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Abstract

This article describes the methodology and the possibilities of collecting operation data

in a mobile network provider. First, the architecture and the principles used in the sys-

tem are described. The precision analysis of the population commuting in the region

and during the pandemic and nonpandemic times. Moreover, several ideas about fur-

ther utilization of the data will be formulated and described. Finally, a graph-based

approach that describes the creation of the community structure between the people

and the means of its analysis.
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1 INTRODUCTION

The tremendous penetration of mobile phones in the population brings many new challenges and many difficulties. The traffic that is generated by

the usage of mobile phones is enormous due to colossal internet traffic. The service traffic is also generated by logging into the system, beginning

and end of the conversation, and other events. Such information may be utilized to gather essential characteristics of the masses’ behavior, such as

a population in a city and/or country. The information for the person tracking violates law regulation, such as General Data Protection Regulation

and similar in each country. The utilization of the anonymous aggregated data brings a new insight into the behavior patterns and may analyze the

specific situation.

Many real-life situations may benefit from such anonymous aggregated data. The first case is the replacement of the personal survey of the

occupancy in ground transport. In 2014, we defined a methodology1 that was certified by the Ministry of Transportation of the Czech Republic,

where the means of transport and behavior of the citizens were categorized and classified. Moreover, the methodology defines the categories of

citizens according to their behavior during the day.

The most important categories are commuter and noncommuter. A commuter is a person who begins in one location, then travels to another

location where he spends some time, and then returns. Such a person is usually a worker who commutes to work from its home. The commuting path

may be tracked and analyzed to identify the primary transport nodes, bottlenecks, etc. The noncommuter stays the whole day in a location where

he started the day and never left it.

Such a complex system that can track anonymous masses commuting behavior and paths that were used may be utilized to track the contact

between individuals while maintaining the system’s anonymous property.

2 MOBILE PHONE LOCATION DATA ANALYSIS

Mobile (cell) phone data has been used to provide useful information about human mobility and traffic patterns for almost two decades.2-13 Mobile

(cellular) network operators record the location of a mobile phone when it actively uses the network (i.e., makes or receives a call, uses mobile

Concurrency Computat Pract Exper. 2020;e6105. wileyonlinelibrary.com/journal/cpe © 2020 John Wiley & Sons, Ltd. 1 of 8
https://doi.org/10.1002/cpe.6105

https://orcid.org/0000-0002-8481-0136
https://orcid.org/0000-0001-8428-3332
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6105&domain=pdf&date_stamp=2020-11-24


2 of 8 PLATOS ET AL.

Internet). The information is stored primarily for billing purpose2 but it can be used as a latent source of aggregate spatiotemporal information about

static and dynamic human mobility and traffic patterns.4,7,10,13

Mobile phone data can be in this way exploited to study travel an commuting times,2,5,9 to provide information about congestions and traffic

incidents,2,9 and to detect origin-destination flows.2,5,11 Low-level location data requires the transformation to spatiotemporal trajectory (path)

information. Such information can then be used by high-level applications such as as early warning, environmental monitoring (e.g., air pollution

sensing), traffic planning,3,4 region-level travel demand estimation,5 sociological (sociogeographical) research.6

A special attention has been paid to the study of the relationship between mobile phone data and human mobility and public transport.8,11,12

New methods to infer from mobile phone location data traffic measures (e.g., vehicle flows and densities on freeways and motorways)8 and top–level

information such as home location6,10,13 and activity radius (space),6,10 travel demand,5,11 anchor points (stay locations) of daily travels, and activity

types13 have been recently introduced.

The methods include various data preprocessing techniques such as low-pass filtering,5 noise removal and thresholding13 and so on. Then,

data processing and mining in the form of cluster analysis3-5,8,10,13 and outlier detection,7,13 topology construction,3,4 signal analysis (dynamic

timewarping),7 density analysis,6,11 motif extraction,13 and, for example, visual analytics12 are employed.

In addition, mobile phone location data has been successfully used in context of epidemiology.14-16 It can contribute to the modeling and estima-

tion of human contact dynamics and disease spread.14 Mobile phone data and the extracted communication and mobility patterns have been used

to study the spatial structure and variation of the HIV epidemics and to identify disease hot spots.15 Together with social network data, it has shown

a great potential for disease tracking and outbreak predictions, as demonstrated on the 2010 cholera epidemy in Haiti.16

The coronavirus 2019–2020 pandemic is undoubtedly the biggest challenge digital16 and mathematical14 epidemiology faces to date. Until the

introduction of an efficient vaccine and/or COVID-19 treatment (unavailable as of June 2020), social distancing and economy shutdown are the only

measures available to slow-down the epidemics. Extensive testing and tracing and highly focused epidemiological procedures can lower the enor-

mous costs associated with the global coronavirus suppression measures. Mobile phone data can be used to tackle COVID-19 pandemic in several

ways:17 by helping to establish accurate situational awareness and by evaluating the impact of various interventions performed in order to contain

the disease. This can be achieved by, for example, the estimation of origin-destination flows, location and stay (hot spot) modeling, approximation of

contact matrices, and so on.

3 SPATIAL-TEMPORAL MOBILITY OF THE POPULATION

The utilization of mobile networks for the population mobility analysis opens an entirely new area of the investigation. First of all, the system needs

to be described.

3.1 System architecture

The system’s whole architecture is based on the architecture and the processes behind the wireless communication networks. The standard

architecture is shown in Figure 1.

Each cell phone communicates with the nearest Base transceiver station (BTS), which is the communication network’s main building block. Each

BTS is connected with the servers of the communication provider. The location of the BTS in the real world is based on many attributes. The main

attributes are:

• predicted the number of devices connected at the same time,

• complexity of the landscape,

• number of buildings and reflection caused by buildings around the station,

• directions toward the main location of the devices (such as subway exits, etc.).

The base stations’ placement then creates the topology of the telecommunication network, which may be utilized for many other applications

other than pure communication. The first application that is used by the phone operating system providers is the improvement of the phone location

based on the triangulation between base station that is used as a correction to the GPS signal.9

Each mobile device that is connected to the telecommunication network generates a vast footprint during device usage. Each operation that

the device performs, such as short message service, audio, video calls, and data transactions, generates a communication with the network that is

tracked and stored in logs. Many countries have legislative regulations that define how much information needs to be stored for the police and other

purposes. The Czech Republic defined that this information has to be stored for 3 months.
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F I G U R E 1 Architecture of the cell
phone architecture

BTS1

BTS2

BTS3

3.2 Spatial-temporal mobility analysis

Analysis of the population’s mobility may be gathered using many different systems, for example, GPS locations, debit cards, Internet of Things, and

many others. Mobile networks have the main advantage in penetrations. The Czech Republic registers more SIM cards than is the population of the

whole country. Such penetration leads to ideal conditions for utilizing this data in the analysis of the population’s mobility pattern.

The data analysis is done in a single day cycle from 12:00 a.m. to 11:59 p.m. for each day. The first 5 h are not very important, and we may

expect that this time is a quiet night period. At 5:00 a.m. in the morning, start a day period, where each person/device’s behavior is investigated. The

location where the device is at five is taken as a starting home location. The location is tracked for the whole day, and it is expected that the device

will move from the starting location to other places. In the majority, the movement leads to the working location. The sequence of the cells and BTS

used during the movement is carefully tracked and evaluated for precise mapping of the location. Of course, the movement usually starts much later

than at five. However, the 5:00 a.m. is the threshold, investigated, and defined in the Methodology to be a good time for division the night and day

periods. The tracking continues during the whole day until the device ends in a location in the evening and night hours. When the location is the

same as it was in the morning, we consider this location a full home location. Otherwise, the person changes its night location for obvious reasons

such as business trips, etc. Such behavior has limitations and exceptions, which are mostly visible on Mondays, Fridays, and Saturdays. On Monday

and Friday, many people travel from the weekend location to the work location and back. Fridays and Saturdays are also days for event trips with

friends etc.

When all devices are investigated, we receive the heat map of locations and stations where people appeared and its time distribution during

the day. Such information may be aggregated to receive the overall statistics and its development during the day. The system parameters strictly

limit the granularity of the statistics. The optimal interval is hours because the hour is used to refresh the communication between the device and

the network when no other activity is performed. Due to fast development in the device’s quality, shorter intervals may be selected, such as 30 and

15 min. The 4G networks use a shorter interval for synchronization and εi-am-aliveε messages between the device and the network. The 5G

networks will bring a new problem because they use adaptive syncing, where the interval is not defined as fixed.
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4 UTILIZATION OF THE GATHERED DATA

The data aggregated during the day on the individual base stations must be grouped for the higher territorial unit. On a single pylon, the standard

behavior contains several base station for each technology and several different technologies. The aggregation process may be defined as a sequence

of the steps that follow each other to bring a more globalized view of the data. The details are shown in Figure 2. When the data are aggregated,

there is much application that maybe build on it.

4.1 Behavior patterns in population mobility

When all the aggregated data are collected for a defined time interval, a behavior analysis may be performed. There are two basic views of the

analysis. The first is based on the analysis of the occupancy of a place. The second is the population flow in time.

4.1.1 Static analysis of the people location

The occupancy or the utilization of the concrete base stations is an analysis relevant for evaluating the concentration of people in defined places.

Such information may be utilized for:

• planning of public transportation services,

• crowd avoidance,

• security and safety analysis,

• urban planning,

• phenomena detection,

• unique person visits.

For each place - base station location, city part, city, region, we can count the number of unique devices/persons each time unit. This information

is not very usable until the differences between dates are analyzed.

As may be seen from Figure 3, the difference between the long-term average and the current situation. The high decrease of the commuters

and even higher increase in noncommuters indicates that the strange situation has happened because very few people come into the area and

even fewer of them leave the area during the day. Of course, the strange situation is a COVID-19 pandemic and the almost lock-down of the whole

country—more about this topic in the next section.

The long-term data collection in a specific location may be utilized to predict the area’s occupancy in the future. Such information may be utilized

to plan public transport and gather the number of persons for future calculation. An example of such prediction is depicted in Figure 4. As may be

seen, the prediction may be made with defined confidence intervals.

4.1.2 Dynamic analysis of the people location

The population flow in time is valuable information for:

• public transport planning in the inter-city level,

• occupancy of the transport vehicle measurement,

BTS

District

City

Country

F I G U R E 2 Aggregation process for the day cycle
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F I G U R E 3 The differences in
percents of the commuters and
non-commuters between March 15 and
May 30 in Prague 1 city district

F I G U R E 4 Prediction for 14 days of the cumulative amount of persons

• road capacity utilization,

• traffic control,

• accident detection.

The occupancy of the public transport services’ vehicles was the original idea extended into many other applications. For measurement of this

occupancy, precise information of the road network, station locations, vehicle movement logs is necessary.

Figure 5 depicts the relations and number of people that travel between two cities along the trajectory of the public transport service concerning

the source and the destination of the people during a day. The number in the edges depicts the comparison between the known number investigated

by the Czech Statistical Agency using the survey analysis and the number computed from the data. As may be seen, the dynamic analysis can deliver

information about the transport patterns. Because we can track the location and the speed of transportation and approximate the position, we can

detect the type of vehicles used in transportation. With the time-tracked GPS position of the public transport vehicles, we may detect people who

follow the same pattern as the vehicles, which means they travel by the vehicle. If a person follows the same trajectory, it uses the same roads, but

the cars travel at a different speed with no stops on these short trips. The system is then able to distinguish between public transport users and

drivers. Even though many factors limit precision, it can achieve very high precision. Moreover, such information may be utilized the collect infor-

mation about traffic jams, accidents, etc. The measurement of speed can also detect faster vehicles such as emergency helicopters that travel in the

same area.

The direct utilization of the data may also bring a new application to personal transport. Especially during the infection disease period, a person

wants to avoid large crowds during their transport. The person flow data may help predict crowded places and calculate the path between the

source and destination places with the smallest probability of crowded surroundings. Such applications appeared in the COVID Pandemic in many

countries and cities.



6 of 8 PLATOS ET AL.

F I G U R E 5 Relations of commuters
between different cities/stations from city
of Beroun to Prague1

4.2 Graph-based applications

The detection of a device in a base station generates a vast stream of data from the whole network. Due to the time dependency, the data may be

represented as time-dependent graphs. Such a graph, which is demonstrated in Figure 6, may utilize the information from the temporary closeness

of the devices/persons to create a probability network of the local neighborhood connections. The figure shows on the left that people change the

location during the time and the occupancy on three base stations. The groups of people who appear in each time step on the BTS-B are highlighted.

The corresponding graph is depicted on the right. As may be seen, each time step generates cliques that evolve during the time. According to these

time slices, a probability graph may be constructed and used to analyze the relationships between persons. Such a graph reflects the probability the

person visited a place covered by the BTS.

Such graphs may also be constructed from the logs of the GPS positions, but it requires the persons’ cooperation and enabling of such function-

ality. When a graph is constructed, many different measures may be used for distance measurement to gather the similarity between users based

on their mobility during the day. Among others, the shortest path18 describes the first level distance between nodes. As a more complex distance, a

Close Trail Distance19 measure may be utilized. The behavior of the persons may then be analyzed using the clustering coefficients.20 The behavior

patterns may be compared based on the historical records and compared the situations with reference and precisely analyzed situations.

4.3 Possible applications

The essential aspect of the data is its security. The first thing that needs to be set is that the analysis and statistics are created from the providers’

anatomized data and fully anonymized daily. Therefore, the system cannot identify anybody directly from the data. Moreover, the person cannot be

identified from its behavior.

BTS-C

BTS-B

BTS-A

t1 t2 t3 t4
F I G U R E 6 Example of the network
model based on the collected data
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The security issues mentioned in the previous paragraph prevent the use of this data to direct mapping the location of the current people. This

is a good thing because mentioning this methodology in the major TV news show leads to a concern of the general public and the personal freedom

activist. On the other hand, the methodology may be used in other COVID-related applications. The Czech Government uses these data to monitor

the citizens’ behavior related to their general mobility and the increase of the number of noncommuters, that is, people who do not commute to the

job. The data are used on a day-by-day basis, and the government uses this to check the regulations’ compliance.

The compliance with the people quarantine regulation applied to the COVID-positive persons may not be used the anonymous data. However,

the government may grant the police, under the state of emergency, to use the nonanonymous data to monitor the quarantined people’s real move-

ment. Such data were used by the Israel secret service to monitor Israel citizens during the first wave of the COVID pandemic. However, the practice

was forbidden by the constitutional court. Many government applications use very similar approaches to track citizen mobility and contacts. Unfor-

tunately, such an application did not attract many users due to controversial or unclear personal data handling. The new applications based on the

technology developed by the Google and Apple company, as the primary cell phone operating system providers attract a higher number of users,

and the newly designed application, bring a completely new contact tracking level.

5 CONCLUSION

In this article, the system for processing the massive data from the telecommunication networks collected by the providers and stored under the

national regulations were described. Several applications concerning the nature of the data were presented. Data collection brings completely new

problems concerning the General Data Protection Regulation in the EU, national regulations, and other laws and restrictions. An aggregated data

without any identification may be analyzed and the usable output produced with a well-defined methodology. The Czech Ministry of Transportation

certified the methodology. Other applications include population mobility during the time interval, comparison of the mobility patterns and changes,

and anomaly detection. Moreover, several measures for data analysis were summarized.

The mentioned applications need a vast computational power available in the data centers of the network providers. Such analysis will create

an entirely new market for the providers. Using methodologies like the mentioned in these articles, the network providers will create an entirely

new market with the specialized analysis that is impossible using the classical scheme and data sources.
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