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Reference architectures for big data and machine learning include not only intercon-
nected building blocks but important considerations (among others) for scalability,
manageability and usability issues as well. Leveraging on such reference architec-
tures, the automated deployment of distributed toolsets and frameworks on various
clouds is still challenging due to the diversity of technologies and protocols. The
paper focuses particularly on thewidespreadApache Spark cluster with Jupyter as the
particularly addressed framework, and the Occopus cloud-agnostic orchestrator tool
for automating its deployment and maintenance stages. The presented approach has
been demonstrated and validated with a new, promising text classification applica-
tion on the Hungarian academic research infrastructure, the OpenStack-based MTA
Cloud. The paper explains the concept, the applied components, and illustrates their
usage with real use-case measurements.
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1 INTRODUCTION

Research in different scientific fields (e.g. natural and social sciences) often require extremely huge computational resources and
storage capacity to handle Big Data problems. Traditional sequential data processing algorithms are not sufficient to analyze
this large volume of data. For efficient processing and analysis new approaches, techniques and tools are necessary.
Moreover, cloud infrastructures and services are becoming even more popular and are nowadays widely used to address the

computation and storage requirements of many scientific and commercial Big Data applications. Their widespread usage is a
consequence of the dynamic and scalable nature of the services maintained by cloud providers.
However, there are several challenges that a data scientist has to face when planning the use or deployment of any Big Data

platform on cloud(s)1. The selection of the appropriate cloud provider(s) is always a tiresome process since several factors has to
be considered, even when only a generic Infrastructure-as-a-Service (IaaS) provider is required: private (e.g. Agrodat Cloud2),
federated (e.g. MTA Cloud3 or pan-European EGI FedCloud4), or public cloud (e.g. Amazon AWS5).
The Hungarian Academy of Sciences (MTA) provides free IaaS cloud (MTA cloud) services for research communities and

easy to use, dynamic infrastructures adapted to the actual project requirements. MTA Cloud was established to accelerate
research for the scientists of MTA. Nearly 100 projects have been deployed on MTA Cloud since its opening and more and more
projects require to use Big Data andmachine learning applications. However, the large number of artificial intelligence (AI) tools
available for clouds are very complex, and their proper deployment and configuration require deep understanding of both the
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tools and the underlying cloud infrastructure. Furthermore, tools supporting different layers, the user interface layer, language
layer, machine learning layer, deep learning layer are not always compatible; hence it requires engineering skills to apply and
configure the right tools from each layer in a compatible way, so that they should be able to work together in an AI environment.
After recognizing this problem, we have decided to develop so-called AI reference architectures to support the development of

certain AI application classes which could be implemented in the cloud in a reliable and robust way and can easily be deployed
and used by the end-user scientists. The ultimate goal is to develop a large set of AI reference architectures for a large set of
various AI problem classes. These AI reference architectures have been created in three steps:

1. Creation of Occopus cloud orchestrator6 which enables the fast creation of complex application frameworks in the cloud.
This method is facilitated by using infrastructure descriptors; therefore, even novice cloud users are able to work with it.

2. Development and publication of the Occopus infrastructure descriptors for generic AI reference architectures1 including
Jupyter, Python, Spark ML, Spark cluster and HDFS.

3. Development and publication of application-oriented environments for various AI application domains.
To demonstrate the third step, we use a text classification application provided by the POLTEXT (Text Mining of Political
and Legal Texts) Incubator Project of MTA Centre for Social Sciences. This problem is complex enough to demonstrate
the advantages of using the framework we have created for supporting big data and AI applications.

Our main contribution is that our work gives a general and reproducible approach for building reference architectures to
support various machine learning-based research studies, easily without any special IT experiences or knowledge. While in the
literature, there exist several solutions for text-classification problems based on Apache Spark7 8; our work is not limited to
text classification scenarios or particular use cases. It gives the possibility to be used by several scientific communities. The
environment is also not limited to specific cloud environments since it can be applied almost in every cloud. Moreover, the
deployed infrastructure is reproducible based on the descriptors available at the official website of the Hungarian Scientific
Cloud9.
The presented work significantly extends the achievements presented at the International Workshop on Science Gateways

(IWSG 2019)10. In this paper we put our previous approach and solution into a much wider context and validated the results
in cloud environment. Therefore, we added the reference architecture concept and necessarily extended the related works (see
Section 2), moreover, we significantly improved the description about the application with more details on our measurements,
experiments, and findings (see Section 4).
The structure of the paper is as follows. The next section outlines the main motivations and background concerning reference

architectures with special focus on AI. Section 3 introduces the IaaS MTA cloud and its major services to create the big data
and AI development and execution framework leveraging on reference architectures. Section 4 introduces our text-classification
example with detailed stepwise specification. Section 5 summarizes the lessons learned from this real use case performed on
MTA community cloud.

2 RELATEDWORKS ON REFERENCE ARCHITECTURES FOR MACHINE LEARNING

Machine Learning-as-a-service (MLaaS) on cloud supports various fundamental steps for machine learning (ML), such as data
pre-processing, model training, and model evaluation, with further prediction. Feeding the model with data and using the pre-
diction results can be bridged with on-premise IT infrastructures through APIs. Amazon SageMaker, Microsoft Azure Machine
Learning Studio, and Google Cloud AI hub / platform are three leading commercial clouds offering MLaaS. For the various
AI application scenarios, the major cloud providers offer reference architectures (such as Azure Reference Architectures11)
including recommended practices, along with considerations for scalability, availability, manageability, and security. Simi-
lar state-of-the-art reference architectures are available from several HPC vendors in order to broaden the landscape: Hewlett
Packard Enterprise elaborated its reference architecture for AI12 (with TensorFlow and Spark) that copes not only with open-
source software components, but their own propriety cluster-based hardware platform as well. IBM Systems provides similar
solutions13.
Building ML platforms from open-source modules based on IaaS cloud and software containers with generic cloud orchestra-

tors (e.g. Terraform,MiCADO/Occopus14) is another and feasible option that offers several benefits compared to above described
MLaaS approaches, e.g. less vendor-locking, higher level of (security) control, etc. All these approaches leverage mostly on
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open source tools and frameworks15 16, such as TensorFlow or Apache Spark (see HDInsight fromMS Azure or Dataproc from
GPC). Concentrating on the manufacturing sector as one of the most advancing application areas, a reference architecture has
been recently proposed by Fraunhofer IOSB17. It was designed for scalable data analytics in smart manufacturing systems and
complies with the higher-level Reference Architecture Model for Industrie 4.0 (RAMI 4.0). The new reference architecture was
implemented and validated in the Lab Big Data at the SmartFactoryOWL based on various open-source technologies (Spark,
Kafka, Grafana). As machine learning tools and methods are embedded as the analytical components in many Big Data systems,
the Big Data related reference architectures were also considered as a baseline in our project18.
According to our findings, reasoning on Big Data (with ML), especially on the execution, facilitation and optimisation of

such frameworks/applications on clouds can be significantly enhanced. Better support for the creation/assembly of ML appli-
cations from pre-engineered proprietary (MLaaS) or open-source building blocks can drive to a new generation of reference
architectures that can be deployed on an orchestrated platform, leveraging on the available software components from reposito-
ries. Unlike these approaches, the presented novel reference architectures will be provisioned and orchestrated on the targeted
infrastructure elements in a highly automated way, i.e. our work is to fill the gap between the theoretical frameworks and their
actual deployments in a more effective way.

3 COMPONENTS AND SERVICES OF THE BIG DATA AND ML FRAMEWORK

3.1 MTA cloud and Occopus
MTA Cloud was founded by the Wigner Data Center and the Institute for Computer Science and Control (MTA SZTAKI) in
2015 as a community Cloud for the member institutes of the Hungarian Academy of Sciences. MTA Cloud has currently more
than 80 active projects from over 20 research institutes including among others the Institute for Nuclear Research, the Research
Centre for Astronomy, and Earth Sciences and other academic and research institutes.
In order to raise the abstraction level of the IaaS, MTA Cloud we have developed Occopus a cloud orchestrator and manager

tool by which complex infrastructures like Hadoop or Spark clusters can be easily built based on predeveloped and published
Occopus infrastructure descriptors19. The Occopus cloud orchestrator can be deployed in MTA Cloud by any user and once
Occopus is deployed it can be used to build the selected infrastructure (e.g. Spark cluster) in MTA Cloud. A tutorial explaining
the deployment of Occopus is available on the web page of MTA Cloud (in hungarian)3. The novelty of Occopus was described
and compared with similar cloud orchestrators20. Here we mention only one of its main advantages. The plugin architecture
enables the use of modules for various cloud systems and hence AI reference architectures created by Occopus are easily portable
among various cloud systems like Amazon AWS, Microsoft Azure, OpenStack, OpenNebula and CloudSigma.

3.2 Support for parallel data storage and processing – Apache Hadoop
Apache Hadoop is an open source framework that enables the fast and easy deployment of data-intensive applications. It facil-
itates the development of commodity hardware based clusters. It uses a special data storage method, which is based on a
distributed file system (HDFS, Hadoop Distributed File System21), that makes it possible to process efficiently terabytes of data
in just minutes.
HDFS uses the MapReduce22 paradigm that was proposed by Google and found wide-spread popularity. HDFS has a mas-

ter/slave architecture. It means that the nodes apart from the Client machine are Master nodes and Slave nodes. Master node
supervises the mechanism of data storing in HDFS and running parallel computations (Map Reduce) on all that data. An HDFS
cluster consists of a single NameNode, a number of DataNodes, usually one per node in the cluster, which manage storage
attached to the nodes that they run on. In general a file is split into several blocks of data which are stored separately on DataN-
odes. It is the NameNode that controls and coordinates the data storage by providing a map about the datablocks in the cluster
while the Jobtracker’s task is to coordinate the parallel processing of the data. The slave nodes make up the bulk of the machines,
each of them running a DataNode and a TaskTracker daemon in order to be able to communicate with the Master node.
The Occopus infrastructure descriptors for such a Hadoop/HDFS cluster have been developed in MTA SZTAKI and are

published on the web page of MTA Cloud3 as well as on the web page of Occopus6.
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3.3 Support for high performance, distributed data processing – Apache Spark
Apache spark23 is an open source, distributed cluster-based system that was developed with the ultimate goal of accelerating
and facilitating computations on Big Data. As opposed to Hadoop’s Map reduce paradigm22 it mainly stores data in memory,
which enables up to ten times faster data processing. It was written in Scala and have different easy-to-use APIs, like Scala, Java,
python and R. From an engineering perspective these APIs provide the biggest advantages and reason why choosing the Spark
framework. It also has some built-in libraries, that facilitate data analysis and the usage of machine learning methods MLlib24.
Spark was developed with the desire to enhance flexible configurations, to be run as standalone or in cluster mode, and can
access data stored on different storage systems such as HDFS, Apache HBase, or Amazon S3, etc.

3.4 Spark Machine learning library
Apache Spark MLlib24 is the Apache Spark machine learning library that consists of commonly used learning algorithms and
tools. As the core component library in Apache Spark, MLlib offers numerous supervised and unsupervised learning algorithms,
from logistic regression to k-means clustering, collaborative filtering, dimensionality reduction, and underlying optimization
primitives.
As the next step of building a Big Data and AI oriented environment for MTA Cloud users we have developed the Occopus

infrastructure descriptors for Spark/HDFS clusters and published them both on the web page of MTA Cloud3 and on the web
page of Occopus6.

3.5 Interactive Development Environments
With the above-mentioned frameworks big data and machine learning algorithms can easily be executed in a parallel manner.
In order to support scientists from different research fields we also support interactive development environments that are easy
to use with various programming languages and are very popular among the research communities.
RStudio25 is an integrated development environment (IDE) for R. It includes a console, syntax-highlighting editor that sup-

ports direct code execution, as well as tools for plotting, history, debugging and work space management. RStudio Desktop is a
standalone desktop application that does not require to be connected to the RStudio Server.
RStudio Web Server is a Linux server application that provides a web browser based interface to the version of R running

on the server. Deploying R and RStudio on a server has a number of benefits: the ability to access R workspace from any
computer at any location; code, data and file sharing; sharing computational resources available on a server among multiple
users; centralized controlling of data access; centralized installation and configuration of R, R packages and other libraries.
Jupyter Notebooks26 are starting to become extremely popular especially in education and field of empirical research. There

are a lot of free and open source Jupyter Notebook codes on numerous topics in many scientific disciplines, such as machine
learning, social sciences, physics, computer science, etc. Jupyter’s popularity stems from supporting the so-called “literate pro-
gramming” concept, which means, that codes and mathematical equations can be enriched with explanations or even multimedia
resources. Moreover, structuring, editing, and displaying mathematical equations are simplified with MathJax support. Code
sharing, result reproducibility, and version control is also a quite easy and widespread used practice in JSON format with GitHub.
The built-in techniques like code completion or fast and easy help access promote Jupyter notebooks in the scientists’ society.
As part of the second step of providing generic big data and AI platforms for scientists we have extended the Spark/HDFS

cluster with both RStudio Web Server and Jupyter Notebook and created the necessary Occopus infrastructure descriptors. As a
result, two types of Spark-oriented reference architecture can be deployed by Occopus on MTA Cloud depending on the actual
needs of the users:

• RStudio Web Server, Spark, HDFS for R users;

• Jupyter Notebook, Spark, HDFS for Python, Scala and Java (from version 9) users (see Figure 1).

These reference architectures are the starting points for the actual big data or AI applications.
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FIGURE 1 Apache Spark-based reference architecture for machine learning using Jupyter as the User Interface

4 VALIDATIONWITH TEXT CLASSIFICATION APPLICATION

The third step in the presented work is to apply the designed reference architectures for various big data and machine learning
application domains. In this paper, we have selected the text classification domain to illustrate the application of the Spark-
oriented reference architecture.
In many real-world scenarios, it is especially important and highly desired to automatically classify documents into a fixed

set of categories. Common scenarios include classifying a large amount of archival documents such as newspaper articles, and
research papers. Natural Language Processing offers a wide variety of methods for automatically classifying documents.
MTA Centre for Social Sciences seeked a solution for the following problem, using the computational power provided by

MTACloud. The coding of public policy major topics on various legal and media corpora can be an important input for verifying
different hypotheses and models in political science. This fundamental work has till recently mostly been conducted by double-
blind human coding, which is still considered to be the gold-standard for categorizing text in this field. This method, however,
is both rather expensive and increasingly unfeasible with the growing size of available corpora. Different forms of automated
codings, such as dictionary-based and supervised learning methods27, offer a solution to these problems28. But these methods
are themselves also reliant on appropriate dictionaries and/or training sets, which need to be compiled and developed first.
We have provided the architecture for this task described in Section 3.5, and at the same time demonstrated how to use

this architecture for solving the problem. After the demonstration, the researchers of the Institute for Political Science started
to use the RStudio version of the framework, meanwhile we have also investigated possible solutions for the problem using
the Jupyter Notebook version29. In this section our approach is presented in details. The steps of solving the above described
text classification problem are shown in Figure 2. This simple figure, in fact, represents several different execution pipelines
depending on the choice of the user. With the use of the Jupyter Notebook, Spark, HDFS architecture we were able to execute
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Read Text

Raw Text files from Hadoop
Distributed File System

Structuring

Spark RDD to Spark
DataFrame

Tokenization

Split Text into arrays of Strings

Feature Vectorization

• Bag of Words
(CountVectorizer)

• TF-IDF (Tfidf)

• Word2Vec (Word2Vec)

ML Processing

• Naive Bayes

• Random Forest

• Logistic Regression

• Neural Net – Convolution Net

Evaluation

Measuring the accuracy of a 
particular machine learning
method on unseen data

Categorized Text

Best method will be chosen

FIGURE 2 The proposed text processing pipelines based on HDFS and Apache Spark. It is worth mentioning, that the
independent pipelines could be executed simultaneously.

and evaluate the different classification pipelines in parallel. In the following sections the different stages of our Spark-based
pipelines are detailed.

4.1 Data distribution
The first stage is to upload the data (text) into the HDFS system in an appropriate form. At first, a Resilient Distributed Dataset is
built, which is the result of logically partitioning the original dataset and is the basic data structure of Spark. It is called resilient,
or with other words fault tolerant, since Spark automatically takes care of handling the emerging failures. These logical partitions
may be processed in parallel on different nodes of the cluster. As it was already described in Section 3.3, Apache Spark uses
a parallel data processing method with storing the data mainly in memory. This results in a very fast data processing even 10
times faster than Hadoop Map Reduce’s processing. Moreover, the uploading process is a very easily manageable task since it
is done automatically by the Apache Spark - HDFS system without user intervention. After this distribution step, the uploaded
data can be seen as a hierarchical set of files on HDFS.

4.2 Data structuring
The second stage is the data structuring step. Apache Spark SQL is a module for structured data processing in Spark. Spark SQL
module supports operating on a variety of data sources through the DataFrame API. DataFrame is a distributed collection of
data organized into named columns. Actually, it is equal to the table concept in relational database systems or a dataframe in R
or Python. A DataFrame contains rows with Schema. It can scale from kilobytes of data handled on a single laptop to petabytes
of data processed on a large cluster. A DataFrame can be operated with the use of relational transformations such as filter, select,
group by, sort, etc. Like Apache Spark in general, Spark SQL, in particular, enables the scalability of distributed in-memory
computations.
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4.3 Data description
The original data set consisted of different articles from the two most popular Hungarian daily newspapers Népszabadság and
Magyar Nemzet covering the period between 2010 and 201430. The total corpora consisted of 37,143 articles which had been
categorized by double-blind human coding and 31 different categories were established. We partitioned the available data into
a training set having 70% of the available data, and to a test set containing the remaining 30%.
After conducting a brief statistical investigation on the whole corpora we got:

• the average number of words per document is 225.3;

• the standard deviation of the number of words is 174.5;

• the number of words in the shortest document is 22;

• the number of words in the largest document is 892;

• the distribution of the number of words is not normal.

FIGURE 3 Histogram and kernel density estimate (KDE) of the number of words in the documents

In Figure 3 the distribution of the number of words in the documents can be seen together with the kernel estimate that gives
information about the shape of this distribution.
Focusing only on the three richest categories (that involve the most documents): there are 7,668 documents in the largest

category, 5,040 in the second largest and the third category involves 3,437 documents. Also, let us consider all the words that
appear in the 37,143 documents. Figure 3 shows the distribution of the number of words in the documents. The x axis shows the
number of words, and the histograms connected to a number shows the occurrences of such long documents in one category.
The number of words in the documents belonging to the richest category (containing the most documents) the average number

of words is 140.9 (std dev. 154, min. 22 max. 892), so it can be concluded that these documents are mainly short ones. In the
second category also short and long documents are classified, here the average number of words is 212.3 (std dev. 170, min. 22,
max. 888) while in the third category the average number of words is 270.2 (std dev. 170, min. 22, max. 852). Based only on
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the number of words that are present in the document the category cannot be determined. Therefore different Machine Learning
algorithms were used for classification.

4.4 Text pre-processing
The stored and structured data should be transformed into an appropriate input form for the machine learning algorithm (e.g.:
neural networks). This is called text pre-processing. The next stage is therefore the text pre-processing which can have several
sub-steps including tokenization, stop-word removal, stemming. We restricted our pipeline to use only the tokenization sub-step.
Tokenization is the process of demarcating and possibly classifying sections of a string of input characters. For example, in the

text string of a sentence the raw input (series of characters) must be explicitly split into pieces, called tokens with a given space
delimiter in the same way as a natural language speaker would do. Spark machine learning library also supports text mining
with a wide variety of built-in functions, like RegexTokenizer. Therefore, users of the Spark environment shown in Figure 2 do
not have to develop any new software for tokenization, just use the Spark ML RegexTokenizer function.
It is important to understand that while tokenization is a widely used practice in text classification scenarios, it is not as

straightforward in case of the Hungarian, due to the structure of the language which is fundamentally different from Indo-
European ones. The Hungarian being an agglutinative language the suffixes of a noun can be glued after each other without
any separator. Nowadays we know about 40,000 different Hungarian words, from which we use about 2,000-4,000 in everyday
communication. Due to the fact that tokenization discovers each noun as a separate word which stems are the same but the
endings are different as a result the tokenization generated 3,720,000 different independent words.

TABLE 1 Illustration of tokenization issues with the hungarian language: these prepositions illustrated in english are suffixes
in hungarian.

English version Hungarian version
the dog a kutya
with the dog a kutyával
to the dog a kutyának
towards the dog a kutyához
from the dog a kutyától

To highlight the problem in more detail in Table 1 a short but very frequent example can be seen. With this example, it can be
understood that after tokenization in Hungarian so many words are generated, while in English only one: ’dog’. After receiving
the available corpora from the Institute for Political Science at Centre for Social Sciences containing 37,143 documents we
found that tokenization would generate 3,720,000 independent words.
To deal with this issue, we decided to select the most frequently used words. For starters, we defined an upper limit N , and

according to this limit, we only considered the N most frequently appearing word in the corpus having 37,143 documents.
This number could be controlled by the Apache Spark ML directory, but we could also find some good settings that presented
better results compared to other solutions. Choosing N too small would result in information loss concerning those words that
have key roles in the classification but its occurrence is too rarely while having a larger N we encountered higher computation
capacity requirement and did not manage to reach better accuracy, in this case, higher true classification rates.
Alternatively, hungarian specific linguistic processing tools could be applied. At first the stems of each word should be found

and then only the stems should be considered. Researchers from Szeged, Hungary have created a promising tool named mag-
yarlanc31. The toolkit is based on Java, therefore the implementation in the current ecosystem is difficult. Other solutions
for stemming and lemmatization are based on regular expressions or other well-defined algorithms. The so-called Lancaster
algorithm32 could be extended with rules to allow stemming in hungarian. We experimented with Python NLTK (Natural
Language Toolkit), but unfortunately we did not manage to derive expected accuracy.
Based on all these considerations we went through all the steps of text classification, and finally we managed to find a method

that led to better performance.
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4.5 Feature vectorization
Features in our text-classification problems mean to find words, or terms that can represent some special characteristics of the
input text. Of course, these features should be represented in the form of vectors. Accordingly, the next stage in our pipeline of
Figure 2 is feature vectorization. There are different kinds of feature vectorization algorithms and many of them are supported by
the SparkML library. In the next sections, the applied feature vectorization and word embedding methods are briefly introduced.

4.5.1 Bag-of-Words
The Bag-of-Words (BoW) model provides feature extraction capabilities. As the name suggests, it does not keep the words
structured it just keeps a "bag" of the words. It gives back a histogram of the words within the text, i.e., considering the number
of occurences of each word as a feature. The algorithm consists of two phases: first it builds a vocabulary of the known words
and then it measures the presence of these words in the different documents related to the corpora.
CountVectorizer function of Spark ML implements this concept by converting text documents to vectors that represents on

one hand the vocabulary of that documents and also the occurrences of each word in a specific document.
The biggest challenge with the Bag-of-Words model lies in the fact that based on our corpus it would produce a huge matrix

having 3,720,000 columns and 37,000 rows as a result. The rows represent the documents related to the corpus and each column
represents one word. A value of 1 in the matrix indicates that the word exists in that document, while having a 0 means that
word is missing from the actual document. This matrix serves as an input of the learning algorithm. Since this method does not
differentiate words that look very similar (e.g.: politikus, politikusnak, politikustól, …) thus the learning algorithm will also
find complex and hard to generalize rules.

4.5.2 TD-IDF
Term Frequency-Inverse Document Frequency (TF-IDF) is a feature vectorization method widely used in text mining33. It not
only reflects the frequency of occurrences of each word but gives information also about the importance of a term to a document
in the corpus. Terms with high frequency within a document have high weights. In addition, terms frequently appearing in all
documents of the document corpus have lower weights. TF-IDF has been traditionally applied in information retrieval systems
because it is capable to highlight documents that are closely related to a term but not to an exact string-match. The Spark ML
function that supports this method is called IDF.
Although the TF-IDF algorithms assign weight values to the words based on the frequency and the importance of them, the

TD-IDF generated matrix still would be the same size as in the case of the Bag-of-Words model.

4.5.3 Word2Vec
The above mentioned two feature vectorization methods have also another shortcoming, namely the BoW and TF-IDF methods
does not hold any information about the semantics of the word.
Word embedding techniques try to convert large one-hot vectors into vector representations with lower dimension, while

preserving the meaning or its lingual context. The lingual context means the m surrounding words in this present scenario.
Word2Vec is a sophisticated word embedding technique, which is based on the idea that words that occur in the same contexts

tend to have similar meanings. TheWord2Vecmethodwas developed and published in 201334. It is practically amethod that uses
a shallow neural network with 2 layers to generate unique vectors from input words with a predefined length. Common values for
the representation dimensionality are between 150 and 500, in our experiments we chose to embed words as 300-dimensional
vectors.
The context of a word has a key role in Word2Vec, because words that have similar contexts in the documents tend to have

similar meanings and therefore their vector representations will be similar33. The aritmetic properties of such word embeddings
are also well-defined35.
The built-in Word2Vec algorithm uses the skip-gram neural network model. In the skip-gram model version of Word2Vec,

the concept is to pick one word from the document and then to predict the words that are in the lingual context of the current
word. This is a learning process, that is performed by a neural network with one hidden layer consisting of 300 neurons.
After an appropriate learning phase the end product of this learning will be an embedding layer in a network. It can be regarded

as a kind of lookup table, where the rows are vector representations of each word in the documents’ vocabulary. Given enough
data, usage, and contexts, Word2Vec can predict a word’s meaning based on past appearances with high accuracy. From now
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on, these 300 unit-long vectors will represent a word throughout our experimentation which will serve as the input for machine
learning algorithms.
In order to investigate the effectiveness of it we compared a few words for which the cosine of the vectors’ angle is close

to 1. Cosine similarity36 is a widely used method for comparing vectors. In contrast to the Euclidean distance, cosine distance
(which is the basis of cosine similarity) is not affected by vector magnitude, which could be affected by word frequency. Cosine
similarity is based on the angle of the vectors, more independent to difference in occurrence count.
Table 2 shows a few examples we could find after the training phase. In this example we looked for the closest words in

meanings to ’orvos’ (doctor) based on vector distance. The results are shown in descending order in Table 2.

TABLE 2Most similar words to doctor (orvos in hungarian). Words and cosine similarity of the representing vectors are given
in descending order

Hungarian word English meaning Cosine similarity
orvosok doctors 0.891
nővér nurse 0.860
műtős surgery 0.845
kórház hospital 0.801
ambulancia ambulance 0.789
egészség health 0.753

We have conducted similar experiments with not just nouns but also with famous person’s names. Though the results shown
in Table 3 are subjective, we have found them satisfying.

TABLE 3 Names and titles related to Orbán (the surname of the hungarian Prime Minister). Words and cosine similarity of the
representing vectors are given in descending order

Hungarian Surname T itle Cosine similarity
Orbán Prime Minister 1.000
Gyurcsány Ex. Prime Minister 0.791
Rogán Leader of Cabinet 0.731
Kövér Chaiman of Parliament 0.729
Matolcsy Chairman of Nat. Bank 0.711
Draskovics Ex. Financial Minister 0.704

We would like to add, that similarly to words, documents could be represented as multi-dimensional vectors. A method
defined by Le and Mikolov37 results in a document representation, independent from the document length and word count.
This technique called Paragraph Vector is implemented as Doc2Vec38, available in popular libraries. We intend to extend the
presented pipeline with this method in the future.
The application of the Word2Vec method raises another problem. Our main task was to determine which predefined class a

document belongs to based on the existence or absence of words. It is important to note that the documents differ in length. We
have not focused on the number of words a document involves yet, but with the help of some basic statistical indicators we will
show that not only the different categories differ in the number of words but also those assigned to the same category as well.

4.6 ML methods in text classification - supervised learning
In this phase of the work we use the different built-in machine learning algorithms, that are shortly introduced in the next
paragraphs.
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4.6.1 Random Forest
Random forests are ensembles of decision trees39. Decision trees and their ensembles are very popular methods for classification
and regression type tasks, since they are easy to interpret, can handle categorical features, can be extended to the multiclass
classification setting, and are able to capture non-linearities and feature interactions33. The spark.ml implementation supports
decision trees for binary and multiclass classification and for regression. The implementation partitions data by rows, allowing
highly distributed training. In spark.ml Decision Tree classifier is available via the DecisionTreeClassifier() method40.
To avoid overfitting, Random forests combinemany decision trees. It trains a set of decision trees separately, so the training can

be done in parallel. In order to involve randomness into the training process each decision tree is a bit different. The predictions
from each tree are combined than which reduces the variance of the predictions and thus improves the performance on test
data. In spark.ml implementation random forests are available via RandomForest() method41. There are various possibilities on
how to set the parameters with this Apache Spark implementation of the Random Forest method. We have conducted several
experiments changing the different parameters and we got the best accuracy on the test data with the following settings: 30
random generated trees, 20 level depth search with maximum 32 bins on one level, and 1 minimum instance per node.
Although Random Forest generates more than one tree and by aggregating them presents the ultimate result, each word can

be measured to what extent they contributed to the classification. In other words which phrases played an important role in
separating that category. It can be also very important for those scientists who are eager in understanding the grammar model
in a deeper level.

4.6.2 Naïve Bayes
Naïve Bayes classifiers are very widespread and successful tools to be used in text classification scenarios42. They use word
count as a feature (in multinomial Naïve Bayes) or a zero/one value that indicates whether the word was found or not in the doc-
ument respectively33. Naïve Bayes method in SparkML is based on Bayes’s theorem for computing the conditional probability
distribution of each feature given each label40.

4.6.3 Multinomial logistic regression
In terms of its structure, logistic regression can be thought of as a neural network with no hidden layer, and just one output node.
Instead of fitting a straight line or hyperplane, the logistic regression model uses the logistic function to squeeze the output
of a linear equation between 0 and 1. In our case the number of inputs was equal with the number of words coming from the
bag of words, the tf-idf model40. Multiclass classification can be carried out with multinomial logistic (softmax) regression. In
multinomial logistic regression, the algorithm generates K sets of coefficients, or a matrix of dimension K×J , where K is the
number of classes and J is the number of features. The conditional probabilities of the outcome classes are modeled using the
softmax function.
The biggest advantage of logistical regression is that for each word we get a coefficient (beta) that tells us to what extent that

word discriminates between the individual categories. In other words, this coefficient is a measurement of the importance from
a classification point of view. The results generated by this logistical regression can be seen in Table 4.

TABLE 4 Results of logistical regression, ordering the words based on their importance in descending order

Word English meaning Word index Importance
fájdalom pain 75940 27.37
állatkertek zoos 43920 23.87
robbanószer explosion 71092 17.72
tőzsdék stock markets 9992 13.05
AFP AFP 6691 12.70
tárgyalás negotiation 9304 12.35
kijelent to declare 6603 12.26
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4.6.4 Artificial Neural Network
We have aggregated the word vectors of each word in a document, we have calculated the mean of them to get one vector
representation of each document. Now each document is represented by a vector with 300 dimensions. The values of the vectors
are the inputs of a fully connected neural network (or feed-forward artificial neural network). A neural network consists of
multiple layers of nodes. The layers are fully connected to the next layer in the network. The input layer represents the input
data. All other nodes map inputs to outputs by a linear combination of the inputs with the node’s weightsw and bias b after then
applying an activation function. In spark, the nodes in intermediate layers use sigmoid (logistic) function, and this property is not
changeable. The last nodes in the output layer use softmax function where the number of nodes in the output layer corresponds
to the number of classes.

4.6.5 Convolutional Neural Network (CNN)
It is very important, that when we feed data to a CNN, each word vector should be fed to the model in a sequence that matches
the original document. The dimension of the vector we have for the whole document is the length (or the number of words in
the document) times the dimension of the vector (in our case 300) which represents the current word. It is important to note that
each word has a fix and the same length of vector representation.
A neural networkmodel will expect that all input data should have the same dimension. Having different documents containing

different number of words (see section 4.3) results in different vector representations. One solution can be to define the maximum
lengths of these vectors and padding with zeroes the vectors representing shorter documents, and truncating the data from richer
documents. In other words, each document is represented as a fix-sized matrix, where rows are the words and the columns are
the Word2Vec features. This transformation enables our data to be fed into a Convolutional Neural Net (CNN).

4.7 Experiments and Evaluation
As a final step we tested, evaluated and compared the used classification models and then chose the best algorithm to classify
the new incoming documents. All the experiments were conducted on an eleven-node-cluster, with one master and ten worker
nodes. Each node has 8 virtual CPU cores and 16GB of RAM. The overall computing capacity consisted of 80 virtual CPUs
and 160GB of RAM.
In our experiments, we were able to combine all the feature vectorization methods with all machine learning algorithms

(shown in Fig. 1) with 2 exceptions:

1. In Naïve Bayes method feature values must be non-negative while the Word2Vec method produces real numbers.

TABLE 5 Results of the different feature vectorization - machine learning experiments

Method’s name Type of Tokenization Evaluation time (sec) Accuracy on Training data Accuracy on Test data
Logistic Regression BoW 15.39 99.4% 65.5%
Naïve Bayes BoW 0.74 80.7% 47.6%
Random Forest BoW 148.17 60.7% 47.5%
ANN(*) BOW 210.32 74.2% 65.7%
ANN(*) TF-IDF 238.27 99.9% 58.4%
ANN(**) BoW 431.65 87.5% 64.6%
ANN(**) TF-IDF 431.65 99.9% 58.6%
ANN(**) W2V 251.15 80.3% 58.9%
Naïve Bayes TF-IDF 0.82 78.7% 42.1%
Random Forest TF-IDF 168.29 47.7% 29.9%
Random Forest W2V 29.49 85.3% 60.8%
ANN W2V 132.17 90.0% 59.4%
CNN W2V 110.0 97.0% 78.8%
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2. Convolution neural network as a classifier can handle data which have the same size of dimensions. As we discussed
earlier only theWord2Vec method can produce a proper input for the convolutional network, the bag-of-word, and TF-IDF
methods can not.

We have conducted experiments using two different kinds of artificial neural networks. ANN(*) Spark ML Neural Network was
used with 1 hidden layer consisting of 200 neurons, while ANN(**) had 2 hidden layers with 220 and 200 neurons respectively.
The CNN Convolutional Network was used with the following settings: on the first layer with 100 filters having a dimension

of 1x10, on the second layer with 160 filters with the same 1x10 dimension, the third dropout layer with a probability of 0.5 (or
50 % rate) and finally a fully connected layer with 31 output neurons (because we had 31 categories). We used Adam optimizer.
We based our evaluation on the measured accuracy for the test data, or in other words how close the outputs of the machine

learning algorithms are to the true values, in this case, how many percents of the categorizations were correct. For the sake of
curiosity, we also presented the measured values for all feature vectorization-machine learning combinations with the execution
time as well.
Based on the results shown in Table 5 we found that while the shallow neural network with TF-IDF gave the highest accuracy

on the training set, theWord2Vec feature combined with the Convolutional Neural Network algorithm gave the best performance
with an accuracy of 78.8% on the test data.
It is important to point out, that the measured accuracy on the training set does not represent the classificational ability of the

model itself, it is only included to show how well the model is able to fit the data. Therefore, we can conclude that the method
of Random Forest and TF-IDF results in underfitting.
The high performance of convolutional networks for text classification is well-known43, it has been proven that features

encoded in word vectors could be extracted using convolutional filters to support classification. It is understandable, that the
fully-connected layers of the ANN have less representational ability compared to the convolutional filters of the CNN, which
explains the outcome.
Is is also interesting to analyze that by terms of test classification performance, the ANN with BoWmethod outperformed the

ANN with W2V model. The cause behind this phenomena is based on the nature of fully-connected artificial neural nets. The
sparse representation of the BoW tokens are somewhat ideal feature extraction, while the dense and compressed word vectors
need more feature extraction ability. We would like to note, that a deep neural network with a larger number of hidden layers
and elements could perform better, i.e. the semantic properties of words could be taken into account on classification.
It is also worth mentioning, that the BoW representation is memory heavy, while the W2V embedded representation is itself

applying a dimensionality reduction44; therefore, the tradeoff between computational complexity (memory cost and runtime)
and model performance (classification accuracy) is observable on these two cases.

5 CONCLUSION AND FUTUREWORK

Leveraging on the concept of reference architectures, we have created a big data and AI application framework that needs three
major steps to be performed:

1. Occopus orchestrator tool to define and deploy the required infrastructure in the target cloud. This tool was released by
MTA SZTAKI under the Apache Licence.

2. Occopus infrastructure descriptors for the generic big data and AI tools and environments like Hadoop, HDFS, Spark,
Jupyter Notebook, RStudio Web Server. These are provided as AI reference architectures developed by MTA SZTAKI45,
and can be used according to the actual AI application class.

3. An actual deployed instance of the application-oriented big data and AI application development and execution framework
that is built by Occopus (Step 1) according to the Occopus infrastructure descriptors (Step 2) that are selected, customized,
and parameterized by the user. The customization and parameterization process is described in detail in the tutorials on
the reference architectures provided at the Occopus web page.

In this paper, we have demonstrated how to use and tailor a selected reference architecture for big data and machine learn-
ing application development and execution with a special focus on text classification applications. Due to the fast creation of
the required Spark environment and the available resources in MTA Cloud we were able to try and test all the possible text
classification pipelines that are presented in Figure 2.
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The Apache Spark architecture proved to be a good choice because with the off-line or batch learning method trained machine-
learning algorithms can also be used in real-timewith the Apache Spark StreamingAPI without training themodel again. Further
advantage of our solution is that it can be scaled arbitrary according to the increased load without any change in the code itself.
Therefore, the online news could be categorized in real time.
Although the presented big data and machine learning application development and execution framework was created and

tested on MTA Cloud it can be used on other clouds including Amazon AWS, Microsoft Azure, OpenStack, OpenNebula and
CloudSigma due to the plugin architecture of the underlying Occopus cloud orchestrator20. Many components of the described
AI reference architectures are available on the Occopus web page as executable tutorials and the following two Spark-oriented
reference architectures are available at the MTA Cloud web page as tutorials (see Section 3.5).
Future work will intend to create further AI reference architectures to cover other AI application classes. On the other hand,

the training phase was executed on a moderate size of data set (37,143 articles from the two most popular daily newspapers of
Hungary between), the parallel and distributed environment is especially important for further applications since, in the future
we would like to extend our investigations also on online media corpora and online news, as they are gaining ground all over
the world.
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