
UC Irvine
UC Irvine Previously Published Works

Title
Divisible load scheduling of image processing applications on the heterogeneous star and 
tree networks using a new genetic algorithm

Permalink
https://escholarship.org/uc/item/70c01656

Journal
Concurrency and Computation Practice and Experience, 32(10)

ISSN
1532-0626

Authors
Aali, Sahar Nikbakht
Bagherzadeh, Nader

Publication Date
2020-05-25

DOI
10.1002/cpe.5498
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/70c01656
https://escholarship.org
http://www.cdlib.org/


Received: 25 August 2018 Revised: 22 July 2019 Accepted: 27 July 2019

DOI: 10.1002/cpe.5498

S P E C I A L I S S U E P A P E R

Divisible load scheduling of image processing applications
on the heterogeneous star and tree networks using
a new genetic algorithm

Sahar Nikbakht Aali Nader Bagherzadeh

University of California, Irvine, Irvine, California

Correspondence

Sahar Nikbakht Aali, University of California,

Irvine, Irvine, CA 92697.

Email: snaali@uci.edu

Summary

The divisible load scheduling of image processing applications on the heterogeneous star

and multi-level tree networks is addressed in this paper. In our platforms, processors and

network links have different speeds. In addition, computation and communication overheads

are considered. A new genetic algorithm for minimizing the processing time of low-level image

applications using divisible load theory is introduced. The closed-form solution for the processing

time, the image fractions that should be allocated to each processor, the optimum number of

participating processors, and the optimal sequence for load distribution are derived. The new

concept of equivalent processor in tree network is introduced and the effect of different image

and kernel sizes on processing time and speed up are investigated. Finally, to indicate the

efficiency of our algorithm, several numerical experiments are presented.

KEYWORDS

divisible load scheduling, equivalent processor, genetic algorithm, image fractions, load

distribution sequence, local operation

1 INTRODUCTION

Divisible load scheduling is a special class of data parallelization methods that can be used in those applications that are divided into any number

of independent fractions. These fractions can be processed in parallel on different processors. Big dataset processing, matrix computation, signal

and image processing, Hough transform, and experimental data processing are examples of these applications. Divisible Load Scheduling (DLS)

has been studied extensively in the last two decades because of its simplicity and analytical tractability.1

Image processing applications need extensive computational power that cannot be provided by one processor.2 DLS is a good option for

exploiting data parallelism in image applications3,4 because most image processing applications are divisible in nature. There are three kinds of

operations in image processing, ie, pixel operations in which each pixel can be processed independently; local operations, which are most common

operators in image application, and the value of each output pixel is a function of the value of that pixel plus some neighboring pixels; and global

operators that need the information of the whole image to process the value of one pixel. Pixel and local operations are good candidates for data

parallelism. In this paper, we focus on local operators, as the most common operators in image applications.

We consider the star and tree networks as the target platforms. In these networks, the master processor holds the entire image and the kernel.

It does not participate in image processing and just partitions the workload and distributes it to other slave processors. In a star topology, slave

processors begin to compute their image fractions after receiving their workload from the master processor completely. Parent nodes in tree

topology have the capability of computing and communicating at the same time. They are equipped with front-end processors in our model.

The objective of using DLS for data parallelism in image applications in our model is minimizing the processing time which is the most common

criterion in related papers. It has been proved that AFS policy (where All nodes Finish Simultaneously) is the necessary and sufficient condition to

obtain the minimum processing time in heterogeneous bus and star networks.5 It implies that, if the load is distributed in a way that all processors

finish their process at the same time, then the optimum scheduling is achieved. By introducing a new concept of equivalent processor in the

multi-level tree, we obtain the same result for tree topology.

Concurrency Computat Pract Exper. 2019;e5498. wileyonlinelibrary.com/journal/cpe © 2019 John Wiley & Sons, Ltd. 1 of 15

https://doi.org/10.1002/cpe.5498

https://doi.org/10.1002/cpe.5498
https://orcid.org/0000-0003-3126-591X


2 of 15 NIKBAKHT AALI AND BAGHERZADEH

The homogenous architectures were considered in the first studies of DLS. Bharadwaj et al6 used divisible load scheduling on the bus network.

They obtained the closed-form expression, the optimal processing time and the workload fractions for slave processors. Then the DLS theory

was applied to other platforms such as star, multi-level tree7,8 and linear networks. Different cost models and distribution algorithms for star

and tree topologies were introduced9,10 and multi-objective methods for scheduling workload on tree topology were presented.7 The cheating

problem in scheduling was considered in the work of Ghanbari and Othman.11 It was shown that adaptive methods decrease communication

and computation cheating-rate considerably. In the work of Chen,12 it was proved that the communication and computation overheads have

significant effects on the processing time and these parameters need to be considered for achieving more accurate results. In the work of

Wang et al,13 the effect of other parameters such as release time was considered. It has been proven in the work of Veeravalli et al14 that it

is not necessary that all processors participate in processing and adding more processors will not always increase the processing time. There

is an optimum number for participating processors that give the minimum processing time. Moreover, it has been indicated that the order of

load distribution to slave processors can affect the processing time considerably and there is an optimum sequence of load distributing that

will reduce the processing time significantly.5 In the work of Mingsheng,15 it was proved that the optimum processing time without considering

computation and communication overheads is independent of the sequence of load distribution. It has been shown that by considering different

speeds for communication links, the non-decreasing order of communication speeds gives the minimum processing time in a star network.16 In

the work of Suresh et al,17 the influence of constant start-up overhead on processing time for bus network with the same communication speeds

was considered. It was proved that the non-decreasing order of computation speed is the optimum sequence for decreasing the processing time.

It was indicated in the work of Bharadwaj et al16 that, by considering different values for communication overheads and omitting computation

overheads, the optimum sequence will be dependent on both computation and communication speeds. A new solution for distribution of

divisible nonlinear workload on the heterogeneous star topology was introduced in the work of Chen and Chu18 and the optimum number of

slave processors and the number of installments were obtained. In the work of Wang et al,19 a genetic algorithm for allocating a large-scale

astronomical load to the heterogeneous processors was introduced. This proposed strategy decreases the processing time significantly.

To use a more realistic model, we consider different communication and computation overheads in our heterogeneous platforms. To the best

of our knowledge, finding the optimal sequence for load distribution by considering different values for computation and communication speeds

and various values of computation and communication overheads is still a challenging problem.

In this paper, first, a closed-form solution for obtaining the optimum processing time, the number of image fractions that will be assigned to

each processor, and the number of participating processors is presented. Then, the amount of additional pixels that each processor needs to

compute its load fraction is obtained. In order to represent the entire multi-level tree as a star topology, a new concept of equivalent processor

is introduced as well. A new genetic algorithm is introduced to find the optimal load sequence for workload distribution and, finally, the influence

of kernel size on processing time and speed up is investigated.

The rest of this paper is arranged as follows. The problem definition and some notations and remarks are presented in Section 2. Section 3

indicates the new genetic algorithm for obtaining the optimum sequence of load distribution. The experimental results for verifying the

effectiveness of our algorithm in both networks are presented in Section 4. The conclusion of this paper and the future works are presented in

Section 5.

2 PROBLEM DEFINITION, NOTATIONS, AND CLOSED-FORM SOLUTION

2.1 System model of star topology

The first platform considered for data parallel processing of low-level image applications is the heterogeneous star topology, which is denoted by

S = (P,L,E,C). P = [P0, … , Pm] is the set of (m+1) processors. The entire image will be partitioned into different parts by master processors, P0, and

then these fractions will be assigned to slave processors based on load distribution order. P0 is only responsible for partitioning and allocating

workload to other slave processors and does not participate in load processing. L = [L1, … , Lm] is the set of communication links between master

and slave processors.E = [E1, … , Em] is the set of m computation parameters and C = [C1, … , Cm] is the set of m communication parameters of

links between master and slaves. Figure 1A shows a heterogeneous star topology with five processors. In the rest of this paper, the blocking mode

of communication is considered13 and a single-port and no-overlap model is followed by all the processors. In this model, the master processor

can communicate only with one slave processor at each time. Moreover, simultaneous communication and computation between processors are

not allowed.

2.2 System model of multi-level tree topology

The next topology is a heterogeneous multi-level tree network in which the load is passed through each level from the top of the tree to bottom.

This network consists of one master and a set of slave processors. Slave processors can be parents or leaves. A slave that has processors below

it is considered as a parent and otherwise is considered as a leaf processor. A 3-level tree network is depicted in Figure 1B. Like star topology,

the master does not compute any load fraction and it only partitions the load and allocates them to its children.



NIKBAKHT AALI AND BAGHERZADEH 3 of 15

E E

P

PPPP

L LL L

EE

(A) 

(B) 

SP SP

SP SP SPSP

SL SL

SL
SL SLSL

SP

SP

SL

SP
SP

FIGURE 1 A, A heterogeneous star network with five processors; B, A 3-level tree network with
eight processors

The parent nodes in multi-level tree topology have front-end processors, which means they can compute and communicate simultaneously.

Therefore, the no-overlap assumption that was considered for star network had to be changed slightly. This assumption for multi-level tree

network ensures that any concurrent communication between the immediate upper and lower level in the network by the same parent is not

possible. Therefore, the parent nodes can perform computation and communicate to only one of their children at a time. It is a single-port model,

so only one communication can occur between two processors at a time. It is possible that the intermediate stars, which are at the same level of

the tree solve their load in parallel, which can reduce the processing time.

The multi-level tree network is made up of n+1 star network S = [S0, … , Sn] and any star in this topology, Sk ∈ S, 0 ≤ k ≤ n has mSk
+ 1

processors. The system parameters for star topology are introduced in the previous section. PS0

0
is the master processor in tree network, which

just schedules image fractions to its children in the first level. Parent nodes (excluding the master) are given two different labels, PSk

0
, which is a

parent node in the star network; Sk, 1 ≤ k ≤ n could be a child node in the star network Sj, j ≠ k, j < k (as shown in Figure 1B). Each node in star

network Sk, 0 ≤ k ≤ n is denoted by PSk

i
,1 ≤ i ≤ mSk

.

LSk = [LSk

1
, … , LSk

mSk
],0 ≤ k ≤ n is the set of links that connect each parent processor in star Sk to its children. The computation and

communication parameters for each star topology will be equal to ESk = [ESk

1
, … ,ESk

mSk
] and CSk = [CSk

1
, … ,CSk

mSk
], respectively.

2.3 Image partitioning

Using data parallelism in the processing of low-level image applications is a good option to reduce the processing time considerably, but the

only obstacle in using data parallelism in different heterogeneous topologies is the dependency between image partitions. By partitioning the

image into different fractions and allocating them to each processor, each processing element needs additional pixels from the neighboring

processors to compute its fraction. These additional pixels will be prepared for individual processors in two different ways. In the first method,

the neighboring processors can exchange the additional pixels simultaneously at computation phase and, in the second method, which is more

common, the required data will be assigned to individual processors at the beginning of the computation phase. As mentioned before, in our

model, only two processors can communicate with each other at a time, so the additional data is prepared at the initial communication phase and

before computation. Thus, the processors do not need to communicate to each other during the computation phase.

To exploit data parallelism in image processing applications, at first, the image is partitioned into different blocks, and then the appropriate

number of these blocks will be assigned to processors. There are different methods for image partitioning in the literature such as column, raw,

block, column-cyclic, row-cyclic, and block-cyclic.3 The number of additional pixels that should be assigned to individual processors is based on

the method of partitioning and kernel size.

The kernel is a small matrix applied to each pixel and its neighbors in the most of low-level image applications. These kinds of applications

are based on a convolution of the image with a kernel with dimension M × M. It is the process of adding each value of image pixels to its local

neighbors, weighted by the kernel. A kernel operates on the pixel's values to construct a new image, which is dependent upon the kind of kernel.

We suppose that the values of the kernel are transmitted by the master processors to other processors along with the required date since they

need them to compute their workload.



4 of 15 NIKBAKHT AALI AND BAGHERZADEH

2.4 Closed-form solution for optimum scheduling

The closed-form solutions for star and tree networks are presented in this section. The timing diagrams by considering a fixed sequence of load

distribution for star and tree networks are depicted in Figure 2A and 2B, respectively. By considering the timing diagram, a closed-form expression

for optimal scheduling of the local operators of image processing applications and the number of image blocks that should be allocated to each

processor will be obtained. Some notations that will be used in the rest of this paper are introduced next:

N1 × N2 Size of the two-dimensional image;

M × M Size of the Kernel;

αi, α
Sk

i
Partition of the image assigned to Pi and PSk

i
;

Δ Number of required additional pixels;

Ci,CSk

i
The inverse of communication speed of Li and LSk

i
;

Ei,ESk

i
The inverse of computation speed of Pi and PSk

i
;

Zi,ZSk

i
Computation overhead parameter, which consists of all delays during the computation phase;

Oi,OSk

i
Communication overhead parameter, which consists of all delays during the communication phase.

Star network:

Figure 2A presents two different phases, the communication phase between master and slave processors and the computation phase of each

slave processor. Each slave processor starts to compute its image fraction right after receiving its load completely from the master processor.

The master processor takes the responsibility of partitioning the image with dimensions N1 × N2 into m parts and distributing them to slave

processors (according to the distribution order). The master processor also provides the required pixels and kernel to all the slave processors.

Thus, the slave processors do not need to communicate to each other during the computation time.

Table 1 shows the required additional pixels, Δ, for each processor based on different ways of image partitioning. In the rest of this paper, the

column partitioning method in which each image block consists of a number of image columns is considered. α = [α1, … , αm],1 ≤ αi ≤ N2 is the load

distribution vector and
∑m

i=1 αi = N2 is the normalization equation. The kernel is transmitted to all processors by the master at the communication

phase. N1αi is used to show the number of pixels that will be assigned to processor Pi. For example, consider N1 × N2 = 1024 × 1000 and αi = 20,

so the number of pixels that will be computed by Pi is 20 × 1024.

A linear model for computation and communication times is considered. This model is a very common and proven model in most of the DLS

literature13 and the results obtained from this model can be extended to other cost models as well. In this model, the communication time is

proportional to the amount of workload that is carried by the network links. This workload consists of image blocks, kernel pixels, additional data,

and communication overhead (such as start-up delay). Thus, the communication time is given by (N1αi + M2 +Δ)Ci+Oi.

The computation time is proportional to the amount of workload assigned to slave processors. A single local operation on a pixel involving

all the M2 neighboring pixels and it needs M2 multiplications to compute each pixel. Thus, processor Pi needs M2N1αiEi time units to process

FIGURE 2 Timing diagram for image divisible load processing on (A)
heterogonous star network and (B) tree-level network presented
Figure 1B (B) 

(A) 



NIKBAKHT AALI AND BAGHERZADEH 5 of 15

Image partitioning methods 𝚫
Row Partitioning N2(M - 1)

Column Partitioning N1(M - 1)

Block partitioning (M - 1)(b1+b2)+(M - 1)2

Block size:b1 × b2

Mod(N1/b1) = 0

Mod(N2/b2) = 0

Row-Cyclic Partitioning N1

bp
((M-1) -N2)

Blocking factor: p

Column-Cyclic Partitioning N2

bp
((M-1) -N1)

Blocking factor: p

Block-Cyclic Partitioning N1 N2

b1 b2 p

(
(M-1) (b1 + b2) + (M-1)2

)
Block size: b1 × b2

Blocking factor: p

TABLE 1 The required additional pixels for different types of image
partitioning

one image partition αi on processor Pi. Therefore, the computation time is equal to this value plus the computation overhead, which includes all

delays in the computation phase, such as start-up overhead. The computation time is given by M2N1αiEi+Zi.

From Figure 2, the communication time of Pi is equal to the communication and computation time of Pi+1 such as

M2N1αiEi + Zi =
(

N1αi+1 + M2 + Δ
)

Ci+1 + Oi+1 + M2N1αi+1Ei+1 + Zi+1. (1)

Therefore,

αi = αi+1Fi + Hi, (2)

where

Fi =
(

N1Ci+1 + M2N1Ei+1

)
M2N1Ei

,Hi =
(

M2 + Δ
)

Ci+1 + Oi+1 + Zi+1-Zi

M2N1Ei

. (3)

If we consider the normalization equation,
∑m

i=1 αi = N2 and Equation (2), we will have m variables in m equations, so each workload for

slave processors will be obtained. By considering these two equations, the workload of the last processor, Pm, and other slave processors αi,

1 ≤ i ≤ m - 1 will be obtained

αm =
N2-

m-1∑
i=1

Gi

1 +
m-1∑
i=1

Qi

(4)

αi = αm

m-1∏
j=i

Fj + Gi, (5)

where

Qi =
m-1∏
j=i

Fj , Gi =
m-1∑
k=i

Hk

(
k∏

j=i+1

Fj-1

)
. (6)

With substituting Equation (4) in (5), different workload fractions for each individual processor is obtained. According to Figure 2A, the

processing time, T(α, m), is equal to the communication and computation time of the first slave processor. Thus, it is denoted by Equation (7)

T (α,m) =
(

N1α1 + M2 + Δ
)

C1 + O1 + M2N1α1E1 + Z1. (7)

Using i = 1 in Equation (5), we will have

T (α,m) =

(
αm

m-1∏
j=1

Fj + G1

)(
N1C1 + M2N1E1

)
+
(

M2 + Δ
)

C1 + O1 + Z1, (8)

where αm, G1 and Fj are defined before.

In Equation (4), αm is the last image partition that is allocated to the last processor. This value is greater than zero, otherwise adding more

processors does not reduce the processing time. Thus, the necessary and sufficient condition to obtain an Optimum Number of Processors (ONP) is

m-1∑
i=1

Gi ≤ N2. (9)



6 of 15 NIKBAKHT AALI AND BAGHERZADEH

FIGURE 3 (A) ONP factor and (B) the processing time for different
number of processors

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Number of Processors

Im
ag

e 
co

lu
m

ns

m=16

2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4
x 104

Number of Processors

P
ro

ce
ss

in
g 

T
im

e

minimum processing time

(A) 

(B) 

For N2 = 520, the ONP factor,
∑m-1

i=1 Gi, for different numbers of processors is illustrated in Figure 3A. Clearly, for m = 16, the overhead factor

is equal to the number of image columns and as shown in Figure 3B, with this number of processors, the minimum processing time is achieved.

Adding more processors cannot reduce the processing time.

Multi-Level Tree Network:

Proposition 1. There is an optimal solution for scheduling divisible load on the heterogeneous multi-level tree network, in which all the slave

processors finish computation tasks simultaneously.

Proof. Proposition 1 has been proven for bus and star topologies.12-16 To prove it for the tree network, the concept of equivalent processor,

which presents every star network of multi-level tree topology as one processing node, is used. By replacing star topologies Sk,1 ≤ k ≤ n,

in tree network with one equivalent processor, the single level tree is obtained and all the results from the previous section are applied to

the multi-level tree network. As it was mentioned before, the order of load distribution can reduce the processing time significantly. In the

simulation results, it will be shown that the communication speed of processors has a considerable effect on processing time. Therefore, by

introducing the following equivalent processor, we keep the order of load distribution based on communication speed. To the best of our

knowledge, obtaining an equivalent processor for heterogeneous multi-level tree network by considering computation and communication

latencies, is new. The fixed sequence for load distribution in the network was assumed and, at each iteration, only two processors were

selected to combine.

This process begins from Sn star network in the multi-level tree and ends to S1. First, the initial two processors of star network Sn were

considered, and then these two processors are replaced by one equivalent processor. In the next iteration, the equivalent processor and next

processor (according to the load distribution order) were selected and this process was repeated until all processors in Sn were considered. At

the subsequent iteration, star network Sn - 1 was considered and, in the last step, a single level tree network will remain. The communication

and computation of the equivalent processor are obtained according to Figure 4. As it is clear, the processing time is equal to T (the optimal

processing time of Sk). Therefore, replacing two processors with one single processor does not change the processing time. In addition, the time



NIKBAKHT AALI AND BAGHERZADEH 7 of 15

FIGURE 4 Equivalent processor for two processors

spent on load allocation is unchanged. From Figure 4, the communication, computation, and overhead parameters of the equivalent processor

will be expressed as

CSk

i,i+1
=

CSk

i
CSk

i+1

(
1 + M2

(
ρSk

i
+ ρSk

i+1

))
CSk

i+1
+ M2

(
Esk

i
+ Esk

i+1

) , (10)

where ρSk

i
= E

sk
i

C
Sk
i

ESk

i,i+1
=

M2Esk

i
Esk

i+1

CSk

i+1
+ M2

(
Esk

i
+ Esk

i+1

) (11)

ZSk

i,i+1
= ZSk

i+1
, OSk

i,i+1
= OSk

i
+ OSk

i+1
. (12)

It can be verified that this representation of the equivalent processor keeps the order of best load distribution found by genetic algorithm

in each star. According to Figure 4, αSk

i
CSk

i
+ αSk

i+1
CSk

i+1
= N1 CSk

i,i+1
and αSk

i
+ αSk

i+1
= N2, so we will have αSk

i+1
(CSk

i+1
-CSk

i
) + N2CSk

i
= N2 CSk

i,i+1
. Since

by definition,1 ≤ αSk

i+1
≤ N2, it is clear that CSk

i
≤ CSk

i,i+1
≤ CSk

i+1
. It is indicated that, if we distribute the workload based on the communication

parameters, the value of communication parameter of the equivalent processor is between the communication values of two combined processors.

Similarly, from the definition of the equivalent processor in this model, ESk

i,i+1
=

αSk
i+1

E
Sk
i+1

N1
= M2αSk

i
E

Sk
i
−αSk

i
C

sk
i

M2 N1
. Since by definition 1 ≤ αSk

i
, αSk

i+1
≤ N2, it

follows that ESk

i,i+1
≤ ESk

i
,ESk

i+1
, which indicate the computation parameter of equivalent processor is less than two combined processors. Therefore,

the order of load distribution will remain unchanged.

The Gantt chart for obtaining the closed-form solution for multi-level tree network is presented in Figure 2B. Both phases are shown in this

figure. Each node receives the load fractions from its parent completely before beginning computation. Parent nodes begin computing their

fraction and communicating to one of their children at the same time.

The master allocates the image, the kernel, and additional pixels to all of its immediate children at level 1 and these children schedule parts of

their load to their children at level 2 and so on. This timing diagram is considered for a fixed sequence of load distribution in each star Sk,0 ≤ k ≤ n,

which is denoted by a vector, αSk = [αSk

1
, … , αSk

mSk
] such that 1 ≤ αSk

i
≤ N2 . Note that parent nodes parameters have two different labels, eg, in

Figure 2B, αS1

0
and αS0

1
are labels of the load allocated to PS1

0
(PS0

1
). The normalization equation for this network will be equal to

∑n
k=0

∑mSk

i=1
αSk

i
= N2.

As in the previous section, a linear model for computation and communication is considered. In the following, a closed-form model for multi-level

tree network regarding Figure 2B will be obtained.

The computation time of PSk

i
will be equal to the communication and computation time of PSk

i+1

M2N1α
Sk

i
ESk

i
+ ZSk

i
=
(

N1α
Sk

i+1
+ M2 + Δ

)
CSk

i+1
+ OSk

i+1

+ M2N1α
Sk

i+1
ESk

i+1
+ ZSk

i+1
, 0 ≤ k ≤ n,1 ≤ i ≤ mSk

,

(13)

and in each star network, Sk, 0 ≤ k ≤ n of multi-level tree, the computation time of the parent node is equal to the communication and computation

time of the first child

M2N1α
Sk

0
ESk

0
+ ZSk

0
=
(

N1α
Sk

1
+ M2 + Δ

)
CSk

1
+

OSk

1
+ M2N1α

Sk

1
ESk

1
+ ZSk

1
,1 ≤ k ≤ n.

(14)

Therefore,

αsk

i
= αsk

i+1
Fsk

i
+ Hsk

i
(15)

αsk

0
= αsk

1
Fsk

0
+ Hsk

0
. (16)

Fi and Hi for the star topology are defined before in Equation (3). These parameters are considered for each star network, Sk, 0 ≤ k ≤ n of

multi-level tree.



8 of 15 NIKBAKHT AALI AND BAGHERZADEH

First, the load allocated to the last processor in S0, PS0
mS0

, by considering Equation (15) and the normalization equation
∑n

k=0

∑mSk

i=1
αSk

i
= N2 is

achieved according to

αS0
mS0

=
N2-

mS0
-1∑

i=1
GS0

i

1 +
mS0

-1∑
i=1

QS0

i

. (17)

Then, the workload that need to be assigned to other processors in S0 will be achieved

αS0

i
= αS0

mS0
QS0

i
+ GS0

i
. (18)

Qi and Gi for the star network are defined before in Equation (6). At next step, the load scheduled to each processor from star S1to Sn can be

obtained through Equation (19). The parent nodes compute part of the load allocated to them and schedule other partitions to their children

αSk
mSk

=
αSk

0
-

mSk
-1∑

i=0
GSk

i

1 +
mSk

-1∑
i=1

QSk

i

(19)

αSk

i
= αSk

mSk
QSk

i
+ GSk

i
,0 ≤ i ≤ mSk

-1. (20)

According to Figure 2B, the processing time, T(α, m), is equal to the communication and computation time of the parent of the first star, PS1

0
,

and it will be expressed by Equation (21)

T (α,m) =
(

N1α
S0

1
+ M2 + Δ

)
CS0

1
+ OS0

1
+ M2N1α

S0

1
ES0

1
+ ZS0

1
. (21)

3 A NEW GENETIC ALGORITHM FOR DLS OF IMAGE APPLICATIONS (IDLS-GA)

The scheduling problem is one of the hardest optimization problems. It is mentioned before that in DLS, finding the optimum processing time by

considering different values for computation and communication speeds and overheads on the heterogeneous platforms is intractable.

The processing time of each image fraction in divisible load scheduling method onto heterogeneous topologies is dependent on a few

parameters including the number of participating processing elements, fraction of workload that allocated to individual processors, and the order

of load distribution. Thus, by finding the optimum sequence of load distribution, the optimum number of participating processors, as well as each

load fraction, will be obtained. A genetic algorithm could be a promising technique to find this sequence among all other sequences. Genetic

algorithms have been used in divisible load scheduling problems before.20-25 At first, we need to make some assumptions, ie, each chromosome

contains a load distribution sequence and each gene defines each participating processor. Only one instance of a processor should exist in

one chromosome and omission and duplication of processors are not allowed for an individual. The new genetic algorithm for finding the best

distribution order in a star network is described next.

First step is generation of the initial population. We consider N chromosomes as the initial population. Each chromosome defines a sequence

of load distribution. Ci = (ci
1
, ci

2
, … , ci

m),1 ≤ i ≤ N is a specified chromosome, in which each gene has a value between 1 and m. For example,

consider the platform in Figure 1A; one chromosome for this topology can be denoted as C = (3,4,2,1) . It shows that the first image fraction should

be scheduled to P3 and the second fraction to P4 and so on. After the creation of the initial population, we evaluate each individual of the initial

generation according to Algorithm 1.20 The fitness function selects the best sequences of load distribution for crossover and mutation operators.

The objective of the divisible load scheduling is considered as the evaluation criteria. This objective is minimizing the processing time according

to the timing diagram presented in Figure 2A. At this step, the processing time, load fractions for slave processors, and optimum numbers of

processors will be achieved. At the next step, the roulette wheel for selecting good parents among all sequences of the first population is used.

We give each individual a percentage fitness value equal to Ti(α,m)∑N
i=1 Ti(α,m)

, and then by using roulette wheels, the parents for the next section will

be selected. Roulette wheel gives good sequences more chance to remain in the next generation. It also gives the weak sequences a chance to

appear as parents, since sometimes reordering of these sequences by crossover and mutation operators leads to better sequences. Next, the

crossover operator is applied to selected chromosomes and reorders them to generate better sequences.

We choose parents with the probability of Pcros from chromosomes that are obtained as a result of roulette wheels. Different methods of

crossover have been introduced so far21,22; since we first assumed that there should not be any duplication or omission in each chromosome,

we have a limitation in our model. Thus, common crossover methods such as N-point crossover cannot be used here because each chromosome

presents a sequence of processors. Therefore, combination of two parents violates our first assumptions. At this situation, some processors can

appear twice or more and some of them can be omitted. To solve this problem, we use another way for generating offspring.



NIKBAKHT AALI AND BAGHERZADEH 9 of 15

Most of the chromosomes that have been selected as parents for crossover operators are appropriate sequences based on our objective

function. Therefore, to keep the order of good genes, a new method for generating offspring is described in Algorithm 2.20 In this method, two

parents, Cj and Ck,1 ≤ j, k ≤ N,j ≠ k, are selected randomly. The optimum number of processors in each of them is J and K, respectively. A weight

value is assigned to each processor in a chromosome. This value is proportional to the order of processors in an individual. These weight values

are from m to 1. As it is clear in Figure 3, the initial processors have to compute more image fractions in comparison to others. If one considers

the first processor, its computation time is equal to the communication and computation time of the second processor, which indicates this

processor computes more load in comparison with others. Thus, the role of these processing elements in computing workload is more important

than others and more weight value need to be assigned to them. We clarify our method by using an example.

Consider Ci = (4,1,3,7,5),Cj = (4,3,1,2,7,5,8) and m = 8. The number of participating processors in Ci and Cj is 5 and 7, respectively. The weight

assigned to P1 to P8 in Ci and Cj are (7,0,6,8,4,0,5,0) and (6,5,7,8,3,0,4,2), respectively. In Ci, the first load is assigned to P4. Therefore, it has the

most weight value and, since P5 computes the last partition of the workload, it has the lowest weight value. The weight value is assigned to each

processor according to its workload.

By taking their sum and sorting them in the decreasing order, we will have (P4, P1, P3, P7, P5, P2, P8, P6). Therefore, the new sequence is given

by (4,1,3,7,5,2,8,6). The offspring keep the distribution order of their parents. At the next step, the individuals with probability Pmut from previous

offspring will be selected according to Algorithm 3.20 In this step, two genes are randomly selected in each chromosome and evaluated by the

fitness function; if the resulted processing time is less than the one without mutation, the new offspring will be retained for the next step.

Otherwise, two other genes are chosen for repeating the process until local optimum is reached.



10 of 15 NIKBAKHT AALI AND BAGHERZADEH

At the last step, the N best chromosomes from the set of initial population, offspring resulted from crossover operator, and sequences obtained

from mutation operator are selected to generate the next population. This process will be continued until the termination condition has reached.

At this step, the best sequence for load distribution will be obtained. This chromosome gives the minimum processing time of scheduling of local

image operators onto the mentioned platforms. If the termination condition is not satisfied, then we need to back to the third step, using the

roulette wheel again to select the parents for crossover operator.

Using a genetic algorithm to find the best sequence for load distribution on a multi-level tree network is similar to the star topology. The

process of the proposed genetic algorithm on tree topology is presented next.

1. Generation of the initial population: randomly generate N chromosomes denoted by Ci = (CS0

1
, … ,CS0

mS0
,CS1

1
, … ,CSn

mSn
). Every processor in

each star is considered once from S0 to Sn in each chromosome. t = 0 is the generation number.

2. Evaluation: the chromosomes generated in Step 1 are evaluated based on their processing time. Algorithm 1 will be considered for every star

network Sk,1 ≤ k ≤ n in a multi-level tree. For each sequence of load distribution, two processors, as described before, will be replaced by one

equivalent processor and the processing time will be obtained for tree network.

3. Roulette wheel: some parents based on the fitness value will be selected for the next steps. Although, this step gives sequences with lower

processing time more chance to appear in the next step, other sequences will still have a chance to participate in the crossover step.

4. Crossover: parents with probability Pcros from the population of Step 3 will be selected. A new offspring will be generated according to the

importance of processors. A weight value is allocated to each gene based on its workload. In this new way, there is more chance that good

genes will be appeared in the offspring. A new set of population is formed by the resulted offspring, expressed by Ncros.

5. Mutation: parents with probability Pmut will be selected from Ncros. For generation of the better sequences, the values of the two genes will

be exchanged. The mutation operator is applied to each parent and generates new offspring denoted by Nmut.

6. Selection: The best chromosomes from N ∪ Ncros ∪ Nmut, the initial population, and sequences from resulted crossover and mutation,

respectively, are maintained for the next generation, t = 1.

7. Termination criteria: If the stop condition holds, the best sequence for load distribution should be maintained as the optimal solution;

otherwise, we should back to Step 3.

4 SIMULATION RESULTS AND ANALYSIS

The efficiency of our previous results will be investigated with several simulation experiments in this section. Figure 5 presents the effects of

different kernel sizes on the processing time and the speed up for different numbers of processors on star and three-level tree networks. For this

experiment, we consider N1 × N2 = 520 and the parameters that are used for the platforms were given by Mingsheng.15

The effects of using different kernel sizes on the processing time in star and tree networks are shown in Figures 5A and 5B, respectively.

Results show that, by increasing the kernel size, the processing time will increase as well. Clearly, when we increase the size of kernel, the number

of multiplications that each individual processor needs to compute its fraction will increase as well, which leads to increasing the computational

time. As it is shown in these figures, the kernel size has more effects on the processing time when a fewer number of processors are considered.

Moreover, it is shown that by using larger kernel sizes, adding more processors can reduce the processing time considerably in comparison to

smaller kernel sizes.

By increasing the size of kernel, the ratio of computation time to communication time will increase too. This leads to an increase in the

computational demand. The effect of kernel size on speed up for different number processors is depicted in Figure 5C. Speed up is equal to the



NIKBAKHT AALI AND BAGHERZADEH 11 of 15

x 104

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 104

Number of Processors

P
ro

ce
ss

in
g 

T
im

e

M=1
M=3
M=5
M=7
M=9

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

Number of Processors

S
pe

ed
up

(B) 

(A) 

(C) 

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Processors

P
ro

ce
ss

in
g 

T
im

e

M=1
M=3
M=5
M=7
M=9

FIGURE 5 Effect of different kernel sizes on (A) processing time for
different numbers of processors on star and (B) tree networks and
(C) speed up for different numbers of processors on star topology

ratio of processing time using one processor to processing time using m processors and it is given by

S = N1N2M2E
T (α,m)

. (22)

It is clear in Figure 5C that, when the kernel size increases, speed up will increase as well. In addition, speed up increases for larger kernel sizes

in comparison to smaller ones. The larger kernel sizes are more dependent on the number of processors.

Based on our knowledge, there is not an optimal method for divisible load scheduling of a constant workload in an arbitrary time onto a

heterogeneous topology by considering different values for computation and communication overheads. Since the order of load distribution has

a considerable effect on the processing time, we use the genetic algorithm to obtain the best order of load distribution. Most of the parameters



12 of 15 NIKBAKHT AALI AND BAGHERZADEH

used in our simulation were given by Mingsheng.15 Other parameters are as follows: N1 = [100, … , 1000], M = 3, N = 100, Pcros = 0.6, Pmut = 0.02,

and stop criterion t = 1500. To reduce the search space, 100 chromosomes are considered as the initial population and, by using roulette wheels

method, we have tried to reduce the number of generations also.

The performance of our new algorithm is compared with three well-known algorithms in this area. IC, IE, and ICE indicate the algorithms

in which the workload is distributed in a non-decreasing order of Ci,13 non-decreasing order of Ei
14 and non-decreasing order of Ei × Ci,15

respectively. IDLS-GA (Image Divisible Load Scheduling by Genetic Algorithm) indicates our new algorithm. These algorithms were selected

because they are dependent on the communication time, computation time, and both of them, respectively. IDLS-GA can be dependent on all

the parameters, so finding the optimum sequence for load distribution is a complex issue and cannot be obtained by common methods of load

allocations. In addition, by comparing the new algorithms to these methods, the effectiveness of our algorithms will be verified.

FIGURE 6 The processing time difference between IDLS-GA and (A) IE, (B) ICE,
and (C) IC on star network

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18
x 104

N1
Pr

oc
es

si
ng

 T
im

e 
D

if
fe

re
re

nc
e

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 104

N1

Pr
oc

es
si

ng
 T

im
e 

D
if

fe
re

re
nc

e

0 200 400 600 800 1000
0

20

40

60

80

100

120

N1

P
ro

ce
ss

in
g
 T

im
e 

D
if

fe
re

re
n
ce

(A) 

(B) 

(C) 



NIKBAKHT AALI AND BAGHERZADEH 13 of 15

The processing time difference between the IDLS-GA and the other three algorithms for star topology is presented in Figure 6. In Figure 6A, the

time differences between IDLS-GA and IE is presented and this difference is considerable. Clearly, by increasing the number of image columns,

the processing time difference between the two algorithms will increase as well. The time difference between IDLS-GA and ICE is depicted in

Figure 6B. The results show that the processing time difference between these two algorithms is significant and, by increasing the workload, this

value will increase as well. Obviously, the time difference between ICE and IDLS-GA is less than IDLS-GA and IE. This shows that the influence

of communication speed of links on the processing time in such heterogeneous platforms is significant. The time difference between IC and our

new algorithm is presented in Figure 6C. The new algorithm has lower processing time in comparison with IC, especially for smaller images. By

increasing the number of image columns, the time difference between these two algorithms decreases. This result shows that, when we use

a large image, the decreasing order of communication speeds is the best sequence. Thus, if the load is distributed according to this order, the

minimum processing time will be obtained.

(B) 

(A) 

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

N1

Pr
oc

es
si

ng
 T

im
e 

D
if

fe
re

nc
e

(C) 

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3 x 10

N1

Pr
oc

es
si

ng
 T

im
e 

D
if

fe
re

nc
e

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9 x 104

N1

Pr
oc

es
si

ng
 T

im
e 

D
if

fe
re

nc
e

FIGURE 7 The processing time difference between IDLS-GA and (A) IE,
(B) ICE, and (C) IC on 3-level tree network



14 of 15 NIKBAKHT AALI AND BAGHERZADEH

Similarly, the performance of our algorithm is compared with IE, ICE, and IC for three-level tree network in Figure 7A to 7C, respectively.

IDLS-GA performs better than others, especially for large images. The processing time difference between the new algorithm and IE is considerable

which shows distributing load according to the computation parameter on the mentioned platform leads to more processing time. The new

algorithm outperforms the ICE as well according to Figure 7B. The time difference between IDLS and IC in Figure 7C is less considerable for large

images. Therefore, IDLS-GA outperforms other three algorithms by finding optimum order of load distribution. Moreover, the results show that

the new algorithm has better performance on the multi-level tree platform in comparison with the star network. The processing time difference

between the new algorithm and IE, ICE, and IC algorithms is more on the three-level tree than on the star network.

5 CONCLUSION

In this paper, a new method for optimal scheduling of image processing applications on heterogeneous star and tree networks by using a genetic

algorithm has been developed. We use divisible load scheduling for exploiting data parallelism for local image operations on two platforms. In our

model, processors and communication links have different speeds and overheads. A closed-form solution for obtaining the processing time, the

number of image partitions that should be assigned to each processor, and the optimum number of processors was achieved. A new concept for

equivalent processor in order to keep the sequence of load distribution introduced.

A new genetic algorithm, IDLS-GA, was introduced to obtain an efficient sequence of load distribution. The effect of different kernel sizes on

processing time and speed up was investigated as well. The performance of our new algorithm on processing time was compared with three

common algorithms in this area. Results show that the new algorithm reduces the processing time considerably, especially on multi-level tree

topology.

The results indicate that, for large images, the performance of the new algorithm is relatively close to IC, which implies that if the workload is

large enough the load distribution sequence follows the decreasing order of communication speed.

ORCID

Sahar Nikbakht Aali https://orcid.org/0000-0003-3126-591X

REFERENCES

1. Ghanbari S, Othman M. Comprehensive review on divisible load theory: concepts, strategies, and approaches. Math Probl Eng. 2014;2014:1-13.

2. Lee C, Hamdi M. Parallel image processing applications on a network of workstations. Parallel Comput. 1995;21(1):137-160.

3. Bharadwaj V, Li X, Ko CC. Efficient partitioning and scheduling of computer vision and image processing data on bus networks using divisible load

analysis. Image Vis Comput. 2000;18(11):919-938.

4. Li X, Veeravalli B, Ko CC. Distributed image processing on a network of workstations. Int J Comput Appl. 2003;25(2):1-10.

5. Barlas GD. Collection-aware optimum sequencing of operations and closed-form folutions for the distribution of a divisible load on arbitrary processor

trees. IEEE Trans Parallel Distributed Syst. 1998;9(5):429-441.

6. Bharadwaj V, Ghose D, Robertazzi T. Divisible load theory: a new paradigm for load scheduling in distributed systems. Clust Comput. 2003;6(1):7-17.

7. Ghanbari S, Othman M, Baker M, Leong W. Multi-objective method for divisible load scheduling in multi-level tree network. Future Gener Comput

Syst. 2016;54:132-143.

8. Veeravalli B, Yao J. Divisible load scheduling strategies on distributed multi-level tree networks with communication delays and buffer constraints.

Comput Commun. 2004;27(1):93-110.

9. Beaumont O, Casanova H, Legrand A, Robert Y, Yang Y. Scheduling divisible loads on star and tree networks: results and open problems. IEEE Trans

Parallel Distributed Syst. 2005;16(3):207-218.

10. Beaumont O, Legrand A, Robert Y. Optimal algorithms for scheduling divisible workload on heterogeneous systems. In: Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS'03); 2003; Nice, France.

11. Ghanbari S, Othman M. Time cheating in divisible load scheduling: sensitivity analysis, results and open problems. Procedia Comput Sci.

2018;125:935-943.

12. Chen C-Y. Scheduling divisible loads on heterogeneous linear networks using pipelined communications. Paper presented at: 17th World Congress of

International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS); 2017; Otsu, Japan.

13. Wang X, Wang Y, Lai J. Divisible load scheduling for network-based computing systems with processor startup overheads and release times. Paper

presented at: 12th International Conference on Computational Intelligence and Security (CIS); 2016; Wuxi, China.

14. Veeravalli B, Li X, Ko CC. On the influence of start-up costs in scheduling divisible loads on bus networks. IEEE Trans Parallel Distrib Syst.

2000;11(12):1288-1305.

15. Mingsheng S. Optimal algorithm for scheduling large divisible workload on heterogeneous system. App Math Model. 2008;32(9):1682-1695.

16. Bharadwaj V, Ghose D, Mani V, Robertazzi TG. Scheduling Divisible Load in Parallel and Distributed Systems. Los Almitos, California: IEEE Computer

Society Press; 1996.

17. Suresh S, Mani V, Omkar SN. The effect of start-up delays in scheduling divisible load on bus networks: an alternate approach. Comput Math Appl.

2003;46(1-11):1545-1557.

18. Chen C-Y, Chu C-P. Divisible nonlinear load distribution on heterogeneous single-level trees. IEEE Trans Aerosp Electron Syst. 2018. In press.

19. Wang X, Veeravalli B, Rana O. An optimal task-scheduling strategy for large-scale astronomical workloads using in-transit computation model. Int J

Comput Intell Syst. 2018;11(1):600-607.

https://orcid.org/0000-0003-3126-591X
https://orcid.org/0000-0003-3126-591X


NIKBAKHT AALI AND BAGHERZADEH 15 of 15

20. Aali SN, Shahhoseini H, Bagherzadeh N. Divisible load scheduling of image processing applications on the heterogeneous star network using a new

genetic algorithm. Paper presented at: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP); 2018;

Cambridge, UK.

21. Wang X, Wang Y, Meng K. Optimization algorithm for divisible load scheduling on heterogeneous star networks. J Softw. 2014;9(7):1757-1766.

22. Brandão J, Noronha T, Resende M, Ribeiro C. A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems. Int Trans

Oper Res. 2017;24(5):1061-1077.

23. Wang X, Veeravalli B. A genetic algorithm based efficient static load distribution strategy for handling large-scale workloads on sustainable computing

systems. In: Sangaiah A, Abraham A, Siarry P, Sheng M, eds. Intelligent Decision Support Systems for Sustainable Computing. Vol. 705. Cham, Switzerland:

Springer; 2017:7-13.

24. Kardi RL, Boctor FF. An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode

case. Eur J Oper Res. 2018;265(2):454-462.

25. Haowei Z, Xie J, Ge J, Zhang Z, Zong B. A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. Eur J Oper Res.

2019;272(3):868-878.

How to cite this article: Nikbakht Aali S, Bagherzadeh N. Divisible load scheduling of image processing applications on the heterogeneous

star and tree networks using a new genetic algorithm. Concurrency Computat Pract Exper. 2019;e5498. https://doi.org/10.1002/cpe.5498

https://doi.org/10.1002/cpe.5498

	Divisible load scheduling of image processing applications on the heterogeneous star and tree networks using a new genetic algorithm
	Abstract
	INTRODUCTION
	PROBLEM DEFINITION, NOTATIONS, AND CLOSED-FORM SOLUTION
	System model of star topology
	System model of multi-level tree topology
	Image partitioning
	Closed-form solution for optimum scheduling

	A NEW GENETIC ALGORITHM FOR DLS OF IMAGE APPLICATIONS (IDLS-GA)
	SIMULATION RESULTS AND ANALYSIS
	CONCLUSION
	REFERENCES




