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Abstract—Stencil computations are widely used in HPC appli-
cations. Today, many HPC platforms use GPUs as accelerators.
As a result, understanding how to perform stencil computations
fast on GPUs is important. While implementation strategies for
low-order stencils on GPUs have been well-studied in the litera-
ture, not all of the techniques work well for high-order stencils,
such as those used for seismic imaging. Furthermore, coping
with boundary conditions often requires different computational
logic, which complicates efficient exploitation of the thread-
level parallelism on GPUs. In this paper, we study practical
seismic imaging computations on GPUs using high-order stencils
on large domains with meaningful boundary conditions. We
manually crafted a collection of implementations of a 25-point
seismic modeling stencil in CUDA along with code to apply
the boundary conditions. We evaluated our stencil code shapes,
memory hierarchy usage, data-fetching patterns, and other
performance attributes. We conducted an empirical evaluation
of these stencils using several mature and emerging tools and
discuss our quantitative findings. Among our implementations,
we achieve twice the performance of a proprietary code developed
in C and mapped to GPUs using OpenACC. Additionally, several
of our implementations have excellent performance portability.

Index Terms—stencil computation, high-order, boundary con-
dition, HPC, GPU

I. INTRODUCTION

”Remember that Time is Money.” [1] This is even more
true in today’s competitive business environments, such as
the oil and gas industry, where fast simulations enable more
realizations of experiments that can reduce the uncertainty of
hydrocarbon reserves location or CO, storage management
processes. Seismic depth imaging is the main tool used to
extract information from seismic field records to identify
relevant subsurface structures. High-order stencil computations
typically serve as the foundation for seismic depth imaging.
Over the past two decades, the availability of sufficiently
powerful computational resources has led to the every-day use
of more complex stencil-based wave equation approximations,
and the power of today’s petascale systems enables simulations
based on the full-wave equation instead of simple approxima-
tions.

Today, HPC platforms often employ Graphics Processing
Units (GPUs) to increase their computational power. Accord-
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ingly, using GPUs to accelerate full-wave equation simulations
based on high-order stencils is a natural approach. However,
the complexity of GPU architectures makes achieving top
performance with high-order stencil computations surprisingly
difficult. Without careful design, a stencil computation on a
GPU is likely to underperform. An efficient implementation
of high-order stencils with boundary conditions on a GPU
requires paying careful attention to data reuse, warp utilization,
work balance, and arithmetic intensity among other issues. For
that reason, understanding how to develop efficient high-order
stencils for GPUs is a topic of significant interest.

Since GPUs from different vendors have different charac-
teristics and the characteristics of GPUs from a single vendor
often change significantly between generations, performance
portability across GPUs with varying characteristics is of
significant interest. The best kernel on one GPU may not be
the best on GPUs from other vendors and may not remain the
best on newer generations of GPUs.

For these reasons, our current goal is to identify how
to achieve excellent performance for high-order stencils on
GPUs, and understand the factors that affect performance
portability. To do so, we need to understand the strengths
and weaknesses of various code shapes for high-order stencils.
This paper describes our progress toward this goal and makes
the following contributions:

o a careful comparison of existing approaches, including
an assessment of their strengths and weaknesses when
applied to high-order stencils with boundary conditions;

o the implementation and tuning of a collection of high-
order stencil kernels with a selected set of algorithms
and their variants using CUDA;

e a performance comparison of stencil implementations
across multiple generations of NVIDIA GPUs along with
a quantitative assessment of their performance using a
Roofline performance model for GPUs; and

« an investigation of the characteristics of different stencil
kernels that affect their performance

The next section is an overview of related work. Sections



and present our approaches and implementations, re-
spectively. Section [V| describes our evaluation methodology,
experimental results, and a discussion of our findings. Sec-
tion [VI| summarizes our conclusions and briefly discusses our
plans for future work.

II. RELATED WORK

There is a rich literature describing efforts to efficiently
implement stencil computations on CPUs [2], [3]], [4], [5],
6, 171, 181, 191, 11O, [L1fl, 1150, [16], [12] and GPUs [13],
(141, 1170, 1181, [19], [22]], [23]. We discuss the most related
efforts below.

Time skewing [7]], [8] accelerates stencil computations by
increasing data reuse and cache locality by skewing one or
more data dimensions by the time dimension so that several
time steps can be computed for a tile while values are in cache.
It has been widely used on CPUs, e.g., [9], [10], and [[11].

Overlapped tiling uses time skewing to increase the arith-
metic intensity of parallel stencil computations by trading
redundant computation along the boundaries of overlapped
tiles for a reduction in memory bandwidth required [12], [[13]].
Overlapped tiling is effective on GPUs because loading data
from a GPU’s global memory is much more costly than data-
parallel computation. Furthermore, redundant computation can
be overlapped with data accesses to help hide memory latency.
While overlapped tiling has been shown to improve the
performance of low-order stencils on GPUs, for high-order
stencils, redundant computation grows quickly when skewed
across multiple time steps by the width of a high-order stencil.

Split tiling [[14] is an alternate approach for accelerating
computation with time skewing. Rather than using overlapped
tiles, which can introduce large amounts of redundant com-
putation, split tiling computes points in two phases. The first
phase computes tiles in parallel as hypertrapezoids that taper
along the time dimension. Once all tiles from the first phase
have been computed, a second phase back-fills the missing
points in the time dimension.

The semi-stencil algorithm [15]], [[16], which has only been
studied on CPUs, factors the computation of a stencil into two
or more pieces. Rather than computing the result for a point
as a single computation, the semi-stencil algorithm divides
computation along one or more axes into two halves. While
sweeping along a dimension, it computes the final result for
one point and a partial result for another point a half-stencil
width ahead. Compared to the traditional implementation of
stencils, this approach changes the load/store ratio for the
computation by trading half of the loads along a dimension
for a store and a reload of a partial result. On a GPU, this has
the potential for nearly halving the cache footprint of a thread
block for a high-order stencil.

Nguyen et al. [[17] introduce a 3.5D blocking algorithm as a
mix of 2.5D spatial blocking with 1D temporal blocking. 2.5D
spatial blocking involves blocking in a 2D plane and streaming
along a third dimension. To increase data reuse, they store ac-
tive 2D planes in GPU shared memory. In a 3.5D variant, they
employ time skewing to advance the computation for multiple

time steps before writing data back to the global memory.
While the 3.5D algorithm works very well on CPUs, the 1D
temporal blocking introduces two potential implementation
challenges for high-order stencils with boundary conditions
on GPUs: barrier synchronizations and limited parallelism. In
this paper, we evaluate 2.5D spatial blocking of high-order
stencils and plan to explore 3.5D blocking in future work.

Nguyen et al.’s approach [17]] loads a central plane along
with halo planes above and below into shared memory for
faster data access while computing stencil operations for points
in the central plane. While this strategy improves data reuse,
the size of a data tile is limited by the GPU shared memory
size. To reduce the shared memory pressure, we looked into
the work that uses registers on GPUs. Micikevicius [18] also
uses 2.5D blocking; however, his approach maintains data
points along the third dimension in registers rather than in
shared memory.

Recently, as part of their ANSD framework work, Mat-
sumura et al. [19] apply three more refinements to 2.5D and
3.5D solutions: fixed register allocations, double buffering, and
division of the streaming dimension. While these approaches
work extremely well for simple single-statement kernels,
neither boundary conditions nor multi-statement stencils are
evaluated. In our work, we study a high-order stencil with
boundary conditions, and part of our application has multiple
statements, instead of simple single-statement stencil updates.

Other interesting approaches to tackle the stencil computa-
tions including auto-tuning with dynamic resource allocations
[20], DAG reordering [21]], diamond tiling using polyhedral
model [24], [25], functional programming [26], [27], and
multi-layer intermediate representations [28]], [29], [30].

From a software engineering perspective, there are two
strategies for developing stencils for NVIDIA GPUs: hand-
written kernels in CUDA and Domain-Specific Language
(DSL)-based approaches [6[], [22], [31], [32], [33], [34], [35].
The DSL approach can simplify the generation of code with
complex logic. While we are interested in DSL-based ap-
proaches for the future, the focus of this paper is to understand
in detail the strengths and weaknesses of various algorithmic
strategies for achieving high performance and performance
portability for high-order stencils. To avoid limitations as we
explore this space, we chose to evaluate hand-written kernels.

III. APPROACH

We developed several implementations of the acoustic
isotropic approximation of the wave equation [36] used for
seismic imaging by the oil and gas industry. Solving this with
finite differences involves using a high-order stencil-based
solver with suitable boundary conditions. Oil and gas applica-
tions use such strategies on large grids to model subsurface and
generate seismic data from source perturbations. In our work,
we employ different code shapes that differ principally in how
they organize the computation (e.g., 2D vs. 3D tiles) and how
they manage the memory hierarchy. In the rest of this section,
we will briefly describe the acoustic isotropic approximation,
explain the various data decomposition strategies we employ,



Data: f: source
Result: u™: wavefield at timestep n, for n <— 1 to T’
1 u’:=0;
2 forn <+ 1to T do
for each point in wavefield u" do
Solve Eq. [2| (left hand side) for wavefield u";
end
u” =u” + " (Eq.|2| right hand side);
end
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Algorithm 1: A high-level description of the algorithm for
solving the acoustic isotropic approximation of the wave
equation with constant density.

describe blocking strategies, and discuss how we structure our
implementations.

A. Seismic Modeling and Acoustic Isotropic Kernel

We study a stencil-based implementation of the acoustic
isotropic wave equation approximation for seismic modeling.
The details of the model are described in [36]. The wave
equation for an acoustic isotropic operator with constant-
density has the following form:

——— — Vu=f, (1)

where u = u(z, y, z) is the wavefield, V is the Earth model
(with velocity as rock property), and f is the source perturba-
tion. The equation is discretized in time using a second-order
centered stencil, resulting in the semi-discretized equation:

u" T —Qu+u" ! = (A?) VA", with Q = 2+AP VAV,

2
Finally, the equation is discretized in space using a 25-point
stencil in 3D, with eight points in along each axis surrounding
a center point:

V2u(:v,y7 Z) ~ Czyz X u(iaj7 k)+
4
D com x [uli+m,j, k) + (i —m, j, k)] +
m=1
Cym X [u(i,j +m, k) +u(i,j —m, k)] +
Czm X [(i, j, k+m) +u(i,j,k—m)] ()

where ¢gy ., Com, Cym, Czm are the discretization parameters.

A high-level description of the algorithm is shown in
Algorithm [T} We apply a Perfectly-Matched Layer (PML) [37]]
boundary condition to the regions around the physical domain.
The resulting extended domain consists of an “inner” region
where Equation (2)) is applied, and the outer “boundary” region
where a PML calculation is applied.

To solve the acoustic isotropic approximation for the wave
equation, in the inner region we apply a complex multi-
statement stencil that is 8th-order in space and 2nd-order in
time. This involves applying a star shaped 25-point stencil to
data stored in the w-array. In the PML layer, we employ a

7-point star shaped stencil to compute boundary conditions.
The data for this 7-point stencil is stored in the eta-array.

In production simulations, the grid (that represent the phys-
ical domain) size is usually large (up to 4,000 grid points in
each dimension). To yield results of practical use, the stencil
computations need to be applied iteratively for a large number
of time steps.

While we specifically study the acoustic isotropic kernel
as the seismic model wave approximation in this paper, we
believe that our approach is general enough that it could be
applied to other high-order stencils with boundary conditions.

B. Data Domain Decomposition

As described in the previous section, our data domain con-
tains two regions, the inner region and the Perfectly Matched
Layer (PML) boundaries. The inner region is a cubic grid
sits at the center of the data domain and the PML region
represents the volume between the inner region and the data
domain boundaries. The size of the inner region and the width
of the PML region are defined as inputs to a simulation.

GPUs have different architectural characteristics than CPUs.
As a result, GPU computations must be structured differently
than CPU computations to achieve high performance. First, the
Single-Instruction-Multiple-Thread (SIMT) execution model
used by GPUs differs significantly from the execution model
on CPUs. On NVIDIA GPUs, the execution model is realized
by scheduling groups of 32 SIMT threads known as warps.
To exploit thread-level parallelism in the SIMT model, GPU
computations must utilize fine-grain data parallelism. A group
of warps constitute a block which has its own quota for shared
memory, registers, and other hardware resources; the number
of blocks that can be active simultaneously is limited by
the aggregated resource quota of active threads enforced by
hardware limits. Second, since GPUs have a memory hierar-
chy distinct from CPUs, computations must be appropriately
structured to exploit the GPU memory hierarchy. Finally, on
NVIDIA GPUs, one could realize coarse-grain parallelism
across Streaming Multiprocessors (SMs) by partitioning the
computation into a sufficient number of blocks to keep the
SMs busy.

We experimented with three decomposition strategies based
on our data domain and boundary conditions.

First, we developed a single kernel that could be applied to
any region of the data domain. The kernel contains condition-
als that employ the PML calculations near any of the domain
boundaries and compute the stencil for the acoustic isotropic
wave function approximation in the inner region of the data
domain. This strategy yields branch divergence for subregions
that contain points in both the PML and inner regions which
hurt performance.

Next, we developed separate kernels for the central region
and the PML region. These separate kernels can be launched
concurrently. This strategy eliminates the need for checking
whether the point is inside inner region or PML region in
every kernel, thus, reducing the chance of branch divergence.
Nevertheless, it leaves unbalanced work among threads, along
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Fig. 1: Data Domain Decomposition

the boundaries between the inner and PML regions when the
size of the GPU blocks doesn’t evenly divide the extents of
the PML and central regions.

Lastly, we developed the strategy as shown in Figure [T We
separate the inner region from PML region, and further divide
PML region into six subregions. We slice the domain along
the top and bottom of the inner region, and this gives us a
top block, a bottom block, and a border of four walls. We
further slice along the front and back, and it becomes four
separate walls. These four walls and the two subregions from
the first cuts result in total of six subregions of the PML region,
namely: top, bottom, front, back, left and right subregions.
The symmetry of these subregions is a relevant characteristic
that we discuss later along with our results. Next, we launch
individual GPU kernels of stencil computations for each of
the seven subregions: one for the inner region and six for
the PML subregions. This approach does not have intrinsic
branch divergence at the boundaries. While there are still work
imbalances due to different grid sizes, they occur only for a
few edge cases along the borders. We could further reduce
unbalanced work by using automated code generation that
tailors the number of threads to match the number of points
at border locations.

C. Blocking Strategies

For each of the seven regions, we further slice it into smaller
blocks, so that each block can fit into GPU’s resources for
each kernel launch. We use two blocking strategies in our
experiments: 3D Blocking and 2.5D Blocking.

1) 3D Blocking: We divide each of the data regions into
axis-aligned 3D blocks. To find the best block dimensions, we
use fixed values in each execution to simplify experiments with
different values. To perform stencil computations on GPUs,
each block maps to a kernel launch with a 3D thread block
with the thread dimensions matching the block dimensions.
All points inside the block and their halos are explicitly copied
into the GPU on-chip memory before any kernel is launched.

2) 2.5D Blocking: We partition the data domain along the
inner two X and Y data dimensions and perform a streaming
computation along the outermost Z dimension. We launch

Fig. 2: Blocking Strategies: (left) 3D Blocking; (right) 2.5D
Blocking

kernels with 2D thread blocks with their dimensions matching
the 2D planes.

D. Kernels and their variants

We implemented several kernels. Each kernel employs a
different combination of strategies for blocking, managing data
accesses, and traversing the data volume. To better understand
the strengths and weaknesses of these implementation alter-
natives, every implementation has multiple variants, which
employ different tile sizes. We describe the details of our
kernel implementations in the next section.

IV. IMPLEMENTATIONS

In describing our implementations, we use R to denote the
width of the halo, which is half the spatial order of the stencil.
For the acoustic isotropic simulations in our experiments, R
is 4. Let Nz, Ny, and Nz denote the extents of the input
data region along the X, Y, and Z axes, respectively. For 3D
blocks, we use (z,y, z) to denote the 3D coordinate for both a
point location in a 3D block and the thread in a kernel thread
block. Similarly, for 2D planes, (z,y) is used to locate a point
in the 2D plane, as well as identifying the thread.

1) 3D Blocking Using Global Memory Only: This is con-
ceptually and practically the simplest kernel to understand and
implement. Let Dz, Dy, and Dz denote the block dimensions
in the X, Y, and Z axes, respectively. Thus the block size
is Dx x Dy x Dz. Because we launch each kernel with a
thread block of the same size, the total number of points
must be < 1024 to respect the GPU limit of at most 1024
threads per block. The GPU grid size of each data region is
[Nxz/Dz]| x [Ny/Dy| x [Nz/Dz].

During execution of the 25-point stencil kernel, each thread
fetches the point for itself, as well as 4 neighboring points
along each direction of each axis. For good performance, we
ensure a good memory access pattern when stencil points
are fetched directly from global memory. Since we store the



3D grid data as a flat 1D array, we ensure global memory
coalescing for the most innermost dimension X.

We refer to the family of 3D kernel implementations that
fetch stencil points directly from the u array in global memory
as as gmem_{Dx}_{Dy}_{Dz} in our experiments.

2) 3D Blocking Using Shared Memory for the u Array:
This approach is a variant of the aforementioned 3D blocking
using global memory. It uses same 3D blocking strategy
for each of the data regions; however, instead of computing
directly on data fetched from global memory, this imple-
mentation fetches the u array from global memory, stores
it into shared memory, and performs the stencil computation
on data fetched from shared memory. The total number of
points we fetch in this case is Dx x Dy x Dz for a block
and (Dxz X Dy + Dz x Dz + Dy x Dz) x R x 2 for halos
around the block. For high order stencils, one must account
for the halo size to ensure both the block and the halo fit in
shared memory.

For high-order stencils, the halo accounts for a significant
fraction of the data to fetch into shared memory. Thus,
designing the right approach to minimize the fetch cost is
crucial to overall performance. We describe the most general
approach with good performance based on our experiments.

First, thread (i, j, k) fetches the point (4, j, k). Then, when
we design the block size, for each thread dimension, we must
have at least 2R threads, and we use the first 2R threads along
each dimension to fetch the halos. Along each dimension,
threads 0 to R — 1 fetch the halo on one side, and threads
R to 2R — 1 fetch the halo on the other side. Fetching is
perfectly balanced for each thread when |D| = 2R.

To use this strategy for the acoustic isotropic model where
R is 4, we need to have at least eight threads along each
dimension. Considering that maximum number of threads in
a block is 1024 and the total amount of shared memory per
block, the only possible tile size for this case is 8 x 8 x 8.
This results in perfectly balanced fetch work and computation
for threads along each dimension.

Both the point and halo fetching need to be done in a fashion
that enables global memory coalescing to the greatest extent
possible.

We refer to the implementation that uses 3D blocking and
shared memory as smem_u in our experiments.

3) 3D Blocking Using Shared Memory for Boundary Re-
gions: This implementation also exploits shared memory and
uses 3D blocking. The main difference between this approach
and the previous one is that this implementation fetches the
eta array into shared memory, whereas the previous approach
fetches the u array into shared memory. Because eta is only
used in the stencil computation inside the PML region, this
strategy applies only in the PML kernel.

This approach may appear to be nothing new; however, it
is interesting for two reasons. First, as previously described,
computations on eta in the PML region use a low-order 7-
point stencil rather than the 25-point high-order stencil of the
inner region. In fact, the halo size of eta is just one. Such
low-order stencils have been widely studied in the literature;

however, the combination of high and low order stencils is
seldom addressed. Second, this implementation gives us an
opportunity to observe the performance changes by using
global memory with a good access pattern for a high-order
stencil, meanwhile using shared memory for a lower-order
stencil.

In terms of fetching eta into shared memory, we have two
implementations that differ in the number of conditionals. In
our experiments, we refer to the shared memory kernel im-
plementation that uses three conditionals as smem_eta_3 and
the implementation that uses one conditional as smem_eta_1.
We let R_eta denote the width of halos for eta, and for the
acoustic isotropic PML layer, R_eta is 1.

smem_eta_3 uses an approach similar to smem_u, where
the first 2R_eta threads from each dimension fetch the halos.
Since we have three dimensions, we need three conditionals,
one for each dimension, respectively. Because R_eta is just
1, we only need two threads fetching halos along each thread
dimension. This could introduce unbalanced fetch work be-
cause for a 3D block of 8x8x8, if only two threads in each
dimension perform halo fetching, that is one fourth of the
threads. Because we have three dimensions, only 1/64 of the
threads perform fetching, while others are idle.

Data: xidz, yidx, zidx: thread index of x, y, and z
dimension, respectively

Data: nt: number of threads per block dimension

Result: g: coordinate for global memory

Result: s: coordinate for shared memory

1 if zidx < 6 then

2 z < zidx & 1;

3 Sz +— 2% 9;

4 gz < zx (bt +1)—1,

5 xzswap <— zidx <= 1;

6 yzswap < (zidx & 2) == 2;

7 si < xzswap ? sz : (xidx+1);

8 sj < yzswap ? sz : (yidx+1);

9 si < xzswap ?(xidx+1) : (yzswap?(yidx+1) : sz );
10 gi < xzswap ? gz : xidx;

1 gj < yzswap ? gz : yidx;

12 gi «+ xzswap ? xidx : (yzswap ? yidx: gz );
13 s < (si, sj, sk);

14| g« (gl g, gk

15 end

Algorithm 2: Shared Memory Fetching Strategy for eta-
array Using Only One Conditional

To address the work imbalance, we propose smem_eta_1l
with only one condition, where we choose to use the first
six threads from the X dimension to perform halo fetching.
Algorithm 2| describes how we tilt the six planes of threads to
identify the halo point that the each thread is responsible for
the fetching. For 8 x 8 x 8 3D blocks, because 6/8 threads
perform the fetching, in theory, we reduce thread idleness
to just 20%. However, this algorithm has relatively complex
arithmetic to tilt each thread to its proper halo position, so an



experimental evaluation is needed to see whether the strategy
is profitable.

4) Semi-stencil: Semi-stencil was initially introduced for
CPUs, where it separates the stencil computations into two
phases, namely the forward phase and the backward phase.
The algorithm reads R 4 1 points on one dimension, and the
forward phases compute as the points are the left side of
the stencil, and the partial result is stored to the rightmost
point. Backward phases then compute as if the points are the
right side of the stencil, and write out the final result to the
leftmost point. By doing this, semi-stencil has the potential
to improve performance by changing the ratio between load
and store. For example, for a 3D stencil of halo size of R,
with typical approach, it requires to load 6 * R 4 1 points in
order to perform stencil computation for one point. Once the
computation is done, a single store writes the result back. So
the load-store-ratio is (6 * R 4 1) : 1. On the other hand, using
semi-stencil on one dimension, we read the center point and
the half points with R + 1 loads, then forward phase writes
one store, and backward phase write another store, thus total
of two stores. Therefore, the load-store-ratio for semi-stencil is
(R+1) : 2. Also please note that, even for multi-dimensions,
this ratio does not change. This is in theory very appealing for
high-order stencils because the larger the size of the halo, the
potential benefits one might achieve as the algorithm trades
half of loads with just one more store. Therefore, we try to
adopt semi-stencil algorithm on GPUs.

Our GPU implementation also uses 3D blocking. While
the stencil computation in each 3D block is close to the
CPU implementations described in the original paper. we
further parallelize the executions by running all time steps
concurrently on GPUs.

We assign the identifier sems to this implementation.

5) 2.5D Streaming with Multi-Plane using Shared Memory:
Starting from this implementation, we use 2.5D blocking. As
already described, the 2.5D algorithm mainly streams a 2D
plane through the third dimension. In our implementations,
we choose the 2D XY-subplane because X is the innermost
dimension in our data layout. Let Dx and Dy denote the di-
mensions of the 2D tile along the X and Y axes, respectively.
So we launch kernels using 2D thread blocks with the size of
Dz by Dy and a total of Dx x Dy threads. The GPU grid
size of each data region is [Nz/Dx] x [Ny/Dy].

In this approach, we exploit shared memory as a buffer to
store all data needed in the stencil computations for a particular
XY-subplane. In addition to the current XY-subplane, we also
load R subplanes above the current subplane and R subplanes
below into the shared memory. Therefore, we allocate a buffer
for 2R + 1 planes, where each has (Dx 4+ 2R) x (Dy + 2R)
points, thus, total of (2R + 1) x (Dz + 2R) x (Dy + 2R)
points. Hence, the extent of each subplane must be carefully
chosen so that the buffer size is as large as possible to enhance
data reuse, but at the same time, it must be chosen so that the
aggregate data volume of the planes doesn’t exceed the shared
memory available to a block. Let B denote our buffer, and B]i]
denote the i-th subplane in the buffer.

Before we can start the streaming computation, points from
the top halos are pre-loaded into buffer B[0..R) and the
first R XY-subplanes are pre-loaded into B[R..2R). Then,
in our streaming loop, for each z < [0..Nz), we first load
the (z+R)-th XY-subplane into B[(z + R) mod (2R + 1)];
next, we perform the stencil computation for the z-th XY-
subplane with the stencil points read from B in shared
memory; finally, we store the result back to global memory.

While we explain this strategy using a modulus operator,
in practice, we avoid using it for speed. Since the z index
always increases by one inside the streaming loop, we use
loop unrolling and index rotation to achieve the desired effect
without modulus computations.

We refer to the family of kernel implementations of this
strategy as st_smem_{Dxz}_{Dy} in our experiments.

The shared memory buffer used by this approach is limited
by the GPU shared memory size. Alternatively, one can
store data for stencil points along the streaming dimension
in registers. We discuss two approaches that use registers to
store points along the streaming dimension in the following
sections.

6) 2.5D Streaming using Register Shifting: In this 2.5D
streaming approach, we keep points of the current XY-
subplane in shared memory. However, when we stream along
the z-axis, we use registers for the points along the z-axis. In
contrast to shared memory, where data loaded from one thread
is accessible by other threads in the same block, registers are
only accessible by the current thread. Since we are streaming
along the z-axis, the data from z-axis loaded for one thread is
not needed by other threads.

So we allocate a shared memory space to hold
(Dz + 2R) x (Dy + 2R) points for the currently active plane.
The shared memory footprint compared to the previous method
is 1: (2R + 1). For high-order stencils, R is large so that
the shared memory usage reduction is significant. Let S(z,y)
denotes the shared memory with location (x,y).

We also allocate 2R+-1 registers for the current point and its
neighbors in each direction along the z-axis. Let Reg(x,y)[i]
denote the i-th register for the thread (z,y).

Before we can start the streaming computation, thread (z, y)
fetches data values from (z,y, z) for z < [—R..R) and stores
them into register Reg(z,y)[0..2R), respectively. Then, inside
the stream loop, for each z + [0..Nz), we first shift the
register indices back one position on each thread, such that for
r < (0..2R], Reg(x,y)[r — 1] = Reg(x,y)[r]. Then, we load
the leading point along the streaming dimension (z,y, z + R)
into register Reg(x, y)[2R)]. Next, we fetch data (x,y, z) from
global memory into S(z,y); and we finally perform the stencil
computation by using the data of XY-subplane from shared
memory and data along the z-axis from registers. Finally, the
kernel stores the stencil result for each thread back to global
memory.

We refer to the family of kernel implementations using this
strategy as st_reg_shft_{Dxz}_{Dy} in our experiments.

Although the notation we use above for registers might give
the impression that we are using array indexing to access



register values, in our implementation, registers are expressed
explicitly as 2R + 1 scalar variables. Since our acoustic
isotropic kernel has R = 4, which is the same as the sample
code by Micikevicius [18]], our implementation uses the same
variable names: behind4, behind3, behind2, behindl,
current, frontl, front2, front3, and front4.

7) 2.5D Streaming using Fixed Registers with Loop Un-
rolling: Like the previous approach, this implementation uses
shared memory for the current XY-subplane and registers for
points along the z-axis — the streaming dimension. However,
the values in the registers are fixed instead of being “shifted.”

We  again  allocate a  shared  memory of
(Dz+2R) x (Dy+2R) points. Let S(z,y) denotes
the shared memory for location (x,y). We allocate 2R + 1
registers as well, and denote Reg(x,y)[i] for the i-th register
of the thread (x,y). In practice, they are 2R+ 1 named
variables.

Before we can start the streaming computation, thread
(x,y) fetches data from (z,y,z) for z <« [-R..R) and
stores them into register Reg(z,y)[0..2R), respectively.
Then, inside the stream loop, for each z + [0..Nz), we
do not modify any value in the existing registers; we
only update register Reg(x,y)[(z + 2R) mod (2R + 1)]
with the value of point (x,y,z + R). Then, we fetch
data (z,y,z) from global memory into S(z,y). Next,
we perform the stencil computation by using the data of
XY-subplane from shared memory and i-th data above
current point from Reg(z,y)[(z + R —i) mod (2R + 1)],
and j-th data below the current point from
Reg(z,y)[(z+ R+ j) mod (2R + 1)]. Finally, the kernel
stores the result back to global memory.

To further improve performance, we unroll the streaming
loop. We introduce macros with register indices as macro
placeholders. Inside the streaming loop, we expand 2R + 1
macro calls, each with register indices shifted by one. We
check and exit the loop when the stream reaches the boundary
of z-axis.

We refer to the family of kernel implementations using this
strategy as st_reg_fized_{Dxz}_{Dy} in our experiments.

V. EVALUATION

A. Experiment Environments

We evaluate all kernel implementations on three machines
with NVIDIA GPUs across several generations. Table [I] lists
our machine specifications. And we refer to the three machines
by their GPU models.

e Machine V100 is equipped with four NVIDIA V100
GPUs. We use one dedicated GPU for our experiments.
We use the compiler option —arch=sm_70 to compile
all kernels for this platform.

e Machine P100 is equipped with four NVIDIA P100
GPUs. We use one dedicated GPU for our experiments.
We use the compiler option —arch=sm_60 to compile
all kernels for this platform.

V100 P100 NVS510
CPU IBM IBM Intel Xeon
POWER9 POWERSNVL E3-1245 v6
CPU Cores 160 160 8
RAM 256 GB 256 GB 16 GB
GPU NVIDIA NVIDIA NVIDIA
Tesla V100 Tesla P100 NVS 510
GRAM 32 GB 16 GB 2 GB
Ubuntu
oS RHEL v7.7 RHEL v7.4 18.04 LTS
CUDA 10.2.89 10.1 10.2.89
NVIDIA Driver 440.33.01 418.39 440.33.01

TABLE I: Machine Specifications

e Machine NVS510 has one NVIDIA NVS510 GPU. We
use the compiler option —arch=sm_30 to compile all
kernels for this platform.

On NVS510, support for some tooling is marked as dep-
recated. While the tools work to some extent, many have
limited functionality. Also, the GPU memory available on
NVS510 doesn’t support grid sizes needed for real-world use.
Therefore, we only use this machine for basic comparisons
across GPU generations. While we examine some metrics on
this platform, we don’t discuss them in detail.

In most situations, we let the nvcc compiler figure out
the register usage by itself, but we pay very close attention
to the resulting register footprint. However, there are a few
cases, where we specify the maximum number of registers
used by a kernel using the compiler flag -maxrregcount=X
to prevent register spilling.

We also use HPCToolkit [41]], [42] version 20200803 and
Empirical Roofline Toolkit [40] [H and NVIDIA Nsight Com-
pute version 2019.5.0 during our evaluations.

B. Evaluation Methodologies

We evaluate all implementations and their variants. First,
we conduct basic time measurements. Second, we use HPC-
Toolkit’s GPU support [42] to profile the kernel details with
PC sampling. Third, we run Nsight Compute for device-
specific kernel characteristics. Finally, we use the Empirical
Roofline Toolkit to understand memory bandwidth limits on
algorithm performance. We calculate the arithmetic intensity
and the performance of every kernel, and compare them with
the roofline chart. We describe each of our evaluation methods
below.

1) Time Measurements: For each machine, based on its
device memory size, we run the kernels with a large grid
size supported by the device memory. For V100, we use a
grid size of 1000%; for P100, we use a grid size of 8933;
for NVS510, we use a grid size of 3003. As described in
the stencil needs multiple iterations to converge. For
benchmarking, we use 1000 iterations for all kernels on all
machines. For each execution, we warm up the kernel by

'We use a local fork of the tool for better Python 3 support and other
minor changes needed for our environments. Our changes are made avail-
able at https://github.com/rsrice/cs-roofline-toolkit-fork under the same open-
source license as the upstream repository https://bitbucket.org/berkeleylab/cs-
roofline-toolkit/src/master/.



running the entire execution once, and then we repeat it five
times, recording the average time for the five runs.

2) HPCToolkit: We use the August 2020 release of the
HPCToolkit to collect GPU kernel metrics, such as register
use, block and grid size, as well as PC sampling statistics
such as exposed latencies and their kinds.

The evaluation contains four steps: Firstly, running hpcrun
along with kernel executions for sampling using program
counters. Thanks to the very low overhead of hpcrun, we
can run our kernels with 1000 time iterations, which gives
us accurate measurements that match the kernel behavior in
the real world. Then, we use hpcstruct on the kernel
binaries and recover the information about their relations to
the source code. This is needed to contribute the performance
metrics back to the source code, so that we can evaluate it
later at the source code level, which makes the investigation
easier. The source code structure computed by hpcstruct
is then associated by hpcprof with the raw sampling data
from hpcrun. Finally, a HPCToolkit performance database is
generated.

HPCToolkit provides two graphicl user interfacea to an-
alyze the performance database, namely, HPCViewer and
HPCTraceViewer. We use HPCViewer primarily for is-
sues such as memory stalls, which enables us to easily spot
which source lines have the most significant stalls. We also use
HPCViewer to quickly identify the performance hotspots in
our kernel executions using its code-centric views. We use
HPCTraceViewer to inspect the program execution over
time, which enables us to quickly spot idleness and see the
associated calling contexts.

We describe some of our findings using HPCToolkit in our
discussion of the evaluation results.

3) Nsight Compute: We run Nsight Compute for kernel
characteristics, such as theoretical and achieved occupancy.
Nsight Compute provides insights when performance differ-
ences are driven by the kernel characteristics. For example,
when low occupancy happens, one can easily tell from an
Nsight Compute report whether or not the problem seems to
be associated with the register footprint, the shared memory
footprint, or the number of threads.

Nsight Compute re-plays every kernel execution multiple
times to collect a complete set of measurements, which adds
a huge measurement overhead. When we use Nsight Compute,
we run only five iterations.

4) Roofline Performance Model: We use the GPU Roofline
performance model to see how well our kernels perform
relative to a machine’s practical peak based on each kernel’s
arithmetic intensity and the memory bandwidth-based perfor-
mance limit for that particular arithmetic intensity.

We use the Empirical Roofline Toolkit (ERT) for machine
characterizations. It runs several micro-benchmarks to char-
acterize the peak compute speed and memory bandwidth of
the machine. Benchmarking directly on a machine gives us an
achievable performance bound, which is substantially lower
than the theoretical peak claimed by the manufacturers when
a kernel is memory bound.

We characterize kernels using nvprof by measuring sev-
eral kernel performance metrics, including FLOPs, L2 read
and write transactions, as well as DRAM read and write
transactions. Output from nvprof is then fed into the cal-
culations of both the performance and the arithmetic intensity
for each kernel. Performance is calculated by the division
of the measured FLOPS by the measured execution time.
Arithmetic intensities are calculated by the division of the
measured FLOPS by the measured bytes accessed on DRAM
and L2 cache respectively.

We compare the performance of each kernel with the peak
performance of the machine it runs on. We then compare
kernels by their arithmetic intensities and their relative per-
formance.

C. Results

In this section, we first present a summary of our results in
tables and plots. After presenting our findings, we discuss our
kernel measurements from several perspectives.

Table [T presents time measurements for the kernels. For 3D
blockings, the columns Dz, Dy, and Dz stand for the block
dimensions along the x, y, and z axes, respectively. For 2.5D
blockings, only columns for Dx and Dy are reported since
the z-axis is unpartitioned. For N7 column, only values we
explicitly specified are reported, and we use — for the ones
that compiler decide.

Table present the kernel characteristics for inner data
region at the top, and PML regions at the bottom, respectively.
As previous discussed, there are three symmetric groups for
the PML subregions: top/bottom, front/back, and left/right. We
group them in Table For shared characteristics across data
regions, we further extract them into the Static column.

Table presents the performance characteristics of our
implementations on the V100. Figure [3] visualizes these per-
formance characteristics using roofline performance model,
where Subfigures [3af and |3b| showing the rooflines for L2 and
DRAM, respectively, and Subfigures [3c| and [3d| are zoomed-in
views the roofline kernel characteristics. The y-axes of these
figures represent performance and x-axes show arithmetic
intensity. The dots in each group of the implementations are
categorized with the same color and their coordinates can be
found in Table

From our results, we offer the following observations.

3D Blocking using Global Memory:
The simplest implementation gmem_8x8x8 using only the
global memory yields the best performance on V100. With
L1 data cache and shared memory combined into a single
unified memory block on the V100 [43]], we have a much
larger data cache available on the V100 than on previous
generations of GPUs. Therefore, when retrieving data from
global memory with a good access pattern, we can achieve
very good performance.

Comparing the performance of the 3D kernel across GPU
generations, we notice its poor performance portability. It is
one of the slowest implementations on P100 and the NVS510.



Kernel Machine
Kernel Identifier Dx | Dy | Dz | Nr V100 P100 | NVS510
gmem_4x4x4 4 4 4 - 77.77 | 181.99 682.89
gmem_8x8x4 8 8 4 - 7191 | 167.75 674.09
gmem_8x8x8 8 8 8 - 53.88 | 117.74 415.85
gmem_16x16x4 16 16 4 - 85.52 | 195.82 760.72
gmem_32x32x1 32 | 32 1 - 29236 | 639.62 | 2507.22
smem_u 8 8 8 - 57.30 76.18 210.42
smem_eta_1 8 8 8 - 54.87 | 119.15 397.56
smem_eta_3 8 8 8 - 5434 | 117.39 396.49
semi 8 8 8 - 172.84 | 217.29 1726.17
st_smem_8x8 8 8 - - 116.38 | 112.71 509.18
st_smem_8x16 8 16 - - 113.46 | 105.41 439.47
st_smem_16x8 16 8 - - 59.92 77.91 425.73
st_smem_16x16 16 16 - - 55.87 72.73 349.45
st_reg_shft_8x8 8 8 - - 104.36 | 144.89 209.87
st_reg_shft_16x16 16 16 - - 65.79 80.23 182.52
st_reg_shft_16x32 16 32 - - 65.61 82.25 199.61
st_reg_shft_16x64 16 64 - 64 115.54 98.19 240.41
st_reg_shft_32x16 32 16 - - 60.83 70.63 171.30
st_reg_shft_32x32 32 32 - 64 93.92 76.27 167.29
st_reg_shft_64x16 64 16 - 64 90.98 80.67 202.74
st_reg_fixed_8x8 8 8 - - 113.88 | 152.75 195.05
st_reg_fixed_16x8 16 8 - - 70.24 84.05 159.73
st_reg_fixed_16x16 16 16 - - 61.66 76.10 170.03
st_reg_fixed_32x16 32 16 - - 62.45 66.60 162.05
st_reg_fixed_32x32 32 32 - 64 58.96 61.74 160.91

TABLE II: Time Measurement

We tried several variants of the global memory implemen-
tation that differ each others in terms of block size, from
smaller to larger, including gmem_4x4x4, gmem_8x8x4,
gmem_8x8x8, gmem_16x16x4, and gmem_32x32x1. Our
results show that, gmem_8x8x8 is the best among them. We
need to load all halos before performing stencil computations.
For blocks smaller than gmem_ 8x8x8, such as gmem_4x4x4
and gmem_8x8x4, the halo size for our 25-point stencil
dominates the actual data points. Therefore, more time is spent
on loading halos than points for the volume to be computed,
which hurts performance. In addition, smaller block sizes also
result in larger GPU grid size as we can see from Table
which means more kernel launches. For the smaller blocks, the
additional overheads slow the overall execution. On the other
hand, we also see performance degradation for larger blocks,
gmem_16x16x4 and gmem_32x32x1. Their larger block
size results in a smaller grid size. However, both have low
theoretical and achieved occupancy. Table shows that the
3D kernels using larger blocks, especially gmem_32x32x1,
incur more L2 cache misses, which increases the number of
high-latency loads from global memory.

In summary, the global memory implementations are the
simplest to program and need very little performance tuning.
With the right tile shape and using a good global memory
access pattern, on late-model GPU architectures, such as V100,
one can achieve amazingly good performance with little effort.
From a software engineering perspective, these implementa-
tions are easy to understand and have a low maintenance cost.

Shared memory:

Table [lI| shows that using shared memory can boost per-
formance. The yield performance gain is more significant on
older generation GPUs, such as P100 and NVS510, which is
consistent with results in previous research.

Recall that smem_u is a high-order stencil while
smem_eta_1 and smem_eta_3 are not. From Table
we saw smem_u runs faster than smem_eta_1 and
smem_eta_3 on V100, but oppositely, it is slower on P100
and NVS510. We attribute this conflicting results to the
architectural changes in V100, where it combines the L1 data
cache with shared memory. As discussed previously, on V100,
with good access patterns for global memory, one can achieve
great performance with little effort. The overhead of using
shared memory on V100 in 3D blocking erases this gain. In
contrast, older generation GPUs do not have this new feature,
so shared memory provides more performance benefits than
its overhead. On older architectures, with high-order stencils,
such as smem_u, because we load larger-size blocks into
shared memory than low-order ones, such as smem_eta_1
and smem_eta_3, we see better performance.

For high-order stencils, which have a large halo size, it
is not hard to reach the shared memory limit. While shared
memory improves performance, the hardware limitation on
shared memory limits the potential of holding all data on
shared memory for high-order stencils which use large blocks.

Semi-stencil:

Thread synchronizations on GPUs are very expensive, and
our evaluations also prove so with our semi-stencil imple-
mentation. Because of the need of storing and loading partial
results, thread synchronizations are necessary to ensure the



Kernel Identifier Block Size Grid Size Registers Achieved Achieved Theoretical Theoretical
Per Thread Active Occupancy Active Occupancy
Warps Warps
gmem_4x4x4 64 13,312,053 40 37.2 58.2 48.0 75.0
gmem_8x8x4 256 3,356,157 40 44.0 68.7 48.0 75.0
gmem_8x8x8 512 1,685,159 40 42.5 66.4 48.0 75.0
gmem_16x16x4 1,024 853,200 40 28.9 45.2 32.0 50.0
gmem_32x32x1 1,024 851,400 40 29.3 45.8 32.0 50.0
smem_u 512 1,685,159 38 44.6 69.7 48.0 75.0
smem_eta_1 512 1,685,159 40 42.4 66.3 48.0 75.0
smem_eta_3 512 1,685,159 40 42.4 66.2 48.0 75.0
semi 768 1,685,159 40 41.2 64.4 48.0 75.0
st_smem_8x8 64 14,161 56 19.9 31.1 20.0 31.2
st_smem_8x16 128 7,140 56 279 43.6 28.0 43.7
st_smem_16x8 128 7,140 56 27.9 43.5 28.0 43.7
st_smem_16x16 256 3,600 56 31.6 49.4 32.0 50.0
st_reg_shft_8x8 64 14,161 96 19.0 29.7 20.0 31.2
st_reg_shft_16x16 256 3,600 96 15.9 24.9 16.0 25.0
st_reg_shft_16x32 512 1,800 96 16.0 25.0 16.0 25.0
st_reg_shft_16x64 1,024 900 64 32.0 50.0 32.0 50.0
st_reg_shft_32x16 512 1,800 96 16.0 25.0 16.0 25.0
st_reg_shft_32x32 1,024 900 64 32.0 50.0 32.0 50.0
st_reg_shft 64x16 1,024 900 64 32.0 50.0 32.0 50.0
st_ref_fixed_8x8 64 14,161 78 23.9 37.3 24.0 37.5
st_ref_fixed_16x8 128 7,140 78 239 37.3 24.0 375
st_ref_fixed_16x16 256 3,600 78 23.9 374 24.0 37.5
st_ref_fixed_32x16 512 1,800 78 16.0 25.0 16.0 25.0
st_ref_fixed_32x32 1,024 900 64 32.0 50.0 32.0 50.0
Static Top/Bottom Front/Back Left/Right
Kernel Identifier Block | Registers | Theoretical | Theoretical Grid | Achieved| Achieved Grid | Achieved| Achieved Grid | Achieved| Achieved
Size Per "‘Nf““’—_ Occu- Size Active Occu- Size Active Occu- Size Active Occu-
Thread e paney Warps pancy Warps pancy Warps pancy
gmem_4x4x4 64 48 40.0 62.5 | 437500 38.0 59.5 | 414750 38.0 59.4 | 393183 38.2 59.7
gmem_8x8x4 256 48 40.0 62.5 | 109375 37.5 58.6 | 118500 37.5 58.6 | 112812 36.7 57.3
gmem_8x8x8 512 48 32.0 50.0 62500 29.2 45.7 59500 26.9 42.0 56644 282 44.1
gmem_16x16x4 1024 48 32.0 50.0 27783 30.0 46.6 29862 29.5 46.1 28440 26.0 40.2
gmem_32x32x1 1024 48 32.0 50.0 27648 29.0 45.0 30272 29.0 45.0 28380 242 38.0
smem_u 512 48 32.0 50.0 62500 30.1 47.1 59500 27.8 435 56644 27.7 433
smem_eta_1 512 32 64.0 100.0 62500 59.4 92.9 59500 54.8 85.6 56644 54.8 85.7
smem_eta_3 512 32 64.0 100.0 62500 59.1 92.4 59500 53.9 84.3 56644 54.2 84.8
semi 768 64 24.0 375 62500 17.7 27.6 59500 18.7 29.3 56644 17.5 273
st_smem_8x8 64 72 20.0 31.2 500 124 19.4 476 11.8 18.5 14161 19.7 30.8
st_smem_8x16 128 72 28.0 43.7 252 12.6 19.7 238 11.8 18.5 7140 27.5 43.1
st_smem_16x8 128 72 28.0 43.7 250 124 19.5 240 11.9 18.6 7140 27.5 43.0
st_smem_16x16 256 72 24.0 37.5 126 12.7 19.8 120 12.0 18.7 3600 23.9 37.3
st_reg_shft_8x8 64 80 24.0 37.5 500 12.4 19.4 476 11.8 18.4 14161 23.6 36.8
st_reg_shft_16x16 256 80 24.0 375 126 12.6 19.7 120 11.9 18.6 3600 23.9 37.3
st_reg_shft_16x32 512 80 16.0 25.0 64 16.0 25.0 60 16.0 25.0 1800 15.9 24.9
st_reg_shft_16x64 1024 64 32.0 50.0 32 32.0 50.0 60 31.9 49.9 900 31.9 49.8
st_reg_shft_32x16 512 80 16.0 25.0 63 16.0 25.0 60 16.0 25.0 1800 15.9 249
st_reg_shft_32x32 1024 64 32.0 50.0 32 32.0 50.0 30 31.9 49.9 900 31.8 49.8
st_reg_shft_64x16 1024 64 32.0 50.0 63 319 49.9 30 31.9 49.9 900 31.8 49.8
st_ref_fixed_8x8 64 106 16.0 25.0 500 12.4 19.4 476 11.8 18.4 14161 15.7 24.6
st_ref_fixed_16x8 128 104 16.0 25.0 250 12.4 19.5 240 11.8 18.5 7140 15.7 24.6
st_ref_fixed_16x16 256 104 16.0 25.0 126 12.6 19.8 120 12.0 18.7 3600 15.8 24.7
st_ref_fixed_32x16 512 106 16.0 25.0 63 16.0 25.0 60 16.0 25.0 1800 15.9 24.9
st_ref_fixed_32x32 1024 64 32.0 50.0 32 32.0 50.0 30 31.9 49.9 900 31.9 49.8

TABLE III: Kernel Characteristics on V100: (top) Inner; (bottom) PML

completeness of the required computation before it can pro-
ceed to the next. As GPU runs threads concurrently in warps,
we must introduce proper barriers to prevent data from being
corrupted. Our choice of using 3D blocking requires thread
synchronizations on all three dimensions, which exacerbates
the problem. HPCToolkit also backs our reasoning with its
second most significant bottleneck being the thread synchro-
nization (STL_SYNC).

Nevertheless, the methodology behind semi-stencil algo-

rithm is still valid. Thus, to avoid the excess use of thread
synchronizations, we will investigate into using double buffer-
ing. As well, we will explore using 2.5D blocking instead of
3D blocking in our future work.

Code Shape for 2.5D-Blockings:

For implementations using 2.5D-blocking, we observe the
larger the 2D plane, the better the performance. There are



Kernel Identifier FLOP Achieved L2 L2 L2 L2 DRAM DRAM DRAM DRAM
(x1013) Perfor- Trans- Arith- Machine Achieved Trans- Arith- Machine Achieved
mance actions metic Peak Per- Percent- actions metic Peak Per- Per-
(GFLOPs) || (x1012) Intensity formance age (x1011) Intensity formance centage
(GFLOPs) (GFLOPs)
gmem_4x4x4_opt 4.453 533 3.38 0.41 1361 39.19% 8.42 1.65 1291 41.29%
gmem_8x8x4_opt 4.453 577 2.81 0.49 1635 35.27% 7.26 1.92 1498 | 38.50%
gmem_8x8x8_opt 4.453 770 1.79 0.78 2566 30.00% 7.26 1.92 1498 | 51.39%
gmem_16x16x4_opt 4.453 485 245 0.57 1877 25.83% 6.67 2.08 1628 | 29.78%
gmem_32x32x1_opt 4.453 142 13.90 0.10 330 42.95% 6.56 2.12 1656 8.57%
smem_u_opt 4.453 724 1.82 0.77 2531 28.60% 7.37 1.89 1474 | 49.11%
smem_eta_1_opt 4.453 756 1.82 0.76 2522 29.97% 7.31 1.90 1487 | 50.81%
smem_eta_3_opt 4.453 763 1.81 0.77 2535 30.10% 7.31 1.90 1488 | 51.30%
semi_opt 6.400 345 2.67 0.75 2480 13.90% 18.40 1.08 847 | 40.71%
st_smem_8x8_opt 4.453 356 1.59 0.87 2891 12.33% 12.30 1.13 885 | 40.27%
st_smem_8x16_opt 4453 366 1.47 0.95 3130 11.68% 13.30 1.05 820 | 44.58%
st_smem_16x8_opt 4.453 692 1.17 1.19 3933 17.59% 7.74 1.80 1404 | 49.27%
st_smem_16x16_opt 4453 742 1.04 1.34 4414 16.81% 6.97 2.00 1560 | 47.58%
st_reg_shft_8x8_opt 4.453 397 1.57 0.89 2935 13.54% 10.40 1.34 1047 | 37.96%
st_reg_shft_16x16_opt 4.453 630 1.20 1.16 3841 16.41% 7.22 1.93 1506 | 41.86%
st_reg_shft_16x32_opt 4.453 632 1.15 1.21 3991 15.84% 6.76 2.06 1607 | 39.32%
st_reg_shft_16x64_opt 4.453 359 1.99 0.70 2317 15.49% 17.00 0.82 638 | 56.25%
st_reg_shft_32x16_opt 4.453 682 0.94 1.47 4861 14.02% 6.94 2.00 1566 | 43.54%
st_reg_shft_32x32_opt 4.453 442 1.67 0.83 2750 16.05% 15.50 0.90 701 62.95%
st_reg_shft_64x16_opt 4.453 456 1.57 0.89 2938 15.52% 14.50 0.96 752 | 60.64%
st_reg_fixed_8x8_opt 4.453 364 1.65 0.84 2791 13.05% 15.00 0.93 723 | 50.36%
st_reg_fixed_16x8_opt 4.453 590 1.27 1.10 3632 16.26% 9.59 1.45 1133 | 52.11%
st_reg_fixed_16x16_opt 4.453 673 1.18 1.18 3899 17.25% 7.71 1.80 1409 | 47.72%
st_reg_fixed_32x16_opt 4.453 664 9.12 1.53 5043 13.17% 7.14 1.95 1522 | 43.62%
st_reg_fixed_32x32_opt 4453 703 1.09 1.27 4209 16.71% 9.08 1.53 1197 | 58.78%

TABLE IV: Kernel Performance Characteristics on V100

two main reasons for this. First, a larger 2D plane means a
higher degree of concurrency. Second, with a larger plane,
the percentage of halo points fetched into shared memory is
smaller, which speeds up the overall performance.

In addition, our results show that st_reg_shft_32x16
runs faster than st_reg_shft_16x32. From Table
we see more L2 transactions with st_reg_shft_16x32,
which in turn harms performance. Therefore, one should cut
the plane so that the x-dimension of the GPU’s thread block
assigned to the innermost dimension has a relatively larger
size.

Register Footprint in 2.5D-Blockings:

When we evaluate st_reg_shft_x implementations,
the variants with 2D plane size of 1024, namely
st_reg_shft_16x64, st_reg_shft_32x32, and
st_reg_shft_64x16, show poor performance on V100.
The performance degradation is caused by register spilling.
The maximum registers in a blockthread is 641024 = 65536.
Because we have 1024 threads for these implementations, we
can only have maximum 64 registers for each thread. If we do
not explicitly specify the register count to nvcc, it assigns 80
and 96 registers to the PML and inner kernels, respectively.
Running the generated binaries for these register footprints
yields incorrect results. To avoid this problem, we use
compiler flag -maxrregcount=64 to limit the maximum
register usage per thread. Unfortunately 64 registers are not
enough to hold all of the variables at the same time, causing
register spilling. The register shifting approach exacerbates
register spilling due to its high frequency of register access.

However, although register spilling happens to the register
shifting kernels, for the st_fixed_reg_32x32 kernel, we
don’t see a performance degradation because the code uses
fixed registers with loop unrolling. Because the registers are
fixed, the frequency of register data movement is smaller than
for kernels using the register shifting approach. This allows
the performance impacted by register spilling to be hidden by
other thread activities.

GPU Warp Occupancies:
Table shows implementations using 2.5D blocking in
general have better theoretical and achieved occupancies than
the ones using 3D blocking.

Performance Portability:
The best performing implementations on P100 and NVS510
come from 2.5D approaches. Although they are not the best
kernels on V100, they are still in the fastest tier. Thus, if
performance portability is a concern, implementations using
2.5D blocking, such as st_reg_fixed_32x32, would be
preferred.

Gaps to the Roofline Ceilings:
Our interpretation of the performance gaps are twofold:

First, although our current implementations realize a good
performance for high-order stencils with boundary conditions,
we see room for further performance tuning. We could im-
prove the arithmetic intensities by designing new GPU code
shapes, e.g., by employing the semi-stencil algorithm [|15]],
[16], which reduces data movement for high-order stencils,
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or employing time-skewing to increase data reuse. While all
of our implementations were manually written in CUDA, we
could develop a new DSL approach or build a framework that
enables us to explore more sophisticated approaches.

Second, ERT uses simple micro-benchmarks to profile the
machines. In contrast, the acoustic isotropic model not only
uses high-order stencils with complex boundary conditions,
but also contains complicated logic with multiple statements.
Thus, while the roofline ceilings provide us a guide, the logic
of our complex kernels makes it difficult to hit the roofline
limit.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the performance of high-order
stencils with boundary conditions. We reviewed the existing
techniques for implementing 3D stencil computations and
evaluated most of them suitable for high-order stencils, with
the notable exception of time-skewing algorithms. We imple-
mented multiple versions of different approaches using known
techniques and combinations of them, modifying approaches
as needed to better accommodate high-order stencils with

boundary conditions. We evaluated our implementations with
several tools on multiple platforms, quantitatively comparing
stencils from various perspectives, and presented our findings
and observations.

We began our evaluation by computing 25-point stencil
algorithms over the entire data domain in a single kernel
launch. Inefficiency caused by branch divergence led us to
apply domain decomposition and compute the boundaries sep-
arate from the center region. While this improved efficiency,
having the regions separate impedes our ability to apply time
skewing along the streaming dimension for the 2.5D algorithm.
We plan to reintegrate boundary computations with the inner
region to enable us to evaluate 3.5D algorithms on high-order
stencils by adding time skewing to the streaming dimension.
In addition, we would like to explore whether applying the
semi-stencil algorithm [15] along the streaming dimension to
reduce the memory hierarchy footprint of a block’s stencil
calculations and increase the arithmetic intensity of high-order
kernels. We plan to experiment with the range of kernels on
the NVIDIA A100 GPU to assess performance portability. In
addition to NVIDIA GPUs, we plan to expand the scope of



our evaluation to explore the performance of various high-
order stencil implementations on leading-edge GPUs from
other vendors, as soon as we can gain access to them and
results on them are not embargoed.

We recognize that implementing, tuning, maintaining, and
porting high-performance GPU kernels for high-order stencils
is quite difficult. For the long term, we believe that a high-level
representation of stencil computations in conjunction with
powerful compiler technology is arguably the best strategy to
improve development productivity and performance portability
while also lowering maintenance costs by reducing complexity.
However, a concern for DSL users is the long-term viability
of their code. We are hopeful that adding DSL technology to
the LLVM compiler framework will provide a path forward
that will address this concern.
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