netlib-scalapack, npb,
nwchem, octopus,ompss, opencoarrays, openfoam-com, openfoam-org, osu-micro-benchmarks,
p4est, pagmo, panda, paradiseo, parallel-netcdf, paraview, parmetis, parmgridgen, parpack,
petsc, pfft, pflotran, phasta, pidx, plumed, portage, pruners-ninja, pumi, py-h5py, py-meep,
py-mpi4py, py-pypar, r-rmpi, relion, rempi, samrai, scalasca, scorec-core, scorep, scotch, scr,
simul, stat, sundials, superlu-dist, swiftsim, tau, trilinos, valgrind, vampirtrace, wannier90,
xsdktrilinos, zoltan" MDHIM, but this project is also moving to Mercury/Margo; QEMU;
We don’t so much depend on libraries that use MPI, but we do intend to be used in larger
software systems using our software in conjunction with MPI, and our work dovetails with that
development. This software includes VTK, ParaView, VisIt, ALPINE, Catalyst, Libsim, and
DIY. Where appropriate we look other software systems and simulation code.; n/a; na; none.
We are node level kernel; none; none; none; none; none; none; none; unknown;

Exascale Computing Project (ECP) 31 STPM13-1/ST-PR-13-1000

Table 27: Basic Performance Characterization – Part A

No. Question and Responses

31 Is your application (when run in production) typically dominated by small or large
messages? (single+text)

AD: 10 kB to 10 MB depending on problem size; Depends on mini batch sizes; In the interesting
strong scale limit, all messages are small; MIXED. AS A SUITE OF MULTI-PHYSICS CODES
WE ARE EXPLORING; We have a wide spread of message sizes and latency requirements;
all to all in subcommunicators; both depending on the problem run and whether BLAST or
Miranda; both; both; both; large; unsure. We have both. Both can bottleneck scaling;

ST: Both, depending; Depends on the application; Full-range from global collectives (8 bytes)
to neighborhood collectives where we bulk up messages to neighbors, and multi-grid where
message sizes vary from very small coarse grid neighborhoods to the full-scale fine grid; HDF5
mainly uses MPI-IO routines; some metadata aggregation calls to exchange data, which is
usually < 8 KB; Our portion entirely consists of small messages, but user codes will typically
send larger messages to perform problem-dependent communication; depends on what we are
doing (and we have not formally measured it). I would speculate that most of our messages
are at least 8KB; depends; depends; don’t know, but suspect messages are large; large; mix of
both small (control) messages and large (data) messages; mixture;

32 Do you consider your application (when run in production) to be constrained by
(multiple+text)

AD: Different parts of the code have different requirements and can be constrained by any of
these; Don’t know, problem scaling on Cori past 2048 nodes; Load imbalance; Message rate,
but this is very problem and setup dependent; Message rate, on node contention (e.g., in KNL)
or lack of concurrency at strong scale; Somewhat dependent on problem size or part of the code
used; Unconstrained, roughly, since our application is mostly perfectly-parallel until results are
gathered from the cores; application dependent; application dependent;

ST ADIOS is disk I/O constrained but otherwise message bandwith is the most constraining;
Again, it depends on what part of the application we are talking about. The code I am
most familiar with is the rendering, which uses MPI as basically a large, specialized reduction
operation. When you scale very large, the reduction is dominated by a gather to get the pieces
of array that have been distributed over the processes during the reduction operation; Any/all,
depending on application behavior; Don’t know, memory requirements of the application, load
imbalance; I/O latency more than network latency; In the future, as we restructure for fine-grain
tasking, we will start to be impacted by message rate (we think); Likely constrained by I/O
and compute; Our portion is constrained by message latency; I do not know the constraints
on our users’ codes; depends on the application; depends on the parameters: if the number
of detector pixels is large and there are lots of energy bins, MPI bandwidth will most likely
be a limiting factor. However, for smaller images, or lower #bins, the triangle intersection
computations dominate; depends; depends;

Exascale Computing Project (ECP) 32 STPM13-1/ST-PR-13-1000

Table 28: Basic Performance Characterization – Part B

No. Question and Responses

33 If there were one aspect of MPI that could be optimized to improve the performance
of your application, what would you prioritize? (text)
AD: ?; Asynchronous communication; Better fine grain support and dynamic tasking; Fault

tolerance; INTEROPERABILITY WITH OTHER RUNTIMES, BOTH LOCAL THREADING,
AND TASK-BASED DISTRIBUTED MEMORY SYSTEMS SUCH AS LEGION; Latency of
small messages. We would like to strong scale out further; MPI+X abstraction; Memory barrier
in on-node shared memory programming in MPI+MPI; Memory barrier in on-node shared
memory programming in MPI+MPI; Multithreaded asynchronous; Optimize data block size;
Predictability of message latency and bandwidth based on machine status and configuration
information that can be interogated at runtime; Probably MPI one sided, async collectives;
Shared memory MPI; Thread Multiple; You tell me; collective operations; collectives; hardware
all-reduce, convex partitions (sorry, I realize these aren’t really MPI issues); low latency; latency;
latency; message latency; multi-thread support; "i) Core counts are growing and growing.
Hybrid threading intranode and message passing internode is the most efficient scheme in
principle, because internal memory copies are eliminated. However, all MPI implementations
remain to date poor at accepting and concurrently processing concurrent requests from multiple
threads. Thread concurrency is important, and needs to be worked on. ii) Although NVIDIA
is moving toward a single address space with the host CPU they are not the only GPU or
accelerator vendor in the world. Understanding how best to address single copy between
âĂĲoffloadâĂİ memory spaces would be good. How to capture non-uniform things like the fast
links between Nvidia GPUâĂŹs in the same box would be good. iii) In order to saturate the
network bandwidth with nonblocking sends, it may be necessary for an MPI implementation
to do internal threading and enlist more cores. Implementations should provide such measures
to make saturation possible within just a single MPI rank. Presumably, the standard should
specify an environment variable to control the number of internal threads.";

ST: Ability to be used in service implementations: robustness, connect/attach, etc.; All_reduce,
non-blocking All_reduce; CPU use makes MPI untenable for RPCs; CPU use makes MPI
untenable for RPCs; Collective computation routines – specifically MPI_Allreduce. We may
eventually transition to asynchronous reduction operations, but for now this is the main MPI-
related function we need (for inner-product calculations); Controlling rendezvous threshold; Fast
local collectives; I don’t know; In my experience, collective operations are the most problematic
at large scales; MPI-IO aggregation optimizations based on topology; Relaxing the limit of
I/O for larger than 2 GB blocks; MPI_THREAD_MULTIPLE or a suitable replacement for
supporting MPI usage by multiple threads/tasks; Message latency; Non-blocking all-reduce;
Performance in the presence of tasks and threads within MPI ranks; Threading support; Very
fast collectives; all-to-all; bandwidth for repartitioning of data; dealing with a large number of
outstanding requests; no opinion; start-up time at extreme scale;

Exascale Computing Project (ECP) 33 STPM13-1/ST-PR-13-1000

Table 29: Basic Performance Characterization – Part C

No. Question and Responses

34 Is the performance of your application particularly sensitive to the network topology
and the specific mapping of MPI processes to that topology? If so, please describe the
platform(s)/network(s) where you have experienced issues. If not, please just answer "no" (text)
AD: ?; It is little sensitive when we distributed data in 2D checkerboard fashion. We observed
it on NERSC/Edison; Miranda can be sensitive when using spectral methods, but these are
not common in production anymore. Otherwise messages tend to be smaller and not a large
percentage of runtime; Our applications work well on both a 4D torus network and an all-to-all
network. With the former, of course, it is crucial to get the MPI mapping right; We do not
know, because measurement variability is too high to be of use; We see large variability on
Aries; network aware topology mapping (by SciDAC SUPER Institute) may sometimes give
15% improvement on Titan. However, since Titan batch scheduler may not give contiguous
partitions, the mapping may not always give improvement; no; no; no; no; no; no; no; no; no;
no; no; no; not much, except as far as topology affects collective behavior; not sure; we have
measured this on current LCF production platforms; yes – If other applications are interfering
with the network and introducing contention, that’s a bad thing. So, A#1 priority is convex
partitions; yes but we have not studied this in detail; yes, due to latency; yes. The network
topology is highly heterogeneous; yes;

ST: I do not know, but am very interested of knowing; don’t know; it may. At the core is
matrix-vector multiplication, which may have poor performance for sparse cluster allocators; no;
no; no; no; no; no; no; no; no; not in recent years. This used to be an issue; not the SUNDIALS-
specific portion – we expect that the user has already mapped the parallel decomposition to
the machine, so if they have specific issues/needs, we rely on them to work those out; not to my
knowledge; somewhat sensitive to job allocation (non-contiguous allocation on Cray machines);
we have observed that topology-aware I/O gains significant performance, especially for a large
number of small (size) I/O requests; yes, in some cases; yes. Halo exchanges on Cray systems
can usually be optimized with careful MPI process placement. For example, S3D on Cray runs
best with an optimized MPICH_RANK_REORDER mapping file. The first order benefit is
minimizing the surface area communicated off each node. Second order benefit is mapping
better to the physical network topology; yes. Think I/O forwarding; yes; yes; yes; yes;

Table 30: MPI Usage Patterns

No. Question and Responses

41 Is MPI providing all the communication semantics required by your application? If
not, what is missing? (multiple+text)

AD: GPU to GPU; Mixed with gasnet. Reductions with variable sized abstract types; That does
not mean that future improvements will not improve application performance in particular in
the strong scaling limit new features and more overlap would be useful; WE ARE ACTIVELY
EXPLORING LEGION AS AN EXEMPLAR OF A MORE DATA-CENTRIC TASK-BASED
PROGRAMMING SYSTEM; details of the implementation, such as the use of Active Messages,
should be hidden behind the API;

ST: As workflows become more complex, we would like a mechanism to communicate between MPI
jobs with an uber-communicator; Easy job-to-job communication (eg workflows w/ jobs that
come and go); Improved MPI_THREAD_MULTIPLE or improved semantics for MPI+threads
usage; Missing RPC between independent processes; Not sure yet...;

Exascale Computing Project (ECP) 34 STPM13-1/ST-PR-13-1000

Table 31: MPI Tools Ecosystem

No. Question and Responses

43 Are there any MPI-related improvements you’d like to see for debuggers and other
"correctness" tools? (text)

AD: Better Scalability; Handlers that can call out to monitoring tools outside batch system. "Mpi"
core file for offline replay within debug tools; No; OUR PROJECT IS STILL IN START UP
MODE. I ANTICIPATE DEBUGGING CODES WITH MIXED PROGRAMMING MODELS
(MPI, OPENMP, LEGION) WILL BE CHALLENGING FOR TOOLS; Race-condition analysis;
The tools we’ve tried tended to give access to either too little or too much detail to be useful;
better resolution for tracking message sizes; mipP give information about collective and
reduction operations;

ST: Better scalability; no opinion; no;
44 Are there any MPI-related improvements you’d like to see for performance tools?

(text)
AD: Better Scalability; It would be useful to break out time in the MPI library from the time on
the wire to understand where the performance is being lost; Mpi reduction for user profiling
tools; No; SCALABILITY; The tools we’ve tried tended to give access to either too little or
too much detail to be useful; upgrade to mpiP;

ST: Better scalability; I liked MPE+ jumpshot, but it doesn’t work anymore. Other tools are too
complicated to use; ability to analyze time messages spend in each state; autotuning in MPI-T
is planned; no;

45 Are you using the MPI Profiling Interface for anything other than running perfor-
mance analysis tools? If so, please briefly describe your use. (text)

AD: extract communication matrix (process I send total of X messages, Y bytes to process J) for
use in topology aware mapping; no; no; no; no;

ST: Capturing MPI traces to feed into external simulation tools; Darshan; ReMPI (MPI record-
and-replay) and NINJA (Noise Injection agent tool) use PMPI for debugging; no; no; no;

47 Which particular types of internal MPI information would you find useful? (multi-
ple+text)
Function call time
Load balance
Memory use
Message queue information
Network counters
Other
AD: If different algorithms are used depending on message size; More detailed access to wait
time information; Note its not clear how useful the queue information or network counters
would be. They might be useful, but for now we consider this a research topic that needs to be
investigated with the hardware vendors and they are not always exposing useful information
from an application viewpoint;

ST: MPI-IO two-phase aggregator locality; communications between processes and the aggregators;
Match list walk times; time spent in states;

Exascale Computing Project (ECP) 35 STPM13-1/ST-PR-13-1000

Table 32: Resilience

No. Question and Responses

53 How do you plan to make your application fault tolerant? (single+text)
AD: CHECKPOINT/RESTART PLUS RESEARCH INTO LEGION PROGRAMMING SYS-
TEM PERSISTENCE AND RESILIENCE; In addition to checkpoint/restart, we will be
incorporating task based management and hope to have some handling at that level; Some
functionalities use checkpoint. Others will follow; Provided the runtime does not kill us and
basic MPI reinit is possible to adjust communicators etc. we can be fully fault tolerant; We are
hoping that MPI FT features will emerge that we can use. We currently use checkpoint/restart;
We are looking at ULFM;

ST: I plan to not use MPI; I plan to not use MPI; Looking into calculating checksums to provide
end-to-end integrity of data between memory and storage; SZ will run inside an application
that may have its own fault tolerance; Task-based rollback/recovery and task-based replication;
This is a post-processing library, which we hope evolves into an in-situ capability, but how
we will deal with fault tolerence is unclear at this time; Treat as proper distributed systems
with group membership, etc.; We are exploring several fault tolerance approaches: local-failure,
local-recovery; "skeptical" programming, selective reliability; checkpoint/restart for now, but
we would like more tools...; not yet clear what fault tolerance mechanism(s) will be needed;

Exascale Computing Project (ECP) 36 STPM13-1/ST-PR-13-1000

Table 33: Other Programming Models

No. Question and Responses

56 Do you use any other programming models (node-level or global) along side MPI
(i.e. both are active at the same time), currently or in your "exascale" version?
(multiple+text)

AD: CUDA (Thrust); CUDA Fortran and OpenACC; CUDA; CUDA; OpenACC (currently);
OpenACC; Swift; THRUST/AGENCY; none; none; paRSEC is in progress/planned;

ST: Argobots; CUDA, OpenACC; DARMA/Charm++; DARMA; May be Pthread at some point;
Mercury Suite; Mercury Suite; OCCA; TBB, CUDA; none; none;

57 If you already have tried to combine MPI with task-based programming models, please
comment on your experience to date. What works and doesn’t work? What needs to change
on the MPI side to make it better? (text)
AD: CURRENTLY WE ARE USING BLOCK SYNCHRONOUS HANDOFF BETWEEN
LEGION AND MPI. THREAD SAFETY SEEMS TO BE THE MPI FEATURE THAT
WOULD HELP US MOST; No; OK; We had good success so far. Would be nice to be able to
run efficiently with THREAD_MULTIPLE to parallelize event handling; Yes, Swift supports
multiple MPI task configurations; in plan, but not yet executed;

ST: no trouble using OpenMP tasks with MPI; Very messy. More like stop one programming
model world and switch to another than back again. Slow. Error prone. Difficult to code;
We use OpenMP tasks, but MPI calls are done outside the OpenMP parallel region. So no
issues there; QUARK+MPI (MPI seems to do better job overlapping/pipelining); We have
Legion/MPI interoperability working. We are experimenting with various node-level runtimes
(OpenMP, Kokkos, C++17, etc.); Performance is difficult to achieve. It is hard to get MPI to
make progress while asynchronous tasks are executing; So far this has worked reasonably well
for strong-scaling as the number of threads increases, but only if there is a sufficiently large
amount of data (most of our data access is of BLAS level 1 type). That said, we rarely notice
any instance where MPI+Threads outperforms MPI-only parallelism; This is a HUGE problem
for us. Right now there is no mechanism to manage what CPU/GPU resources our application
should use with a given launch of an MPI job. Setting up the OpenMP configuration, for
example, to execute each MPI processes in its own NUMA domain is a huge heartache. And
then when that gets combined with a library using a different programming model like TBB,
which happens frequently for us, things get even worse. Likewise, if we are using a system with
multiple GPUs on a node, it is very difficult to manage which GPU each MPI process should
use. What our applications desperately need is a library (either built into MPI or separate)
that allow users to launch MPI jobs with simpler high level options (e.g. 1 MPI process per
GPU or 4 MPI processes per CPU processor) and then either automatically set up resources or
at least provide a query mechanism to get the appropriate parameters for each programming
model (e.g. set up CUDA to use the GPU assigned to my rank or set up OpenMP to run
threads in my quadrant of a KNL processor); There are many gotchas and pitfalls that need
to be avoided. A more integrated solution for interoperability is desired. Better methods for
avoiding resource oversubscription and undersubscription are needed;

Exascale Computing Project (ECP) 37 STPM13-1/ST-PR-13-1000

Table 34: MPI with Threads

No. Question and Responses

60 Would you prefer to be using a different MPI threading option? If so, which one, and
what forced your current choice? (text)

AD: MPI_THREAD_MULTIPLE would be better especially for overlapping computation
and communication; Mpi threaded is a better fit but performance is not robust; THREAD
MULTIPLE WOULD BE GREAT, BUT WE CAN DEAL WITH A MORE LIMITED
MODEL IF IT PROVIDES PERFORMANCE AND INTEROPERABILITY; Want to be using
MPI_THREAD_MULTIPLE but it can be slow on some machines (Cray and Intel have good im-
plementations); We are exploring different options; Would prefer MPI_THREAD_MULTIPLE.
But not using it because of poor performance; Would prefer MPI_THREAD_MULTIPLE.
But not using it because of poor performance; Would prefer MPI_THREAD_MULTIPLE;
we would be interested in trying mpi_thread_multiple; Right now threading is not in the
code, but is being added. The best method will be picked based on performance. With small
message Multiple would be the preference, but its not always performant; Depends on adopted
programming model; No;

ST: I would simply prefer that MPI_THREAD_MULTIPLE worked with non-blocking collectives;
I would simply prefer that MPI_THREAD_MULTIPLE worked with non-blocking collectives;
MPI_THREAD_MULTIPLE or a suitable replacement; MPI_THREAD_MULTIPLE would
be better. We currently use independent parallel POSIX I/O. We expect to rework this to
use MPI I/O with MPI_File_write_at. An individual thread processing a profile would call
this; MPI_THREAD_MULTIPLE would be preferred. But only if it becomes standard on
all supercomputers; MPI_THREAD_MULTIPLE; MPI_THREAD_MULTIPLE would be
interesting to look at. Current version of the code funnels all communications to a dedicated
thread; Thread multiple was preferred but forced by performance to funnel; We sometimes run
with MPI_THREAD_MULTIPLE because it is required by PTScotch, when configured to
use pthreads; Presently, the SUNDIALS-specific portion of applications does not "mix" MPI
and OpenMP in any complex manner. However, we’d prefer that the MPI library support
MPI_THREAD_MULTIPLE, since we want to support the widest variety of applications as
possible; We don’t care too much, but want something that gives performance; not currently
using MPI for threading. Using OpenMP, OpenACC and CUDA;

Exascale Computing Project (ECP) 38 STPM13-1/ST-PR-13-1000

	Executive Summary
	List of Tables
	Introduction
	Motivation
	Overview of Survey
	Survey Results
	Application Demographics
	Basic Performance Characterization
	MPI Usage Patterns
	MPI Tools Ecosystem
	Memory Hierarchy Details
	Accelerator Details
	Resilience
	Use of Other Programming Models
	MPI with Threads

	Conclusions
	Complete Survey Questions
	Raw Free Text Responses

