
Verified Lightweight Bytecode Verification

Gerwin Klein and Tobias Nipkow

Technische Universität München, Institut für Informatik
http://www.in.tum.de/~{kleing|nipkow}/

Abstract. Eva and Kristoffer Rose proposed a (sparse) annotation of
Java Virtual Machine code with types to enable a one-pass verification
of welltypedness. We have formalized a variant of their proposal in the
theorem prover Isabelle/HOL and proved soundness and completeness.

1 Introduction

The Java Virtual Machine (JVM ) comprises a typed assembly language, an ab-
stract machine for executing it and the so-called Bytecode Verifier (BV ) for
checking the welltypedness of JVM programs. Resource-bounded JVM imple-
mentations on smart cards do not provide bytecode verification because of the
relatively high space and time consumption. They either do not allow dynamic
loading of JVM code at all or rely on cryptographic methods to ensure that
bytecode verification has taken place off-card. In order to allow on-card ver-
ification, Eva and Kristoffer Rose [3] proposed a (sparse) annotation of Java
Virtual Machine code with types to enable a one-pass verification of welltyped-
ness. Roughly speaking, this transforms a type reconstruction problem into a
type checking problem, which is easier. Based on these ideas we have extended
an existing formalization of the JVM in the theorem prover Isabelle/HOL [2, 1].
In §2 we describe the general idea of bytecode verification and its formalization
in Isabelle/HOL. In §3 we explain how lightweight bytecode verification works,
how we formalized it and proved it correct and complete.

2 Bytecode verification

The JVM is a stack machine where each method activation has its own ex-
pression stack and local variables. The types of operands and results of bytecode
instructions are fixed (modulo subtyping), whereas the type of a storage location
may differ at different points in the program. Let’s look at an example:

instruction stack local variables
Load 0 [] [Class B, int]
Store 1 [Class A] [Class B, unusable]
Getfield F A [] [Class B, Class A]
Goto -2 [Class A] [Class B, Class A]



On the left the instructions are shown and on the right the type of the stack
elements and the local variables. The type information attached to an instruction
characterizes the state before execution of that instruction. We assume that class
B is a subclass of A and that A has a field F of type A.

Execution starts with an empty stack and the two local variables hold a
reference to an object of class B and an integer. The first instruction loads
local variable 0, a reference to a B object, on the stack. The type information
associated with following instruction may puzzle at first sight: it says that a
reference to an A object is on the stack, and that the type of local variable 1
has become unusable. This means the type information has become less precise
but is still correct: a B object is also an A object and an integer is now classified
as unusable. The reason for these more general types is that the predecessor of
the Store instruction may have either been Load 0 or Goto -2. Since there exist
different execution paths to reach Store, the type information of the two paths
has to be “merged”. The type of the second local variable is either int or Class
A, which are incompatible, i.e. the only common supertype is ‘unusable’.

Bytecode verification is the process of inferring the types on the right from the
instruction sequence on the left and some initial condition, and of ensuring that
each instruction receives arguments of the correct type. This can be done on a
per method basis because each method has fixed argument and result types. The
two tables on the right are together called a method type, one line of the method
type is called a state type. To simplify matters we restrict the considerations in
this paper to a single method.

For theoretical investigations it has become customary to separate type in-
ference (computation of a method type) from type checking (checking if an in-
struction sequence fits a method type). Type inference is usually implemented as
a dataflow analysis and may require several iterations due to subtyping. We will
now ignore type inference (although we have also verified it in Isabelle/HOL)
and concentrate on type checking.

A first machine-checked specification of type checking for the JVM was given
by Pusch [2]. Using Isabelle/HOL she connected the type checking rules with
an operational semantics for the JVM by showing that execution of type cor-
rect programs is type sound, i.e. during run time each storage location contains
values of the type predicted by the method type. We will now sketch some the
key ingredients of the type checking specification by Nipkow et al. [1] that our
formalization of lightweight bytecode verification builds on.

Type checking of methods is modeled by a predicate wt method relating
the instruction sequence, types of method parameters, return type, etc. with a
method type ϕ. In essence, the definition

wt method :: [jvm prog,cname,ty list,ty,nat,instr list,method type] → bool
wt method Γ C pTs rT mxl ins ϕ ≡

let max pc = length ins in
max pc < length ϕ ∧ 0 < max pc ∧ wt start Γ C pTs mxl ϕ ∧
(∀pc. pc<max pc −→ wt inst (ins ! pc) Γ rT ϕ max pc pc)

states that, in a declaration context Γ (containing all class declarations of the

2



program), wt method holds for an instruction sequence ins (the method body)
and a method type ϕ when each single instruction ins ! pc is well typed (the
Isabelle/HOL operator ! returns the nth element of a list). The predicate wt inst
checking single instructions may take into account the return type rT , the current
program counter pc, and the maximum program counter max pc (the length of
the instruction sequence). wt start ensures that the types on the operand stack
and of the local variables are initialized correctly with regard to the class C the
method is declared in, the parameters pTs of the method, and the number of
local variables mxl.

wt inst is a case distinction over the instruction set. As the type checking
conditions for single instructions are very similar to each other, we only take a
look at an example:

wt inst :: [instr,jvm prog,ty,method type,nat,nat] → bool
wt inst (Load idx) Γ rT ϕ max pc pc =

let (ST,LT) = ϕ ! pc in
pc+1 < max pc ∧ idx < length LT ∧
(∃t. (LT ! idx) = usable t ∧ Γ ` (t # ST , LT) �s ϕ ! (pc+1))

The predicate first checks some applicability conditions like pc+ 1 < max pc
and idx < length LT , then calculates the effect of the instruction on the current
state type and eventually requires that the result be compatible with the state
type at the next instruction in the control flow.

The current state type consists of the stack ST and the local variables LT
at position pc in the method type. Both are lists containing the types before
execution of the instruction. In the Load case we require some type t other than
unusable at index idx in LT . The state type of the next instruction at position
pc+ 1 must correctly approximate a state type where t is on top of the stack (#
is the list constructor in Isabelle/HOL). The local variables are unchanged. This
correct approximation ` �s is Java’s widen relation lifted to state types and
extended by the element unusable. We already used it informally in the example
program.

3 Lightweight bytecode verification

Two things make the traditional bytecode verifier unsuitable for on-card verifica-
tion: the type reconstruction algorithm itself is large and complex, and the whole
method type is held in memory. Lightweight bytecode verification addresses both
problems.

The need for dataflow analysis is caused by the fact that some instructions
may have multiple preceding paths of execution and that the types constructed
on these paths have to be merged. This can only occur at the targets of jumps.
The basic idea of lightweight bytecode verification is to look what happens when
we provide the result of the type reconstruction process at these points before-
hand. This additional outside information is called the certificate. It becomes
apparent that the type reconstruction is now reduced to a single linear pass over
the instruction sequence: each time we would have to consider more than one

3



path of execution, the result is already there and only needs to be checked, not
constructed. The second effect is that apart from the certificate we only need
constant memory: the type reconstruction can be reduced to a function that
calculates the state type at pc+ 1 only from the state type at pc and the global
information that is already provided from outside. After having calculated the
type at pc+ 1, we can immediately forget about the one at pc.

For our example program, the situation at the start of the lightweight byte-
code verification process looks like that:

instruction stack local variables
Load 0
Store 1 [Class A] [Class B, unusable]
Getfield F A
Goto -2

From that the whole method type is reconstructed in a single linear pass:
The state type ([], [Class B, int]) for the Load instruction will be filled in as
initialization. The state type for Store 1 is in the certificate, since Store is the
target of the Goto -2 jump. The lightweight bytecode verifier calculates the effect
of Load 0, i.e. ([Class B], [Class B, int]), and checks if the certificate ([Class
A], [Class B, unusable]) correctly approximates this result. The types before
execution of Getfield are then easily calculated from the state type and the effect
of Store alone, i.e. the result is ([], [Class B, Class A]). The effect of Getfield F
A also only needs the current state type and yields ([Class A], [Class B, Class
A]). For the last instruction the lightweight bytecode verifier has to check if the
calculated state type is correctly approximated by the jump target. We did not
store this state type, but since it is a target of a jump, we have it in the certificate
and only need to check if the certificate at this point correctly approximates our
calculated state type. Note, that all paths of executions that entered into the
merging for the state type of Store 1 were checked, but no iteration or additional
memory was required.

3.1 Formalization

With that kind of process and certificate in mind, we can start a formalization
of the lightweight bytecode verifier. We have two goals here: On the one hand,
we want the formalization to be similar to the one of the traditional bytecode
verifier, so we can easily spot commonalities and differences. On the other hand,
we now not only want to model type checking, but also the simplified form of
type reconstruction, i.e. we want functions, not predicates. As a solution, we
write the predicates checking single instructions in a form that is similar to the
traditional bytecode verifier, and that can still easily be read as a function. For
example the predicate for Load

4



wtl inst :: [instr,jvm prog,ty,state type,state type,nat,nat] → bool
wtl inst (Load idx) Γ rT s s’ cert max pc pc =

let (ST,LT) = s in
pc+1 < max pc ∧ idx < length LT ∧
(∃t. (LT ! idx) = usable t ∧ (t # ST , LT) = s’)

can be read as a function yielding the next state type s′ from the current in-
struction Load idx, the current state type s, the program counter pc, and the
maximum program counter max pc. Declaration context Γ, return type rT , and
the certificate cert are not used in the Load case. The predicate still closely
mimics the corresponding wt inst from the traditional byte code verifier: it is
apparent, that we have the same applicability conditions and model the same
effect the instruction has on the stack.

We now have a function that calculates the state type s′ at pc+ 1 from the
state type s at pc. Iterating this process over the list of instructions we can then
feed this s′ as current state type to the next instruction:

wtl inst list :: [instr list,jvm prog,ty,state type,state type,certificate,nat,nat] → bool
wtl inst list (i#is) Γ rT s0 s2 cert max pc pc =

(∃s1. wtl inst option i Γ rT s0 s1 cert max pc pc ∧
wtl inst list is Γ rT s1 s2 cert max pc (pc+1))

wtl inst option is a simple case distinction: if there is already type information
stored in the certificate at the current program counter, as for Store 1 in the
example, we must not use our calculated type, but the certificate containing
the merged type information instead. To ensure correctness, we still have to
check, if the certificate correctly approximates the calculated state type, i.e. if
the certificate really is the result of a merge of our state type with another one.
Therefore we have:

wtl inst option :: [instr,jvm prog,ty,state type,state type,certificate,nat,nat] → bool
wtl inst option i Γ rT s0 s1 cert max pc pc ≡

case cert!pc of
None → wtl inst i Γ rT s0 s1 cert max pc pc
| Some s0’ → (Γ ` s0 �s s0’) ∧ wtl inst i Γ rT s0’ s1 cert max pc pc

3.2 Soundness

When we specify a new kind of bytecode verification we of course wish to know
if this new bytecode verifier does the right thing. In our case this means: if the
lightweight bytecode verifier accepts a piece of code as welltyped, the traditional
bytecode verifier should accept it, too. We must also show that it is safe to
rely on outside information, i.e. in the soundness proof we must not make any
assumption on how the certificate was produced. So the soundness theorem is

∀cert. wtl method Γ . . . cert =⇒ ∃ϕ. wt method Γ . . . ϕ

5



where Γ . . . is shorthand for the same set of parameters, return type etc. for
both judgments.

This means, that if the certificate was tampered with, the lightweight byte-
code verifier either rejects the method as not welltyped, or if it does not reject,
it was still able to reconstruct the method type correctly.

We prove this by constructing a ϕ from a successful run of the lightweight
bytecode verifier and showing that this ϕ satisfies wt method. ϕ must have the
following properties: if the certificate contains a state type s at some point pc,
ϕ contains that s at the same point pc. Otherwise, if the lightweight bytecode
verifier has come to a position pc in its type reconstruction process and has
calculated a current state type s, ϕ will contain that s at position pc.

If wtl method holds, there clearly always is such a ϕ. By case distinction over
all instructions we get that both bytecode verifiers compute the same effects
of instructions on state types, and, because the certificate is always checked to
correctly approximate the calculated state type, we get that for each instruction
wt inst holds. Thus the traditional bytecode verifier accepts.

3.3 Completeness

Of course, the trivial bytecode verifier that rejects all programs also would be
correct in the sense above. Therefore we show that our lightweight bytecode
verifier also is complete, i.e. that if a program is welltyped with respect to the
traditional bytecode verifier, the lightweight bytecode verifier will accept the
same program with an easy to obtain certificate.

How will this certificate look like? We get the information we need from the
method type of a successful run of the traditional bytecode verifier. Since we
want to minimize the amount of information we have to provide, we do not take
the whole method type as the certificate, but only the state types at certain
positions.

As in the example, the certificate should contain the type information at
jump targets. Due to some simplifications in our formalization of the traditional
bytecode verifier and the µJava language, this is not enough though. The first
thing is, our traditional bytecode verifier does not ignore dead code, but requires
instructions that can never be executed to be type correct, too. If the instruction
directly after a Goto for instance is not a jump target, it can never be executed.
Since the effect of Goto on the state type only tells us something about the target
of the Goto, but nothing about the state type of the instruction at pc + 1, the
lightweight bytecode verifier would have no means to construct this state type
at pc+ 1 if it wasn’t in the certificate. So we also include the state types directly
after Goto and Return instructions. Since dead code should be eliminated by
the compiler anyway, this is not really an issue. On the other hand, it is not
hard to take dead code into account and we plan to do so in the future. We
also need the state type after a method invocation in some cases. This is due to
the fact that we do not really model exceptions at the JVM level. In µJava, a
method invocation on a class reference containing the value null is equivalent to
a halt. If the bytecode verifier discovers that this class reference is always null,

6



the instruction after that may again be dead code and we have to include it in
the certificate. Again, programs produced by an optimizing compiler should not
contain such cases.

So the certificate contains the targets of jumps and some rare cases, we have
to include for the completeness proof, because we do not want to make any
assumptions about how the code was produced.

Let make cert be the function that produces such a certificate from an in-
struction sequence and a method type. Then

wt method Γ . . . ins ϕ =⇒ wtl method Γ . . . ins (make cert ins ϕ)

follows by induction over the length of the instruction sequence.

4 Conclusion

We have formalized a variant of lightweight bytecode verification for µJava and
proved its soundness and completeness in Isabelle/HOL. Our formalization is
comparatively easy to transform into a functional program. The completeness
result is both stronger and weaker than that of [3]. Eva and Kristoffer Rose
have a more complex formalization of the lightweight bytecode verifier that only
needs the certificate when a type merge really produces a different type than
calculated so far. Doing so could lead to a smaller type annotation of class files
(although this claim would require formal proof). It does however not save space
during the verification pass, since the state type at jump targets has to be saved
for later checks anyway. Our completeness result on the other hand includes
the simpler and easier to implement notion that (apart from artificial cases) the
targets of jumps are all that is needed for linear type reconstruction.

References

1. T. Nipkow, D. v. Oheimb, and C. Pusch. µJava: Embedding a programming lan-
guage in a theorem prover. In F. Bauer and R. Steinbrüggen, editors, Foundations
of Secure Computation. Proc. Int. Summer School Marktoberdorf 1999, pages ?–?
IOS Press, 2000. To appear.

2. C. Pusch. Proving the soundness of a Java bytecode verifier specification in Isa-
belle/HOL. In W. Cleaveland, editor, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), volume 1579 of Lect. Notes in Comp. Sci.,
pages 89–103. Springer-Verlag, 1999.

3. E. Rose and K. Rose. Lightweight bytecode verification. In OOPSLA’98 Workshop
Formal Underpinnings of Java, 1998.

7


