
Fragments-Expert: A Graphical User Interface MATLAB Toolbox

for Classification of File Fragments

Mehdi Teimouri*1, Zahra Seyedghorban1, Fatemeh Amirjani1

1 Information Theory and Coding Laboratory, University of Tehran, Tehran, Iran.

* Corresponding author, e-mail: mehditeimouri@ut.ac.ir

Abstract

The classification of file fragments of various file formats is an essential task in various

applications such as firewalls, intrusion detection systems, anti-viruses, web content filtering,

and digital forensics. However, the community lacks a suitable software tool that can integrate

major methods for feature extraction from file fragments and classification among various file

formats. In this paper, we present Fragments-Expert that is a graphical user interface MATLAB

toolbox for the classification of file fragments. It provides users with 22 categories of features

extracted from file fragments. These features can be employed by 7 categories of machine

learning algorithms for the task of classification among various file formats.

Keywords: File types, file fragments, file fragments classification, content-based

classification, feature extraction, MATLAB.

1 Introduction

The fastest way to identify file format is to check the file extension. This method is very

unreliable and can be easily spoofed. Another method for file format identification is through

magic bytes. Magic bytes are predefined sequences that exist in the file header. Most of the

time, the examiner is dealing with a file fragment and not the whole file itself. So, checking the

file extension or magic bytes is not helpful in practical situations.

In many real-world situations, the ability to identify the file type of a file fragment is

necessary. File fragment classification plays an important role in firewalls, intrusion detection

systems, anti-viruses, web content filtering, and digital forensics [1]. For example, in network

intrusion detection, file fragment classification is used to filter out any suspicious data [2, 3].

Another practical application of file fragment classification is computer forensics and

investigations. In this case, during the recovery and examination of given evidence, the

examiner may deal with a collection of fragments with no available file system information [2,

4-9]. The third practical example is the file recovery process during which the file system

structure is damaged or deleted [10-12].

Most of the research projects in this area have focused on content-based file fragment

classification. Many research projects in content-based file fragment classification, extract

some features such as byte frequency distribution (BFD), Shannon entropy, Kolmogorov

complexity, longest common strings and longest common subsequences [9] [13]. Then, a

decision machine model (e.g. naïve Bayes, k-nearest neighbors, decision tree, random forest,

and support vector machine) is trained using these features. In older research projects, the

mailto:mehditeimouri@ut.ac.ir

2

researchers utilize feature threshold comparison schemes to make decisions about the type of

the fragments [11, 14]. Usually, these threshold-based methods do not employ any learning

algorithm.

Some content-based methods have employed clustering for their purpose. Nguyen et al.

investigate the identification of image type data [15]. They cluster uncompressed chunk data

into three categories based on the entropy measure. Then, they employ a decision tree based

on byte frequency distribution for each category. Li et al. have introduced three algorithms

based on centroid models: single-centroid (one model for each file type), multi-centroid

(multiple models for each file type), and exemplar files (the set of files of each file type) [16].

The mean and standard deviation of the byte frequency distribution of each file type are

considered as centroid models. Then, Mahalanobis and Manhattan distances are employed for

identifying file types.

There is a variety of Commercial-Off-The-Shelf (COTS) software for file type

identification. These solutions mostly perform as part of a forensics or file recovery tool. Some

well-known COTS tools are LibMagic [17], TrID [18], Oracle Outside In Technology [19],

DROID [20], JHOVE [21], Autospy [22] (which uses PhotoRec [23] for type detection),

ExifTool [24], FTK [25], EnCase [26], AnalyzeIt [27], and Toolsley [28]. These software

packages rely on signature bytes for file type detection. So, they are not suitable for file

fragment classification. Gopal et al. evaluated the performance of several software packages.

They reported that most solutions fail when signature bytes are missing [3]. Konstantinos

conducted several experiments using some of these recovery tools. The result shows that most

of them misclassify a file format when the signature bytes are altered [29].

Some tools have been developed for file fragment classification. Table 1 shows a summary

of these methods. SÁDI employs a limited number of features and the classification approach

is simple. This tool finds the minimum and maximum values of each feature for each file type

[30]. Then, it checks to see if an instance falls in these ranges. NetFox is another toolbox that

is implemented as part of a network forensics framework. A part of NetFox has the capability

of detection of codecs within an RTP stream [31]. JPGcarve is a file carving tool specialized

for the recovery of JPG images from hard drive data dumps. The method relies on cluster size

and positions in the hard disk space [10]. It conducts a search space in the data dumps and uses

entropy thresholding for identification. A relatively good open-source software is Sceadan.

Sceadan uses SVM and a set of statistical features for identification. The authors have reported

an accuracy of 73.4% across 38 different file types [32]. An almost new approach is FiFTy

[33], which is an open-source tool for file type identification. FiFTy uses a compact neural

network with an embedding space for automatic feature extraction. The authors have reported

their results for two different fragment sizes and 75 file types.

As seen above, there is a little amount of publicly available computer codes in this area and

most of them employ small feature sets and limited machine learning methods. In this paper,

we present Fragments-Expert. Fragments-Expert is an open-source graphical user interface

(GUI) MATLAB toolbox that tries to fill this void by providing the researchers with many

feature extraction methods and machine learning algorithms in the field of file fragment

classification. Fragments-Expert enables researchers to directly re-use our implementations for

the task of file fragments classification. They can also make desirable changes to our

implementations to test the effect of employing different and innovative features.

3

Table 1: Tools and software packages for file fragment classification.

Tool Year Method and Features Case study

SÁDI

[30]

2008 Method: Determining ranges for statistics values for

differentiation among different data types

Features: Average, kurtosis, distribution of averages,

standard deviation, distribution of standard

deviations, and byte distribution.

Fragments size: 256

bytes

Data types: BMP,

CSV, DLL, EXE,

HTML, JPG, TXT, and

XLS

Sceadan

[32]

2013 Method: Support Vector Machine

Features: Entropy, Kolmogorov complexity, mean,

standard deviation, mean absolute deviation,

Hamming weight, kurtosis, skewness, average

contiguity between bytes, maximum byte streak, and

low, medium, and high ASCII frequencies

Fragment size: 512

bytes

Data types: 38 data

types

NetFox

[31]

2014 Method: Identify codecs by comparing the feature

set of a stream with the Codec Mapper Table

structure

Features: specific features of RTP packets

Fragment size: Packet

size of real RTP streams

Data type: RTP streams

encoded using different

codecs and sampling

frequencies.

JPGcarve

[10]

2015 Method: Simple heuristics and entropy estimation

Features: Cluster size, offset, start and end position

of a fragment, and entropy

Fragment size: From

512 bytes to cluster size

Data type: JPEG

FiFTy

[33]

2019 Method: Compact Neural Network

Features: Using the embedding layer to extract

features.

Fragment Size: 512

and 4096 bytes

Data type: 75 data

types

The remainder of this paper is organized as follows. In Section 2, we introduce 22 categories

of features that are widely used in literature to describe file fragments. The architecture of

Fragments-Expert is presented in Section 3. For a user who is an expert in coding with

MATLAB, this section provides insight for modifying the toolbox for further functionalities.

On the other hand, this section can help a regular user to understand the structure of the toolbox.

In Section 4, the functionalities of the toolbox are presented. Generating fragments, feature

extraction, and feature selection are all described in this section. The processes of training, test,

and cross-validation with available machine learning methods are also explained in this section.

Data visualizing tools are also covered in this section. Finally, the processes of loading

previously generated datasets and results are explained in this section.

An illustrative example is provided in Section 5. This example demonstrates how the

toolbox functionalities can be employed in a practical problem. Finally, in Section 6, program

availability and limitations are discussed.

4

2 The Features Used in File Fragment Classification

In this section, we present the most common feature categories that are proposed in the

literature. These features are included in Fragments-Expert. So, when we describe these

features, our choices of implementations are also explained.

2-1 Byte Frequency Distribution

This feature type gives you a vector with length 260. The first 256 values are BFD values.

These values show the normalized frequency of byte values 0 to 255. 𝐵𝐹𝐷𝑖 is the normalized

frequency of byte value 𝑖 = 0,1, … ,255,

𝐵𝐹𝐷𝑖 = 𝑝𝑖 × 256,
(1)

where 𝑝𝑖 is the estimated probability of each byte value that is calculated as

𝑝𝑖 =
𝑓𝑖

𝐿
,

(2)

in which 𝑓𝑖 is the frequency of 𝑖th byte value and 𝐿 is the length of the fragment in bytes.

The other four features computed along with BFD are as follows. The first three features are

defined in [9].

 SdFreq: Standard deviation of byte frequencies

 ModesFreq: The sum of the four highest byte frequencies

 CorNextFreq: Correlation of the frequencies of byte values j and j+1

 ChiSq: The chi-square goodness of the fit test is a measure of randomness. Here we

are using this measurement to compare the observed distribution of byte values to a

uniform random distribution. For each byte value, we calculate the sum of the

squared differences between the observed frequency of the byte values in the

fragment and the expected frequency of the byte values in a uniform random

distribution divided by the expected frequencies as follows [34].

𝑇 = ∑
(𝑓𝑖 −

𝐿
256

)2

𝐿
256

.

𝑛=1

𝑖=0

(3)

Then we use chi2cdf(T,255,'upper') command to compute 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for

this test.

2-2 Rate of Change

Rate of change (RoC) is the vector consist of the frequencies of the absolute values of the

differences between consecutive byte values in a file fragment. If we denote a fragment of bytes

with length 𝐿 by 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐿], the 𝑗th element of RoC vector, 𝑗 = 1, 2, … , 𝐿 − 1, is

calculated as follows.

𝑦𝑗 =
|𝑥𝑖 − 𝑥𝑖+1|

𝐿 − 1
.

(4)

Then each element of the RoC vector is normalized as follows.

5

�̂�𝑗 = {

256 × 256

2 × (256 − 𝑗)
× 𝑦𝑗 𝑗 ≠ 0

256 × 𝑦𝑗 𝑗 = 0
. (5)

When the user includes this feature type in the feature extraction process, the mean of the

rate of changes is also calculated as a feature. So, in this case, the feature vector is a vector

with length 257.

2-3 Longest Contiguous Streak of Repeating Bytes

This feature is the normalized length of the longest contiguous streak of repeating bytes in the

fragment. For example, for vector

[12 123 123 123 43 123 43 43 43 43 43 123 43 76 54 54 54 54],

the byte value 43 is repeated consecutively five times. So, in this case, the output feature is

5/18.

2-4 n-grams

In this case, the frequencies of the bit sequences with length 𝑛 are calculated. This feature is

defined for bitstreams. So, the fragment of bytes is first converted to its equivalent binary form.

As an example, consider the binary vector [1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0] with length 16. To

calculate 2-grams for this vector, first, all possible combinations of zeros and ones with length

two must be counted. For example, the bit pattern 0 0 is repeated three times. So, the

normalized 2-gram value for this pattern is equal to
3

16−2+1
= 0.2.

When you include this feature type in the feature extraction process, you must choose the 𝑛

values in the next window of GUI. You can enter a vector of integer values for n. In this case,

n-grams for all the values in this vector will be calculated. In the current version, n values can

be any integer value from 1 to 13.

2-5 Byte Concentration Features

From the BFD values described in Section 2-1, three features are calculated [9]:

 Low: Sum of the 𝐵𝐹𝐷𝑖 values for 0 ≤ 𝑖 < 32.

 ASCII: Sum of the 𝐵𝐹𝐷𝑖 values for 32 ≤ 𝑖 < 128.

 High: Sum of the 𝐵𝐹𝐷𝑖 values for 192 ≤ 𝑖 < 256.

2-6 Basic Lower-Order Statistics

By selecting this feature type, seven different statistics are calculated as follows. First, three

different mean values, i.e. arithmetic, geometric, and harmonic, are calculated as follows.

𝜇𝐴 =
1

𝐿
 ∑ 𝑥𝑖

𝐿

𝑖=1

,
(6)

𝜇𝐺 = (∏ 𝑥𝑖

𝐿

𝑖=1

)

1
𝐿

,
(7)

and

6

𝜇𝐻 =
𝐿

∑
1
𝑥𝑖

𝐿
𝑖=1

. (8)

Moreover, the standard deviation (STD) is calculated as follows.

𝜎 = √
1

𝐿−1
 ∑ |𝑥𝑖 − 𝜇𝐴|2𝐿

𝑖=1 .
(9)

The mode value, which is the most frequently occurring value in 𝐱, is also calculated. The

median value, which is the median value among all values of 𝐱, is also calculated. Finally, the

MAD value, which is the mean absolute deviation of values, is calculated as 𝑚𝑒𝑎𝑛 (𝑎𝑏𝑠(𝐱 −

𝑚𝑒𝑎𝑛(𝐱))).

2-7 Higher-Order Statistics

The unbiased estimation of kurtosis and skewness is employed in Fragments-Expert.

Kurtosis estimation is calculated as follows

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐿 − 1

(𝐿 − 2)(𝐿 − 3)
((𝐿 + 1)𝐾 − 3(𝐿 − 1)) + 3, (10)

where 𝐾 is

𝐾 =
1

𝐿
 ∑ (𝑥𝑖−𝜇𝐴)4𝐿

𝑖=1

(
1

𝐿
 ∑ (𝑥𝑖−𝜇𝐴)2𝐿

𝑖=1)2
.

(11)

Moreover, skewness estimation is calculated as follows

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
√𝐿(𝐿−1)

𝐿−2
𝑆,

(12)

where 𝑆 is

𝑆 =
1

𝐿
 ∑ (𝑥𝑖−𝜇𝐴)3𝐿

𝑖=1

(√
1

𝐿
 ∑ (𝑥𝑖−𝜇𝐴)2𝐿

𝑖=1)3
. (13)

2-8 Bicoherence

Bicoherence is a higher-order statistic that measures the non-linearity and non-Gaussianity in

a given fragment of byte values. Here we computed the average bicoherence according to [35].

2-9 Window-Based Statistics

These features are defined according to [36]. For calculating these features you must at first

choose a window size 𝑊. Five statistics including delta moving average, delta2 moving

average, delta standard deviation, delta2 standard deviation, and deviation from the standard

deviation are obtained from the values in the file fragment using non-overlapping and

consecutive windows.

7

The moving average is calculated by taking the average of the mean of byte values in all

windows. If 𝜇𝑗; 𝑗 = 1,2, … , 𝐽 = ⌊
𝐿

𝑊
⌋ denotes the average of byte values in window 𝑗, the delta

moving Average is calculated as follows

∆𝜇 =
1

𝐽−1
 ∑ |𝜇𝑗+1 − 𝜇𝑗|𝐽−1

𝑗=1 . (14)

Moreover, delta2 moving average is calculated as follows

∆∆𝜇 =
1

𝐽−2
 ∑ ||𝜇𝑗+2 − 𝜇𝑗+1| − |𝜇𝑗+1 − 𝜇𝑗||𝐽−2

𝑗=1 . (15)

Similarly, if 𝜎𝑗; 𝑗 = 1,2, … , 𝐽 denotes the standard deviation of byte values in window 𝑗,

delta standard deviation, and delta2 standard deviation are respectively calculated as follows

∆𝜎 =
1

𝐽−1
 ∑ |𝜎𝑗+1 − 𝜎𝑗|𝐽−1

𝑗=1 , (16)

∆∆𝜎 =
1

𝐽−2
 ∑ ||𝜎𝑗+2 − 𝜎𝑗+1| − |𝜎𝑗+1 − 𝜎𝑗||𝐽−2

𝑗=1 . (17)

Finally, the deviation from the standard deviation is calculated as follows

𝑑𝜎 =
1

𝐽
∑ |𝜎𝑗 − 𝜎|𝐽

𝑖=1 . (18)

2-10 Autocorrelation

This feature is the sample autocorrelation of the input data fragment up to a specific lag value

ℓ. The sample autocorrelation measures the correlation between 𝑥𝑡 and 𝑥𝑡+𝑘, where 𝑘 =
1, … , ℓ. The sample autocorrelation for lag 𝑘 is

𝑟𝑘 =
𝑐𝑘

𝑐0
, (19)

where

𝑐𝑘 =
1

𝐿−1
∑ (𝑥𝑗 − 𝜇𝐴)(𝑥𝑗+𝑘 − 𝜇𝐴)𝐿−𝑘

𝑗=1 . (20)

Note that 𝑐0 = 𝜎2 is the sample variance of the fragment. By choosing this feature, you have

to specify the maximum lag value in the next window of the GUI.

2-11 Frequency Domain Statistics

As defined in [13], the frequency spectrum of a vector (in or context, a fragment) can be divided

into equal sub-bands. Then the features of mean, variance, and skewness are extracted for each

sub-band. For example, if the number of sub-bands is equal to four, 12 frequency-domain

statistics are extracted. You can set the number of sub-bands from 1 to 8.

2-12 Binary Ratio

The definition of Binary Ratio (BRO) is obtained from [14] and is calculated over the bitstream

(i.e. the equivalent binary form of the fragment). Each byte value is converted to an 8-bit

representation. If 𝐛 = [𝑏1, 𝑏2, … , 𝑏8×𝐿] denotes the equivalent binary form of the fragment, the

Binary Ratio is defined as follows.

8

BRO =
∑ (1−𝑏𝑖)𝐿

𝑗=1

∑ 𝑏𝑖
𝐿
𝑗=1

.
(21)

2-13 Entropy

In this case, two statistics are obtained for the fragment: entropy and the difference between L-

truncated entropy of uniform distribution [37] and the value of obtained entropy.

Entropy in information theory is a measure of the uncertainty of a sequence. In our case, in

which we have a fragment with length 𝐿, the Shannon entropy is defined as

𝐻 = − ∑ 𝑝𝑖 log2 𝑝𝑖

255

𝑖=0

.
(22)

The L-truncated entropy of a uniform distribution can be approximated as [37]

𝐻𝐿(𝑈) ≅ log 𝑚 + log 𝑐 − 𝑒−𝑐 ∑
𝑒𝑗−1

(𝑗−1)!
log 𝑗+∞

𝑗=1 ,
(23)

where 𝑚 is the number of possible byte values (which, in this case, is 256) and 𝑐 =
𝐿

𝑚
.

2-14 Video Patterns

Some video formats have repeating patterns in their payload. The occurrence rate of these

patterns can be used to determine the format of a file fragment. Here, we count the occurrences

of these patterns and to make the resulting number independent of the length of the fragment

and also the length of the pattern, we normalize it as follows

𝑓𝑟𝑞

𝐿 − 𝑙𝑝 + 1
× 28×𝑙𝑝 , (24)

where 𝑓𝑟𝑞 is the number of occurrences of the pattern in the fragment and 𝑙𝑝 is the length of

the pattern in bytes. Here, 17 patterns are considered. These patterns correspond to five

different video formats. So, in this case, the feature vector contains 17 normalized pattern

frequencies. In Table 2, employed video patterns are presented. The patterns for MKV, AVI,

RMVB, and MP4, are proposed in [38].

9

Table 2: Different byte patterns for video formats presented in hexadecimal format.

Format Pattern(s)

MKV 0xA0

0xA3

AVI 0x30306463

0x30317762

RMVB 0x0000

0x0001

OGV 0x4F676753

MP4 0x419A

0x019E

0x019F

0x419B

0x6742

0x419E

0x419F

0x6588

0x68CE

0x6588

2-15 Audio Patterns

This feature type calculates the normalized frequencies of specific audio bit patterns (i.e. sync

words) in a file fragment. First, each byte value is converted to an 8-bit representation. Then,

similar to the calculation of video patterns, normalization is applied to make the count of the

occurrences independent of the length of the fragment and also the length of the pattern. In

Table 3, the employed audio patterns are presented.

Table 3: Different bit patterns for audio formats [39].

Format Pattern

MP3 1111 1111 1111

FLAC 1111 1111 1111 10

2-16 Kolmogorov Complexity

The Kolmogorov complexity of a fragment is a measure of the computational resources needed

to specify the fragment. But, no general algorithm can determine this complexity. We employ

the method of [40] for estimating this complexity. For the sake of run-time speed, this function

is written in C-MEX format.

10

2-17 False Nearest Neighbors and Lyapunov Exponents

Two chaotic features false neighbors fraction (FNF) and Lyapunov exponent (LE) are

implemented in Fragments-Expert. Hicsonmez et al employed chaotic features for the

identification of audio codecs [13]. The concept of the chaotic features is based on the

neighborhood of the signal vectors. Let’s define the signal vector 𝐬𝒊 = [𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+(𝐷−1)],

where 𝐷 is the embedding dimension of the phase space. The distance between two nearest

neighbors is defined as

𝑑𝐷(𝐬𝑖, 𝐬𝑗) = √∑(𝑥𝑖+𝑘 − 𝑥𝑗+𝑘)2

𝐷−1

𝑘=0

,
(25)

where 𝐬𝑗 is the nearest neighbor of 𝐬𝑖 on a nearby trajectory. If 𝑑𝐷(𝐬𝑖, 𝐬𝑗) is significantly

different from 𝑑𝐷+1(𝐬𝑖, 𝐬𝑗), then 𝐬𝑖 and 𝐬𝑗 are considered to be a pair of false neighbors. After

labeling all neighbors as true or false, the FNF is defined as the ratio of false neighbors to all

neighbors [13]. So, we can define the feature vector 𝐹𝐷 with three components: the fraction of

false neighbors, the average size of the neighborhood, and the root mean squared (RMS) size

of the neighborhood.

𝐹𝐷 = {𝐹𝑁𝐹, 𝑚𝑒𝑎𝑛 (𝑑𝐷(𝐬𝑖 , 𝐬𝑗)) , 𝑅𝑀𝑆𝐸 (𝑑𝐷(𝐬𝑖, 𝐬𝑗))}
(26)

The Lyapunov exponent is a chaotic feature that quantifies the predictability of a signal. A

system with a greater magnitude of LE is said to be more unpredictable [13]. The LE is

calculated for each embedding dimension D as

𝜆𝐷 = lim
𝐾→+∞

1

𝐾
∑ log

𝑑𝐷(𝐬𝑖+1, 𝐬𝑗+1)

𝑑𝐷(𝐬𝑖, 𝐬𝑗)

𝐾

𝑖=1

. (27)

When you choose this feature type, you have to provide three parameters: the ratio factor,

which is used to determine the false neighbors, and the minimum and maximum values for

embedding dimensions. For the sake of run-time speed, this function is written in C-MEX

format.

2-18 GIST Features

Ming Xu et al expressed that a vector of byte values (i.e. a fragment) can be reshaped into a

matrix and regarded as a grayscale image [41]. So, they used GIST Descriptor that performs

very good in scene and object classification [42]. To transform a fragment to a grayscale image

and extracting GIST features, some parameters have to be set: Image row size, the number of

non-overlapping windows in each dimension, which we denote by 𝑀, and the number of

orientations for each scale. The last parameter is a vector of integer values which we denote by

[𝑂1, 𝑂2, …]. The result of this type of feature extraction is a feature vector with length 𝑀2 ∑ 𝑂𝑖𝑖

2-19 Longest Common Substrings and Longest Common

Subsequences

We define the longest common substring of two fragments to be the longest byte pattern

existing in both fragments. A subsequence of a byte stream is any sequence of bytes obtained

by deletions from the original. Accordingly, we can define the longest common subsequence

of two fragments.

11

To define the longest common substring and the longest common subsequence features, we

need certain fragments, which are called representatives. For each fragment in the dataset, the

longest common substring and the longest common subsequence between that fragment and

each representative are calculated. When using these features you have to select which class

you want the representatives to be obtained from and where in the dataset the representatives

should be taken (i.e. from the beginning of dataset, end of the dataset, or random positions in

the dataset). Also, you must input the number of representative samples for the selected class.

Corresponding to each representative class, two features are computed for a fragment: the

average length of the longest common substrings and the average length of the longest common

subsequences. For the sake of run-time speed, this function is written in C-MEX format.

2-20 Centroid Models

Using a class of representatives, you can obtain a measure of similarity between the byte

frequency distribution of that class instances and the investigated fragment. The value of

similarity can then be used as a feature for classification.

In Fragments-Expert, we have implemented two similarity measures: cosine similarity and

Mahalanobis distance. When you select this feature type, you are asked to select the classes of

representatives for centroid models among all class labels. Then you must enter the number of

representatives for each class and where in the dataset the representatives should be taken.

After the parameters are set, BFD of the representative instances is calculated. Then for each

byte value of the BFD, the mean and the standard deviation values are calculated. This mean

and standard deviation values form a centroid model. By denoting the mean and the standard

deviation BFD values of the representative instances by 𝜇𝑖
𝑐 and 𝜎𝑖

𝑐 (𝑖 = 0,1, … ,255), we

calculate the similarity features for each investigated fragment using

CosineSimilarity =
∑ (𝐵𝐹𝐷𝑖 × 𝜇𝑖

𝑐)𝑖

√∑ 𝐵𝐹𝐷𝑖
2

𝑖 × √∑ 𝜇𝑖
𝑐2

𝑖

 (28)

and

MahalanobisDistance = √∑
(𝐵𝐹𝐷𝑖 − 𝜇𝑖

𝑐)2

(0.01 + 𝜎𝑖
𝑐)𝑖

 ,
(29)

where 𝐵𝐹𝐷𝑖 is the normalized frequency of byte values 𝑖 = 0,1, … ,255 in the examined

fragment.

3 Toolbox Architecture

Figure 1 shows the four main modules of Fragments-Expert: Fragments Generation, Feature

Extraction/Selection, Classification of Fragments, and Data Visualization. In each module,

multiple tools are available that enable the researchers to simply examine the effect of different

feature types and classification methods.

12

 Fragments Generation: Using Fragments-Expert, you can generate fragments with

specific parameters from raw multimedia files. This procedure is explained in

Section 4-1.

 Feature Extraction/Selection: Most common feature types are available in

Fragments-Expert. In Section 4-2, generating a dataset of features is presented. The

details of these features are discussed in Section 2. In Section 4-3, generating a

dataset for an already trained decision machine is discussed. Two common feature

selection algorithms are also implemented in Fragments-Experts that are described

in Section 4-4. Various operations on datasets (such as randomization of Datasets)

are also available in Fragments-Expert. These operations are explained in Section 4-

5.

 Classification of Fragments: To classify file fragments into file formats, the user

can employ various common machine learning methods. Training, test, and cross-

validation are provided for each method. The processes for training, test, and cross-

validation are explained in Sections 4-6, 4-7, and 4-8, respectively.

 Data Visualization: This module offers some tools for visualizing data samples.

Visualization tools are explained in Section 4-9.

Figure 1: Four main modules of Fragments-Expert.

Figure 2: The structure of the source folder of Fragments-Expert.

Fragments-
Expert

Fragments
Generation

Feature
Extraction and

Selection

Classification of
Fragments

data
Visualization

13

As can be seen in Figure 2, the toolbox source folder includes seven subfolders and an m-

file named Main_FFC.m. By running Main_FFC, the GUI of the toolbox will open. All the

toolbox functionalities are available through this GUI. These functionalities are discussed in

Section 4. A regular user needs only to interact with this GUI.

The seven subfolders in the toolbox source folder are as below. Understanding the structure

of these subfolders helps an expert-user in MATLAB to modify the toolbox for further

functionalities.

 00_Tools: This subfolder contains various tools. These tools are as follows.

 A class of these tools, which are called “Dataset Tools”, are the tools that

provide functionalities of loading, expanding, random permutation, and

partitioning datasets. Also, the tools for merging labels in a dataset or extracting

a sub-dataset from a dataset are among these tools. Another tool is a tool for

scaling the features in a dataset to a range.

 Another class of these tools, which are called “Decision Machines Tools”, are

the tools that provide functionalities of loading decision machines and also the

test and cross-validation results of decision machines. Two other tools in this

class of tools are the tools used for constructing the confusion matrix of

classification results and also scaling the rows of confusion matrix to percent

values. Another tool is a tool that assigns weights to the samples of a dataset

according to a weighting strategy.

 Another class of the tools is “Files and Fragments Tools”. This class of tools

helps to determine the number of subfolders and files in a given folder, together

with their names and sizes. Also, a useful tool, which is written as an m-file

named TakeRandomFragments_FFC, enables the functionality of

extracting random fragments from a file. Another useful tool, which is written

as an m-file named SetVariableNames_FFC, provides a GUI to guide the

user to assign valid MATLAB variable names to a group of labels.

 Another class of the tools, which are called “User Interface Tools”, are the tools

that provide functionalities for the toolbox GUI such as displaying decision

machines, presenting cross-validation and test results, getting the value of

tunable parameters from the user, checking the user-assigned values to the

parameters, etc.

 01_DecisionMachines: This folder contains various functions for training and testing

seven decision machines models: decision tree, support vector machine (SVM), random

forest, ensemble k-nearest neighbors (k-NN), linear discriminant analysis (LDA), naïve

Bayes, and neural network. The MATLAB machine learning toolbox is employed by

these functions to provide simple and ready-to-use functionalities for file fragment

classifications. In other words, the core of the learning algorithms is taken from

MATLAB machine learning toolbox, and for user convenience, the parameters are set

within the GUI of Fragments-Expert.

 02_FeatureExtraction: This folder contains the functions for extracting the features

described in Section 2. As mentioned before, for the sake of run-time speed, some of

these functions are written in C-MEX format. These features are categorized into nine

subcategories that are located in nine subfolders as follows.

14

 Lower-Order Statistics: Basic lower-order statistics (described in Section 2-

6), window-based statistics (described in Section 2-9), and autocorrelation

(described in Section 2-10) are in this category.

 Higher-Order Statistics: These features are described in Section 2-7.

 Frequency Domain Features: These features are described in Sections 2-11

and 2-8.

 Bit Patterns: Audio patterns and n-grams are the feature types in this category.

These features are described respectively in Sections 2-15 and 2-4.

 Byte Distribution Features: BFD, RoC, longest contiguous streak of repeating

bytes, and byte concentration features are the feature types in this category.

These features are described in Sections 2-1, 2-2, 2-3, and 2-5.

 Byte Patterns: Video patterns presented in Section 2-14 are in this category.

 Randomness Features: Binary ratio, entropy, false nearest neighbors,

Lyapunov exponents, and Kolmogorov complexity are the feature types in this

category. These features are described in Sections 2-12, 2-13, 2-17, and 2-16.

 Similarity Features: Longest common substrings, longest common

subsequences, and centroid models are the feature types in this category. These

features are described in Sections 2-19 and 2-20.

 Texture Features: These features are described in Section 2-18.

 11_ScriptsForDecisionMachines: This subfolder contains MATLAB script files for

training, testing, and cross-validation of decision machines. These scripts are called

from the GUI callback functions. Moreover, the scripts for loading decision machines

and also the test and cross-validation results of decision machines are placed in this

folder.

 12_ScriptsforDatasets: This subfolder contains MATLAB script files for generating

and dealing with datasets, which includes generating fragments from raw multimedia

files, generating a dataset of features, generating a dataset of features for a previously

trained decision machine, and loading previously generated datasets. Also, the scripts

for expanding, random permutation, and partitioning datasets are placed in this

subfolder. Moreover, the scripts for merging labels in a dataset or extracting a sub-

dataset from a dataset can be located in this subfolder. All these scripts are called from

the GUI callback functions.

 13_ScriptsforVisualization: This subfolder contains two MATLAB script files. These

scripts are called from the GUI callback functions. The details of these scripts are

presented in Section 4-9.

 Script Script_Plot_FeatureHistogram_FFC plots the histogram of

feature values for one or more classes of samples.

 Script Script_Plot_Samples_in_FeatureSpace_FFC displays the

distribution of data samples in 2-Dimensional (2-D) or 3-Dimensional (3-D)

feature spaces.

 14_FeatureSelection: This subfolder contains two MATLAB script files. These scripts

are also called from the GUI callback functions. The details of these scripts are given

in Section 4-4.

15

 Script Script_SequentialForward_FeatureSelection_FFC implements a

sequential forward feature selection strategy.

 Script Script_SequentialForward_FeatureSelection_FFC implements an

embedded feature selection strategy using decision tree model.

4 Toolbox Functionalities

By running Main_FFC, the GUI of Fragments-Expert will open. The overall appearance of

the GUI is shown in Figure 3. In the following sub-sections, we present the toolbox

functionalities. All these functionalities are available from the designed GUI.

Dataset generation and manipulation is the main capability of Fragments-Expert. You can

generate a dataset of fragments from raw multimedia files in the form of generic binary data

files. After that, these binary files can be used to generate a dataset of file fragment features.

Many feature types, including all commonly used features, are available in the toolbox. You

can also generate a dataset for an already trained decision machine.

Figure 3: The overall appearance of Fragments-Expert GUI.

4-1 Generating Dataset of File Fragments

To extract fragments from raw multimedia files, click on the “Convert Raw Multimedia to

Fragments Dataset” submenu in the “Dataset” menu. By clicking on this item, a new window,

as shown in Figure 4, will open. In this stage, you should choose the parameters for generating

the fragments as follows.

 The first input is an integer (or a vector of integers) representing the size(s) of

generated fragments in bytes. If you specify a vector, the generated fragments are

with lengths that are taken randomly and independently from this vector.

 The second input determines the percent of fragments from the beginning of the file

that should be discarded

16

 The third input determines the percent of fragments from the end of the file that

should be discarded

 The last input is the maximum number of fragments taken from each file.

Figure 4: Parameters for generating the fragments.

After filling the parameters in and hitting the OK button, you are prompted to select the

main folder that contains the multimedia files. Note that this should be the directory that

contains some folders, in which the raw files are stored. It is assumed that the file types in each

subfolder are the same. After that, you must select the folder in which you want the fragments

to be stored. Note that the second folder that you select should not be a subfolder of the first

folder. In other words, you must choose a completely different directory or the action will be

aborted. After that, the file fragments generation starts. Corresponding to each subfolder, a

generic binary data file with .dat extension is created that contains the fragments taken from

the files of that subfolder. The total number of fragments for each class (i.e. each subfolder) is

shown in the main text window of the toolbox.

4-2 Generating Dataset of Features

For generating a dataset of features from generic binary data files, click on the “Generate

Dataset from Generic Binary Files of Fragments” submenu in the “Dataset” menu. In the next

window, a list of feature types is shown as follows.

 Byte Frequency Distribution

 Rate of Change

 Longest Contiguous Streak of Repeating Bytes

 n–grams

 Byte Concentration Features: Low, ASCII, and High

 Basic Lower-Order Statistics: Mean, STD, Mode, Median, and MAD

 Higher-Order Statistics: Kurtosis and Skewness

 Bicoherence

 Window-Based Statistics

17

 Auto-Correlation

 Frequency Domain Statistics (Mean, STD, Skewness)

 Binary Ratio

 Entropy

 Video Patterns

 Audio Patterns

 Kolmogorov Complexity

 False Nearest Neighbors

 Lyapunov Exponents

 GIST Features

 Longest Common Subsequence

 Longest Common Substring

 Centroid Model

From the displayed list, select the features that you want to be extracted from your

fragments. You can multi-select from the list using the Ctrl key. After that, hit the OK button.

If your selected features require any parameters, another window will be opened to fill in the

parameters. Then you must select the generic binary data files containing the fragments. Each

file in .dat format represents a category (i.e. a class label). A progress bar is shown during

reading the fragments. After reading the fragments, the toolbox wants you to confirm variable

names corresponding to class labels. Here you can choose any desired name for each category.

After confirming the names, the feature extraction process starts. Once, this process is

completed, you should save the generated dataset of features. The dataset will be loaded in the

toolbox environment under the “Generated/Loaded Datasetˮ section (see Figure 5); from there,

you can view the classes and features. The number of data samples in each class is equal to the

number of fragments in the corresponding .dat file.

Figure 5: An example of a generated dataset with six classes and seven features in the toolbox

environment.

4-3 Generating Dataset for a Decision Machine

You may have a previously trained decision machine and now you want to generate a new

dataset that its feature set is matched to this already trained decision machine. To do that, first,

the previously trained machine must be loaded in the toolbox (see Section 4-10). Then click on

the “Generate Dataset (for Decision Machine) from Generic Binary Files of Fragments”

submenu in the “Dataset” menu.

18

The next steps are quite similar to the steps explained in section 4-2; except now you don’t

need to select any feature type. The dataset is generated automatically and then, after saving

on the disk, it is loaded in the toolbox environment.

4-4 Feature Selection

When you create a dataset of features, you may have many features that most of them might

be useless in the classification process. To obtain more relevant features and achieve less

computational cost in training decision machines, we need to employ some feature selection

methods. Sometimes as an expert in the field, you can determine the features that contribute

most to your classification scenario. However, manually selecting the features could be very

hard or time-consuming. In Fragments-Expert, we have implemented two useful and simple

feature extraction methods.

Embedded Method

Embedded methods refer to techniques that select the features during the training phase. The

learning algorithm itself selects the features as a step of the learning. The most typical

embedded method is the decision tree.

In each training step, a decision tree selects the best feature based on a goodness measure.

So, as we go upper in a trained tree, the decisions are made based on more relevant features.

We can take advantage of this property and turn the decision tree into a feature selector.

To use this method, first, the dataset must be loaded in the toolbox (see Section 4-10). Then

click on the “Embedded: Decision Tree” submenu in the “Feature Selection” menu. Since you

are about to train a decision tree, you must input the parameters similar to the parameters

described in Section 4-6. After the parameters are set and the training phase is completed, you

will see a list of selected features sorted based on the relative node sizes. You can select among

these features. Finally, the new feature set is created and loaded in the toolbox after saving it

on the disk.

Wrapper Method

Wrapper methods search through different possible subsets of the feature set. These methods

evaluate each subset by the accuracy of the learning algorithm. Note that for large problems,

this method is very time-consuming.

In Fragments-Expert we have employed LDA as the core learning algorithm for this type of

feature selection method. To apply this method, first, load the dataset in the toolbox

environment. Then, click on the “Wrapper: Sequential Forward Selection with LDA” submenu

in the “Feature Selection” menu. LDA is used with cross-validation in a forward selection

scenario to select the features. To get an understanding of LDA and cross-validation refer to

Sections 4-6 and 4-8. During the feature selection process, the included features and

corresponding accuracies are listed in the toolbox. After the process is completed, you can see

a list of selected features. You can select the final selected features among these features.

4-5 Operations on Datasets

In the Fragments-Expert environment, you can apply some operations on a dataset including

random permutation of samples in a dataset, merging two datasets, merging class labels within

a dataset, and generating sub-dataset from a dataset.

19

Random Permutation of a Dataset

This process randomly permutes the samples in a dataset. Each sample contains the features

that describe a specific fragment. Note that the permutation is performed in a way that the

fragments of a single file stay together.

To permute the samples in a dataset, first, the dataset must be loaded in the toolbox. Then,

you should click on the “Random Permutation of Dataset” submenu in the “Dataset” menu.

Then you must save the permuted dataset.

Merge Two Datasets

This part of Fragments-Expert helps you to add features to an already created dataset. In this

case, the dataset with the new feature set of the same fragments must be loaded in the toolbox.

To add the features of this loaded dataset to an already saved dataset, click on the “Expand

Dataset” submenu in the “Dataset” menu. Then you must select the old dataset. Note that both

datasets must have matching dataset sizes, output labels, and file identifiers.

Merge Labels in a Dataset

Sometimes you may want to merge labels in a dataset to form more general class labels. To do

so, the dataset must be loaded first. Then click on the “Merge Labels in Dataset” submenu in

the “Dataset” menu. A window will open. There you can multi-select the classes you want to

merge their labels. If this process needs to be done for other classes click on the OK button, if

not click on the cancel button. In Figure 6, an example is shown. In this example, we are

merging the samples of AAC codec with different bitrates into one general label AAC. After

selecting the merged labels, you need to confirm the labels for the merged classes. In Figure 7,

an example is shown.

20

Figure 6: An example of selecting seven different labels to merge them into one class label.

21

Figure 7: An example of confirming labels for merged class labels.

Generating Sub-Datasets from a Dataset

This feature of Fragments-Expert helps you to select a subset of dataset classes and/or features.

When the original dataset is loaded, click on the “Select Sub-Dataset” submenu in the “Dataset”

menu. In the next window, you can multi-select the classes you want to keep. Then you can

select among features. For both classes and features, if you want to keep all of them, select all.

4-6 Train a Decision Machine for File Fragments Classification

Using Fragments-Expert, you can apply several machine learning algorithms and methods on

your dataset. You can train, test, and cross-validate a model. The currently available machines

are decision tree, SVM, random forest, ensemble k-NN, linear discriminant analysis, naïve

Bayes, and neural network. In the following sections, more details are presented.

To train a decision model, first, your dataset must be loaded in the toolbox environment.

Then you should click on the “Train Decision Machine” submenu in the “Learning” menu. In

the next window, you should select a decision model among decision machines. After selecting

22

the decision model, you must provide some parameters. For each model, some default

parameters are set; however, you may want to modify them to what works best for your

experiment.

Three general parameters are required for all decision machines:

 The weighting method: This parameter determines whether the frequency of

instances of each class label should be considered or not. If the weighting method

“balancedˮ is chosen, the sample weights are set in a way that implies similar

importance of all classes in the learning process. On the other hand, if the weighting

method “uniformˮ is chosen, the classes with a larger number of samples are

considered as more important classes.

 Start and end of the train/validation in the dataset: This parameter is a vector of

length two with elements in the range of [0 1] that determines the relative position

of the start and the end of the train/validation in the dataset. Note that 0 corresponds

to the first sample in the dataset and 1 corresponds to the last sample in the dataset.

 Train and validation percentages taken from the dataset: This parameter is a vector

of length two with a sum of elements equal to 100. The first element determines the

percent of training data in the train/validation set. According to the toolbox settings,

at least 70% of the train/validation set should be dedicated to the training phase.

For most of the decision models, the method for feature scaling is also prompted. The scaling

method can be either standardization (also called z-score) or min-max normalization. Assume

that we have 𝑆 samples in the training phase, where each of them is defined by 𝐹 features. For

example, assume that 𝑓𝑖,𝑗; 𝑗 = 1,2, … , 𝑆 are the values of the features 𝑓𝑖; 𝑖 = 1,2, … , 𝐹 over all

samples. If we denote the scaled feature values by 𝑓𝑖,𝑗, for z-score scaling, we have

𝑓𝑖,𝑗 =
𝑓𝑖,𝑗 − 𝜇𝑓,𝑖

𝜎𝑓,𝑖
,

(30)

where 𝜇𝑓,𝑖 and 𝜎𝑓,𝑖 are respectively the mean and standard deviation for values 𝑓𝑖,𝑗; 𝑗 =

1,2, … , 𝑆. Furthermore, for min-max normalization we have.

𝑓𝑖,𝑗 =
𝑓𝑖,𝑗 − 𝑎𝑓,𝑖

𝑏𝑓,𝑖 − 𝑎𝑓,𝑖
, (31)

where 𝑎𝑓,𝑖 and 𝑏𝑓,𝑖 are respectively the minimum and maximum values among 𝑓𝑖,𝑗; 𝑗 =

1,2, … , 𝑆.

After setting all parameters for training and pressing the OK button, a progress bar indicates

the progression of the training process and the remaining time. After the training phase

completion, the trained model is loaded in the toolbox environment. Also, the training

parameters and results are shown in the main text window of the toolbox. The confusion

matrices for training and validation are also shown in the command window. Figure 8 displays

the results of an example with the LDA decision model.

23

Figure 8: An example displaying training parameters and results in the main text window of the toolbox.

Train a Decision Tree

To train a decision tree, besides the general parameters, you need to input the minimum relative

number of leaf node observations to total samples. This relative number is then multiplied by

the size of the training set. The result is the minimum number of observations per tree leaf.

Note that the validation percent for the decision tree should be at least 15%.

When the training is completed, a figure window will open to display the trained tree. Also,

you are prompted to save the trained model. In Figure 9 an example is shown.

Figure 9: A very simple trained decision tree.

24

Train a Multi-Class Support Vector Machine Classifier

In Fragments-Expert, a multi-class SVM classifier is trained by a one-versus-all strategy, in

which one binary classifier is trained per class. To train a multi-class SVM, besides the general

parameters, you need to provide some other parameters. These parameters are as follows.

 Value for box constraint in SVM: This number should be a positive real number.

 Kernel function for SVM: You can choose rbf, linear, or polynomial.

 Polynomial order for polynomial kernel function: This number, which is denoted by

𝑞, should be an integer from 1 to 7.

 Value for scaling kernel of SVM: This number, which is denoted by 𝑐, should be a

positive real number.

SVM algorithm assigns a box constraint to each observation in the training data. A box

constraint is a parameter that controls the maximum penalty imposed on margin-violating

observations. A kernel function is used to compute the elements of the Gram matrix. Each

element of the Gram matrix is an inner product of the transformed predictors (i.e. features)

using the kernel function. Suppose 𝐺(𝐟𝑗 , 𝐟𝑘) is element (𝑗, 𝑘) of the Gram matrix, where 𝐟𝑗 =

[𝑓1,𝑗, 𝑓2,𝑗, … , 𝑓𝐹,𝑗] and 𝐟𝑘 = [𝑓1,𝑘, 𝑓2,𝑘, … , 𝑓𝐹,𝑘] are F-dimensional normalized feature vectors

representing samples 𝑗 and 𝑘 in the training set. In Table 4, a brief description of kernel

functions is given.

Table 4: Different SVM kernels.

Kernel Function Description Formula

rbf Radial Basis Function 𝐺(𝑓𝑗 , 𝑓𝑘) = e−‖ 𝐟𝑗−𝐟𝑘‖
2

c2⁄

linear Linear 𝐺(𝑓𝑗 , 𝑓𝑘) = 𝐟𝑗𝐟𝑘
𝑇

c2⁄

polynomial A polynomial with order 𝑞 𝐺(𝑓𝑗 , 𝑓𝑘) = (1 + 𝐟𝑗𝐟𝑘
𝑇

c2⁄)𝑞

Train a Random Forest

To train a Random Forest, besides the general parameters, you need to choose the number of

trees in the random forest and the minimum relative number of leaf node observations to total

samples in each tree. This relative number is then multiplied by the size of the training set. The

result is the minimum number of observations per tree leaf.

Train an Ensemble of k-Nearest Neighbors Classifiers

To train an ensemble k-NN classifiers, besides the general parameters, you need to provide

some other parameters. These parameters are as follows:

 the number of randomly selected features for each k-NN learner,

 the number of k-NN learners in the ensemble,

 and the number of nearest neighbors for classifying each sample.

file:///C:/Program%20Files/MATLAB/R2018a/help/stats/fitcsvm.html%23bt7nhte-3

25

Train a Naïve Bayes Classifier

For this classifier, no additional input parameters are asked by the toolbox. The naïve Bayes

model is trained with the following default parameters.

 Data distribution: Kernel smoothing density estimate is used to model the data.

 Kernel smoother type: Gaussian is set as the kernel smoother type.

Train a Linear Discriminant Analysis Classifier

You can use the LDA classifier to classify fragments based on their feature distribution. The

model assumes data has a Gaussian mixture distribution. Since the discriminator in the current

version of Fragments-Expert is pseudo-linear, the model assumes the same covariance matrix

for each class, and only the means vary.

Train a Neural Network

You can train a neural network to classify training data. In the current version of Fragments-

Expert, two-layer pattern recognition neural network model is considered. So, besides the

general parameters, you need to input the dimension of the hidden layer.

The training function updates weight and bias values according to the scaled conjugate

gradient method. Moreover, cross-entropy is used as a measure for network performance.

4-7 Test a Trained Decision Machine

To test any trained model, the already trained machine and a compatible dataset must be loaded

in the toolbox environment. Note that the dataset must be compatible; i.e. the feature set of the

dataset must be the same as the feature set used for training the model. You must provide the

start and the end of the test samples in the dataset and also the weighting method.

After the test procedure is completed, the test result can be saved. The test parameters and

results are shown in the main text window of the toolbox.

Figure 10 shows an example. In this example, we have trained a decision tree for an audio

codec dataset. The dataset contains 20 audio file formats and the first 256 BFD features along

with the first 256 RoC features are considered as features. Now we want to test the performance

of this trained tree for classifying image file formats. We generate a dataset of features for four

image file formats using the procedure explained in Section 4-3. After running the test

procedure, the test result is displayed. Moreover, you can save these results.

26

Figure 10: The toolbox environment after the test procedure.

4-8 Cross-Validation for a Decision Model

To obtain the optimal parameters for a decision model or to assess the average performance of

a learning method, you can use cross-validation. To use cross-validation, first, your dataset

must be loaded in the toolbox environment. Then, you should click on the “Cross-Validation

of Decision Machine” submenu in the “Learning” menu. In the next window, you can select

among decision machines. Besides the parameters for each machine, you must choose the K

value for K-fold cross-validation. When the procedure is completed, the cross-validation result

is shown in the main text window of the toolbox. The cross-validation confusion matrices are

also shown in the command window of MATLAB.

4-9 Data Visualization

Visualization tools are available to give a better understanding of the distribution of feature

values among data samples. In the current version of Fragments-Expert, you can plot a feature

histogram or display the distribution of data samples in feature space.

Plot Feature Histogram

You can plot the histogram of one or more features for one or more selected class labels. To

do so, click on the “Plot Feature Histogram” submenu in the “Visualization” menu. In the next

window, select among features. For each chosen feature a separate histogram will be plotted.

After confirming the feature label(s), you must choose the desired class label. You can select

more than one class. Now you must again confirm the class labels. In the next window, you

27

should set the number of bins for the histogram and the subplot organization. After that, press

the OK button. Figure 11 shows an example of a histogram.

Figure 11: An example of a histogram plot.

Display Samples in Feature Space

You can display samples of multiple class labels in a feature space. You can select two or three

features to form a 2-D or 3-D feature space, in which, each sample of the dataset is represented

as a data point.

To do so, click on the “Display Samples in Feature Space” submenu in the “Visualization”

menu. In the next window select two or three features. Also, you should select some classes.

In this process, you must also confirm the feature and class labels. Afterward, you can see the

distribution of samples in the selected feature space. In Figure 12, an example of a 3-D feature

space representation is shown.

28

Figure 12: An example of displaying samples in a 3-D feature space.

4-10 Loading Previously Generated Data and Results

If you have saved a dataset, a decision machine, a test result, or a cross-validation result, you

can load them again in the toolbox.

Load Dataset

To load a dataset, click on the “Load Dataset” submenu in the “File” menu. Select the dataset

in your device. When the dataset is loaded, you can view class labels and features.

Load Decision Machine

To load a decision machine, click on the “Load Decision Machine” submenu in the “File”

menu. Select the trained machine. When the decision machine is loaded, you can see the

validation accuracy.

Load Test Results

To load a test result, click on the “Load Test Results” submenu in the “File” menu. Select the

test results. When it is loaded, you can click on “View Test Results” to see the test results.

Load Cross-Validation Results

To load a cross-validation result, click on the “Load Cross-Validation Result” submenu in the

“File” menu. Select the cross-validation results. When it is loaded, you can click on “View

Cross-Validation Results” to see the result of cross-validation. In this case, you can see the

confusion matrices in the command window.

29

5 An Illustrative Example

In this section, we present an example of file fragment classification for textual file formats.

We employ the dataset presented in [43]. We consider five file formats DOC, DOCX, PDF,

RTF, and TXT. For simplicity, we consider only the fragments of the English textual files. So,

the data files corresponding to these five formats are DOC-EN.dat, DOCX-EN.dat, PDF-

EN.dat, RTF-EN.dat, and TXT-EN.dat. Each data file contains 1500 fragments. The length of

all fragments is equal to 1024 bytes.

5-1 Generating Dataset of Features

For generating a dataset of features from the above-mentioned generic binary data files, we

click on the “Generate Dataset from Generic Binary Files of Fragments” submenu in the

“Dataset” menu. Then, as shown in Figure 13, a window is opened. In this window, a list of

feature types is shown. We select the following features and press the OK button: BFD, RoC,

the longest contiguous streak of repeating bytes, n-grams, byte concentration features, basic

lower-order statistics, higher-order statistics, window-based statistics, auto-correlation,

frequency domain statistics, and entropy.

Then, as shown in Figure 14, another window is opened to fill in the parameters for the four

categories of features: n-grams, window-based statistics, frequency domain statistics, and auto-

correlation. For n-gram, we choose to extract both 2-grams and 3-grams features. For window-

based statistics, we choose a window size of 256 bytes. For frequency-domain statistics, the

number of sub-bands is set equal to 4. Moreover, for the auto-correlation feature, the maximum

lag value is set equal to 5. After, setting the parameters for feature extraction, we press the OK

button.

After that, as shown in Figure 15, a window is opened to get the data files of fragments. In

this stage, we select the following files and press the OK button: DOC-EN.dat, DOCX-EN.dat,

PDF-EN.dat, RTF-EN.dat, and TXT-EN.dat. After reading the fragments, as shown in Figure

16, the toolbox shows a text box to confirm the variable names corresponding to five class

labels. We confirm the default variable names DOC_EN, DOCX_EN, PDF_EN, RTF_EN, and

TXT_EN.

After confirming the variable names, the feature extraction process starts. Once, this process

is completed, the user is prompted to save the generated dataset (see Figure 17). We choose

the default name “mydataset.matˮ and press the save button. Now, the dataset is also loaded in

the toolbox environment. Under the “Generated/Loaded Datasetˮ section, we can see that the

dataset consists of five classes and 566 features. By pressing the “View Featuresˮ button, the

list of the features is shown (see Figure 18).

30

Figure 13: Illustrative example: selecting the features to be extracted.

31

Figure 14: Illustrative example: determining the parameters for feature extraction.

Figure 15: Illustrative example: selecting data files of fragments.

32

Figure 16: Illustrative example: confirm variable names for class labels.

33

Figure 17: Illustrative example: saving the generated dataset of features.

Figure 18: Illustrative example: viewing the list of features in the generated dataset.

34

5-2 Training a Decision Tree

For training a decision tree for our dataset, we click on the “Train Decision Machine” submenu

in the “Learning” menu. As shown in Figure 19, a window is opened in which we select

“Decision Tree” and press the OK button. As shown in Figure 20, we should set the training

parameters in the next window. In this stage, the weighting method “balancedˮ is chosen. Also,

the start and end of the train/validation in the dataset is set equal to [0 1], which indicates using

all available samples for train/validation. Train and validation percentages are chosen to be

equal to 80% and 20%, respectively. Finally, the minimum relative number of leaf node

observations to total samples is set equal to 0.001. Since 80% of total samples (i.e. 6000

samples) are used for training, the minimum number of leaf node observations is considered to

be equal to 6. To prevent overfitting, 1500 validation data samples (i.e. 20% of all samples) are

used to prune the decision tree.

After setting the training parameters and pressing the OK button, a progress bar indicates

the progression of the training process of the decision tree. After completion of the training

phase, the trained decision tree is shown (see Figure 21). Moreover, the user is prompt to save

the decision model (see Figure 22). After saving the decision model, the decision model is

loaded in the toolbox environment. Also, the training parameters and results are shown in the

main text window of the toolbox. As shown in Figure 23, the average accuracies for training

and validation sets are around 93% and 85%, respectively. The confusion matrices for training

and validation are also shown in the command window. As can be seen in Figure 23, the highest

accuracies are obtained for DOC and RTF format.

Figure 19: Illustrative example: selecting the decision model.

35

Figure 20: Illustrative example: setting the parameters for training the decision model.

Figure 21: Illustrative example: the trained decision tree.

36

Figure 22: Illustrative example: saving the trained decision machine.

Figure 23: Illustrative example: the training and validation results.

5-3 Using Visualization to See the Effect of the Features

As can be seen in Figure 21, 𝐵𝐹𝐷92, which is equivalent to ASCII character “\”, plays an

important role in the classification of our textual file formats. Moreover, the ASCII feature,

described in Section 2-5, appears near the tree root. This observation indicates the importance

37

of the ASCII feature. As an example, assume that we need to observe PDF and TXT samples

in the 2-D space of 𝐵𝐹𝐷92 and ASCII. This observation helps us to understand the effect of

these features in classifying between these two classes.

First, we click on the “Display Samples in Feature Space” submenu in the “Visualization”

menu. In the next window, we select two features 𝐵𝐹𝐷92 and ASCII (see Figure 24) and press

the OK button. Then, as shown in Figure 25, we should set the labels for 𝐵𝐹𝐷92 and ASCII

axis. After doing so and pressing the OK button, a list is opened. In this list, we should select

the classes that we want to display in our 2-D space. As shown in Figure 26 and Figure 27, we

choose PDF and TXT classes. After selecting the second class, i.e. TXT, and pressing the OK

button, the list is shown again. In this stage, as we do not need to include another class, we

press the cancel button. Then, as shown in Figure 28, we should select the displayed captions

for each class in the 2-D plot and press the OK button. After pressing the OK button, a 2-D

representation is plotted as shown in Figure 29.

Note that in each stage of class selection, we can select multiple classes. By doing so, we

indicate that the samples of the selected classes should be displayed as unified items.

Figure 24: Illustrative example: selecting 𝑩𝑭𝑫𝟗𝟐 and ASCII features for 2-D representation of samples.

38

Figure 25: Illustrative example: choosing the labels for 𝑩𝑭𝑫𝟗𝟐 and ASCII axis.

Figure 26: Illustrative example: choosing class samples PDF as the first class of samples.

39

Figure 27: Illustrative example: choosing class samples TXT as the second class of samples.

Figure 28: Illustrative example: choosing the displayed labels for two classes.

40

Figure 29: Illustrative example: 2-D representation of PDF and TXT samples.

5-4 Feature Selection

Many classical machine learning models do not perform well in high-dimensional spaces.

When the number of features is too high, the computational complexity of the training process

may be unacceptable. Moreover, the risk of overfitting is increased.

In this section, we show how to use the “feature selection” capability of Fragments-Expert.

In this case, we use the embedded method of decision-tree learning. To do so, we click on the

“Embedded: Decision Tree” submenu in the “Feature Selection” menu. Since, in this case, the

toolbox trains a decision tree, we are prompted to input the parameters similar to the parameters

described in Section 4-6 for training a decision tree. After setting the parameters and pressing

the OK button, the training process starts. After completion of this step, as shown in Figure 30,

we see a list of 33 features sorted based on the relative node sizes. We manually select the 15

features with a relative node size greater than 0.05. After pressing the OK button, the new

dataset with 15 features is created. Then, as shown in Figure 31, we are prompted to save this

new dataset. After saving the dataset, the feature-selected dataset is loaded in the toolbox

environment.

41

Figure 30: Illustrative example: results of feature selection.

Figure 31: Illustrative example: saving the feature-selected dataset.

42

5-5 Cross-Validation Using Selected Features

In this section, we use cross-validation for assessing the performance of the naïve Bayes

method on our feature-selected dataset, which contains 15 selected features. To do so, we click

on the “Cross-Validation of Decision Machine” submenu in the “Learning” menu. In the next

window, we select “Naive Bayes” and press the OK button.

In the next step, we should set the parameters for cross-validation. As shown in Figure 32,

we choose the weighting method “balancedˮ. Also, the start and end of the train/validation/test

in the dataset is set equal to [0 1] that indicates using all available samples for

train/validation/test. Train and validation percentages are also chosen to be equal to 100% and

0%, respectively. This means that we do not use any validation data in this case. Moreover, we

choose z-score for scaling the features. Finally, K=5 is set for K-fold cross-validation.

After setting the parameters and pressing the OK button, the cross-validation process starts

and a progress bar is shown until completion of the process. When the cross-validation process

is completed, we are prompt to save the results (see Figure 33). After saving the results, the

cross-validation results are shown in the main text window of the toolbox. Also, as shown in

Figure 34, the cross-validation confusion matrices are shown in the command window of

MATLAB. As can be seen in Figure 34, the average performance of the naïve Bayes model on

the feature-selected dataset is around 75%.

Figure 32: Illustrative example: setting the parameters for naïve Bayes cross-validation.

43

Figure 33: Illustrative example: saving the cross-validation results.

Figure 34: Illustrative example: results of cross-validation.

6 Program Availability and Limitations

The version v1.0 of the Fragments-Expert toolbox, which is described in this paper, can be

downloaded at https://github.com/mehditeimouri-UT/Fragments-Expert/releases/tag/1.0. To

run Fragments-Expert you need to install 64-bit MATLAB R2015b or newer releases for

Windows.

 There is no specific limit on dataset sizes. However, for large datasets, the speed of toolbox

functionalities decreases. The amount of this reduction depends on the hardware specifications

of your computer.

https://github.com/mehditeimouri-UT/Fragments-Expert/releases/tag/1.0

44

The toolbox is not OCTAVE compatible. However, for future works, we plan to make this

toolbox compatible with Octave.

Abbreviations

2-D 2-Dimensional

3-D 3-Dimensional

BFD Byte Frequency Distribution

BRO Binary Ratio

COTS Commercial Off-The-Shelf

FNF False Neighbors Fraction

GUI Graphical User Interface

k-NN k-Nearest Neighbors

LDA Linear Discriminant Analysis

LE Lyapunov Exponent

MAD Mean Absolute Deviation

RMS Root Mean Squared

RoC Rate of Change

STD Standard Deviation

SVM Support Vector Machine

Acknowledgments

The authors would like to thank Narges Sadeghi and Fatemeh Delroba, two members of the

Information Theory and Coding Laboratory at the University of Tehran, for performing tests

to ensure the toolbox functionality and user-friendliness. They also wrote a few functions that

are included in the toolbox.

References

[1] M. C. Amirani, M. Toorani, and A. Beheshti, "A new approach to content-based file

type detection," in IEEE Symp. Computers and Communications, 2008, pp. 1103-1108.

[2] M. Karresand and N. Shahmehri, "Oscar—file type identification of binary data in disk

clusters and ram pages," in Security and privacy in dynamic environments, ed: Springer,

2006, pp. 413-424.

45

[3] S. Gopal, Y. Yang, K. Salomatin, and J. Carbonell, "Statistical learning for file-type

identification," in 10th Int. Conf. Machine Learning and Applications and Workshops,

2011, pp. 68-73.

[4] S. Axelsson, "Using normalized compression distance for classifying file fragments,"

in 2010 International Conference on Availability, Reliability and Security, 2010, pp.

641-646.

[5] Q. Li, A. Ong, P. Suganthan, and V. Thing, "A novel support vector machine approach

to high entropy data fragment classification," in South African Information Security

Multi-Conference, 2011, pp. 236-247.

[6] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn, "Using NLP techniques for file

fragment classification," Digital Investigation, vol. 9, pp. S44-S49, 2012.

[7] K. Karampidis and G. Papadourakis, "File Type Identification for Digital Forensics,"

in International Conference on Advanced Information Systems Engineering, 2016, pp.

266-274.

[8] I. Tzanellis, "A Specialized Approach for Document-Type Fragment Classification in

Digital Forensics," M.S. thesis, University of Amsterdam, Amsterdam, Netherlands,

2013.

[9] W. C. Calhoun and D. Coles, "Predicting the types of file fragments," Digital

Investigation, vol. 5, pp. S14-S20, 2008.

[10] J. De Bock and P. De Smet, "JPGcarve: an Advanced Tool for Automated Recovery of

Fragmented JPEG Files," 2015.

[11] W. Qiu, R. Zhu, J. Guo, X. Tang, B. Liu, and Z. Huang, "A New Approach to

Multimedia Files Carving," in IEEE Int. Conf. Bioinformatics and Bioengineering

2014, pp. 105-110.

[12] R. K. Pahade, B. Singh, and U. Singh, "A Survey ON MULTIMEDIA FILE

CARVING," 2015.

[13] S. Hicsonmez, H. T. Sencar, and I. Avcibas, "Audio codec identification from coded

and transcoded audios," Digital Signal Processing, vol. 23, pp. 1720-1730, 2013.

[14] P. Tripathi, K. P. Raju, and V. R. Chandra, "A Novel Technique for Detection of CVSD

Encoded Bit Stream," International Journal of Innovative Research in Computer and

Communication Engineering, vol. 2, pp. 6035-6040, 2014.

[15] K. Nguyen, D. Tran, W. Ma, and D. Sharma, "Decision tree algorithms for image data

type identification," Logic Journal of IGPL, pp. 67-82, 2016.

[16] W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog, "Fileprints: Identifying file types by n-

gram analysis," in 6th Annu. IEEE SMC Information Assurance Workshop, 2005, pp.

64-71.

[17] AstronSoftware. (19 July 2020). LibMagic. Available: http://ftp.astron.com/pub/file/

http://ftp.astron.com/pub/file/

46

[18] M. Pontello. (19 July 2020). TrID - File Identifier Available: http://mark0.net/soft-trid-

e.html

[19] Oracle. (19 July 2020). Outside In Technology. Available:

https://www.oracle.com/middleware/technologies/webcenter/outside-in-

technology.html

[20] D. Underdown. (19 July 2020). DROID. Available: http://droid.sourceforge.net/

[21] OpenPreservation. (19 July 2020). JHOVE. Available:

https://jhove.openpreservation.org/

[22] BasisTechnology. (19 July 2020). Autospy. Available: https://www.autopsy.com/

[23] CGSecurity. (19 July 2020). PhotoRec. Available:

https://www.cgsecurity.org/wiki/PhotoRec

[24] P. Harvey. (19 July 2020). ExifTool. Available: https://exiftool.org/

[25] AccessData. (19 July 2020). Forensics Toolkit (FTK). Available:

https://accessdata.com/products-services/forensic-toolkit-ftk

[26] OpenText. (19 July 2020). EnCase. Available:

https://www.guidancesoftware.com/encase-forensic

[27] ShockingSoft. (19 July 2020). AnalyzeIt. Available:

https://www.shockingsoft.com/AnalyzeIt.html

[28] Toolsley. (19 July 2020). File Identifier. Available: https://www.toolsley.com/file.html

[29] K. Konstantinos, "File type identification–a computational intelligence approach to

digital forensics," Technological educational institute of Crete, 2015.

[30] S. J. Moody and R. F. Erbacher, "Sádi-statistical analysis for data type identification,"

in 2008 Third international workshop on systematic approaches to digital forensic

engineering, 2008, pp. 41-54.

[31] P. Matousek, O. Rysavy, and M. Kmet, "Fast RTP detection and codecs classification

in internet traffic," Journal of Digital Forensics, Security and Law, vol. 9, pp. 101-112,

2014.

[32] N. L. Beebe, L. A. Maddox, L. Liu, and M. Sun, "Sceadan: Using Concatenated N-

Gram Vectors for Improved File and Data Type Classification," Information Forensics

and Security, IEEE Transactions on, vol. 8, pp. 1519-1530, 2013.

[33] G. Mittal, P. Korus, and N. Memon, "FiFTy: Large-scale File Fragment Type

Identification using Convolutional Neural Networks," IEEE Transactions on

Information Forensics and Security, 2020.

[34] G. Conti, S. Bratus, A. Shubina, B. Sangster, R. Ragsdale, M. Supan, et al., "Automated

mapping of large binary objects using primitive fragment type classification," Digital

Investigation, vol. 7, pp. S3-S12, 2010.

http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
https://www.oracle.com/middleware/technologies/webcenter/outside-in-technology.html
https://www.oracle.com/middleware/technologies/webcenter/outside-in-technology.html
http://droid.sourceforge.net/
https://jhove.openpreservation.org/
https://www.autopsy.com/
https://www.cgsecurity.org/wiki/PhotoRec
https://exiftool.org/
https://accessdata.com/products-services/forensic-toolkit-ftk
https://www.guidancesoftware.com/encase-forensic
https://www.shockingsoft.com/AnalyzeIt.html
https://www.toolsley.com/file.html

47

[35] A. Swami, J. M. Mendel, and C. L. Nikias, "Higher-order spectral analysis toolbox,"

The Mathworks Inc, vol. 3, pp. 22-26, 1998.

[36] R. F. Erbacher and J. Mulholland, "Identification and localization of data types within

large-scale file systems," in Second International Workshop on Systematic Approaches

to Digital Forensic Engineering (SADFE'07), 2007, pp. 55-70.

[37] J. Goubault-Larrecq and J. Olivain, "Detecting Subverted Cryptographic Protocols by

Entropy Checking," Laboratoire Spécification et Vérification, ENS Cachan, France,

Research Report LSV-06-13, 2006.

[38] X. Jin and J. Kim, "Video fragment format classification using optimized discriminative

subspace clustering," Signal Processing: Image Communication, vol. 40, pp. 26-35,

2016.

[39] X. Jin and J. Kim, "Audio Fragment Identification System," International Journal of

Multimedia and Ubiquitous Engineering, vol. 9, pp. 307-320, 2014.

[40] F. Kaspar and H. Schuster, "Easily calculable measure for the complexity of

spatiotemporal patterns," Physical Review A, vol. 36, p. 842, 1987.

[41] T. Xu, M. Xu, Y. Ren, J. Xu, H. Zhang, and N. Zheng, "A File Fragment Classification

Method Based on Grayscale Image," Journal of Computers, vol. 9, pp. 1863-1870,

2014.

[42] A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation

of the spatial envelope," International journal of computer vision, vol. 42, pp. 145-175,

2001.

[43] F. M. Hanis and M. Teimouri, "Dataset for file fragment classification of textual file

formats," BMC Research Notes, vol. 12, pp. 1-3, 2019.

	1 Introduction
	2 The Features Used in File Fragment Classification
	2-1 Byte Frequency Distribution
	2-2 Rate of Change
	2-3 Longest Contiguous Streak of Repeating Bytes
	2-4 n-grams
	2-5 Byte Concentration Features
	2-6 Basic Lower-Order Statistics
	2-7 Higher-Order Statistics
	2-8 Bicoherence
	2-9 Window-Based Statistics
	2-10 Autocorrelation
	2-11 Frequency Domain Statistics
	2-12 Binary Ratio
	2-13 Entropy
	2-14 Video Patterns
	2-15 Audio Patterns
	2-16 Kolmogorov Complexity
	2-17 False Nearest Neighbors and Lyapunov Exponents
	2-18 GIST Features
	2-19 Longest Common Substrings and Longest Common Subsequences
	2-20 Centroid Models

	3 Toolbox Architecture
	4 Toolbox Functionalities
	4-1 Generating Dataset of File Fragments
	4-2 Generating Dataset of Features
	4-3 Generating Dataset for a Decision Machine
	4-4 Feature Selection
	Embedded Method
	Wrapper Method

	4-5 Operations on Datasets
	Random Permutation of a Dataset
	Merge Two Datasets
	Merge Labels in a Dataset
	Generating Sub-Datasets from a Dataset

	4-6 Train a Decision Machine for File Fragments Classification
	Train a Decision Tree
	Train a Multi-Class Support Vector Machine Classifier
	Train a Random Forest
	Train an Ensemble of k-Nearest Neighbors Classifiers
	Train a Naïve Bayes Classifier
	Train a Linear Discriminant Analysis Classifier
	Train a Neural Network

	4-7 Test a Trained Decision Machine
	4-8 Cross-Validation for a Decision Model
	4-9 Data Visualization
	Plot Feature Histogram
	Display Samples in Feature Space

	4-10 Loading Previously Generated Data and Results
	Load Dataset
	Load Decision Machine
	Load Test Results
	Load Cross-Validation Results

	5 An Illustrative Example
	5-1 Generating Dataset of Features
	5-2 Training a Decision Tree
	5-3 Using Visualization to See the Effect of the Features
	5-4 Feature Selection
	5-5 Cross-Validation Using Selected Features

	6 Program Availability and Limitations

