
Received: 18 February 2022 Revised: 17 April 2022 Accepted: 14 May 2022
DOI: 10.1002/cpe.7163

RESEARCH ARTICLE

PECCO: A Profit and Cost-oriented Computation Offloading
Scheme in Edge-Cloud Environment with Improved Moth-flame
Optimisation

Jiashu Wu1,2 | Hao Dai1,2 | Yang Wang*1 | Shigen Shen3 | Chengzhong Xu4

1Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

2University of Chinese Academy of
Sciences, Beijing 100049, China

3Shaoxing University, Shaoxing 312000,
China

4University of Macau, Macau 999078, China
Correspondence
*Corresponding Author: Yang Wang, Email:
yang.wang1@siat.ac.cn
Present Address
1068 Xueyuan Avenue, Shenzhen University
Town, Shenzhen 518055, Guangdong,
P.R.China

Summary

With the fast growing quantity of data generated by smart devices and the exponen-
tial surge of processing demand in the Internet of Things (IoT) era, the resource-rich
cloud centres have been utilised to tackle these challenges. To relieve the burden
on cloud centres, edge-cloud computation offloading becomes a promising solu-
tion since shortening the proximity between the data source and the computation
by offloading computation tasks from the cloud to edge devices can improve per-
formance and Quality of Service (QoS). Several optimisation models of edge-cloud
computation offloading have been proposed that take computation costs and het-
erogeneous communication costs into account. However, several important factors
are not jointly considered, such as heterogeneities of tasks, load balancing among
nodes and the profit yielded by computation tasks, which lead to the profit and cost-
oriented computation offloading optimisation model PECCO proposed in this paper.
Considering that the model is hard in nature and the optimisation objective is not
differentiable, we propose an improved Moth-flame optimiser PECCO-MFI which
addresses some deficiencies of the original Moth-flame Optimiser and integrate
it under the edge-cloud environment. Comprehensive experiments are conducted
to verify the superior performance of the proposed method when optimising the
proposed task offloading model under the edge-cloud environment.
KEYWORDS:
Cloud Computing, Edge-Cloud Computation Offloading, Internet of Things, Moth-flame Optimiser

1 INTRODUCTION

With the rapid prevalence of smart devices1 such as mobile phone and Internet-of-Things (IoT) devices2,3,4, a vast amount
of data has been generated5 and the demand of computation resources has been boosted6,7. Due to the limited computation,
storage and energy capacity of these smart devices8, the powerful cloud computing has been leveraged to provide elastic on-
demand services to cope with limitations of smart devices9,10. With the support of resource-rich cloud servers, processing and
storage-intensive applications such as Augmented Reality (AR)11 and Virtual Reality (VR)12 become feasible.
However, the fast growing of computation demands pose severe burden on cloud centres13,14,15, and tremendous amount of

data generated16,5 congests the network with limited bandwidth17,14,15, hence causing bottlenecks for the cloud-based computing

ar
X

iv
:2

20
8.

05
07

4v
1

 [
cs

.D
C

]
 9

 A
ug

 2
02

2

2 Jiashu Wu ET AL

paradigm. To relieve the pressure on cloud centres, the edge computing concept has emerged18,14, which allows computation to
be performed at the edge network. The Edge network 15 refers to the computing and network resources sit along the path between
data sources and cloud centres. The rationale of computation offloading19,20 is to let the computation happen at closer proximity
to the data sources, so that not only the load pressure of cloud centres can be lessened, but also the Quality of Service (QoS)
can be improved as the edge computing can provide more efficient responses21.
To fully excavate the potential of edge-cloud computation offloading, several past research efforts investigated performance-

influencing factors and proposed optimisation models to maximise the performance gain while not causing significant costs.
Wang et al.,22 presented a Two-Phase Optimisation algorithm and an Iterative Improvement algorithm to jointly optimise the
computation costs and latency under the mobile-edge setting. Li et al.,23 constructed a cost graph to optimise the energy
consumption of handheld computing devices during computation offloading to achieve considerable energy saving. Works
in22,24,25,26 all considered optimising the communication cost under the edge-cloud task offloading setting. Specifically, they
adopted a homogeneous communication model with two assumptions: cloud-cloud and edge-edge communication cost were
ignored, and the edge-cloud and cloud-edge communications were assumed to have symmetric costs, irrespective of the commu-
nication direction and distance between nodes. To address the over-simplicity of homogeneous communication models in these
methods, Du et al.,19 attempted the heterogeneous communication model and proposed HETO algorithm that can jointly min-
imise the computation, communication and migration costs during computation offloading. Their work was the first to propose
a heterogeneous communication model so that the deficiencies in existing researches can be overcame.
Despite various attempts of past researches to optimise the edge-cloud computation offloading problem, these models still

suffered from the following drawbacks:
• These methods were not fine-grained enough. Although some methods considered heterogeneous communication cost,

these methods failed to leverage more fine-grained factors such as the distance between node pairs. These methods also
only leveraged a homogeneous cost model for computation tasks, which did not reflect the task heterogeneity in real-world
settings.

• During computation offloading, some methods did not pay attention to the load balancing, which can cause overloading
on certain nodes.

• These methods were cost-oriented, which failed to jointly optimise the profit and cost during computation offloading.
To address these issues, we propose a novel edge-cloud computation offloading model which not only utilises the more

realistic heterogeneous communication and computation cost model, but also considers the cost and profit heterogeneities of
tasks. Hence, the proposed method jointly optimises the profit and cost yielded during computation offloading. The model is
named as PECCO, which stands for “Profit and Cost-oriented Edge-Cloud Computation Offloading”.
Considering this optimisation problem is hard in nature and the objective of the PECCO model is not differentiable, we

consider using the Moth-flame Optimisation (MFO) algorithm27 to tackle the computation offloading problem. As a swarm-
based algorithm, it is gradient-free and it balances exploration and exploitation. Besides, empirically it outperforms other swarm-
based counterparts in terms of convergence speed27, etc., whichmake it suitable to be leveraged in this case.We therefore propose
an improved Moth-flame optimiser (PECCO-MFI) that addresses several drawbacks of the original MFO and significantly
boosts its optimisation effectiveness. Specifically, a density-aware Moth-flame initialiser is designed to fit under the edge-cloud
computation offloading setting. A dynamic hierarchical flaming mechanism is applied to avoid the single flame matching which
is more likely to cause local optima stagnation. Moreover, the lifetime of moths is introduced to promote exploration when the
corresponding paired flame is eliminated.
In summary, this paper makes the following contributions:
• We construct a profit and cost-oriented edge-cloud computation offloading optimisation model PECCO that jointly opti-

mises both the heterogeneous profit of computation tasks and the heterogeneous cost produced during computation
offloading.

• We not only utilise the heterogeneous communication cost, but also consider the load balancing among nodes during
optimisation.

• We realise the suitability to leverage the Moth-flame Optimiser, and propose an improved algorithm which tackles several
deficiencies of the original MFO and hence boosts the effectiveness when solving the proposed computation offloading
model.

Jiashu Wu ET AL 3

The rest of the paper is organised as follows, Section 2 introduces some related works on both edge-cloud computation
offloading models and optimisation algorithms. The research opportunities are then discussed. The background, suitability and
room for improvements to the Moth-flame Optimisation algorithm are given in Section 3. Section 4 presents the details of the
proposed model, as well as how the Moth-flame Optimisation algorithm is improved and integrated. Section 5 presents the
experimental settings and results to verify the effectiveness of the proposed algorithmwhen tackling the proposedmodel. Section
6 concludes the paper.

2 RELATEDWORK

In this section, past research works on edge-cloud computation offloading models will be presented. Then, some well-known
optimisers will be presented and compared. Finally, the research opportunities of our work are discussed.

2.1 Offloading Model
As a promising technique that can relieve the burden posed on cloud centres, edge-cloud computation offloading has drawn
huge attention from both industry and academic community8,28. Wu et al.,25 formulated the edge-cloud computation offloading
problem into a graph min-cost partitioning problem, in which computation tasks will be partitioned to be run on either the
cloud side or the edge side. The proposed Min-Cost Offloading Partitioning (MCOP) algorithm took both the execution time
and energy consumption into account when deciding an optimal task partitioning strategy. Li et al.,23 put forward a partition
scheme to offload computation tasks on handheld devices. A cost graph was constructed and the partition scheme was applied
to split computation programs into server tasks and client tasks with the aim to reduce the energy consumption. Juttner et al.,24
presented the Lagrange Relaxation based Aggregated Cost (LARAC) algorithm, which formulated a task graph and traversed the
shortest path between nodeswhen considering the communication costs. The proposed algorithmwas effective on delay-sensitive
applications, justified by the simulation experiment they performed.
In works completed byWang et al.,22 and Dong et al.,26, they paid attention to the communication cost faced in the edge-cloud

computation offloading problem. When modelling the communication cost, communications between nodes on the same side
(cloud-cloud, or edge-edge) were assumed to be cost-free. Moreover, to simplify the model, communication costs were assumed
to be symmetric, i.e., cloud-edge and edge-cloud communications have the same cost, irrespective of direction and the distance
between nodes on different sides. The homogeneous communicationmodel they leveraged is considered to be over-simplified and
highly infeasible in real-world settings, as the cost can be asymmetric and distance-dependent. Therefore, Du et al.,19 proposed
a more fine-grained heterogeneous cost model, in which the symmetric assumption was relaxed, and the communication costs
between nodes in a single side were no longer ignored. They then formulated the problem as a graph partitioning problem
and designed the HETO algorithm to find a sub-optimal offloading strategy. Experiments on PageRank datasets testified to the
excellent performance of the HETO algorithm when minimising the communication, computation and migration costs.
Despite that various research efforts have been drawn to optimise the edge-cloud computation offloading, they still suffered

from some drawbacks which need to be addressed:
• Although the heterogeneous communication cost has been considered in some works, they failed to leverage more fine-

grained factors such as distance between node pairs.
• When considering the cost during computation offloading, these methods utilised a homogeneous cost model for

computation tasks, i.e., task heterogeneity was ignored.
• During computation offloading, some methods did not take load balancing into consideration, i.e., some node may be

overloaded.
• These methods were cost-oriented, which failed to jointly optimise the profit and cost during computation offloading.

2.2 Model Optimiser
A suitable optimiser is indispensable to tackle the edge-cloud computation offloading problem and find out an excellent offload-
ing strategy. Some well-known individual-based optimisation algorithms were proposed29,30. They only optimised a single

4 Jiashu Wu ET AL

search candidate, and hence enjoyed a lighter computation cost and required less function evaluations. For instance, Lawrence31
presented the Hill Climbing (HC) algorithm which iteratively improved a single search candidate by changing its variables. The
Iterated Local Search (ILS) algorithm proposed by Lourenco et al.,32 was an improvement towards the HC algorithm. The best
solution obtained in each iteration was perturbed and utilised as the starting point of the next iteration. Despite the efficiency
enjoyed by these algorithms, they suffered a lot from the local optima stagnation. These algorithms may encounter the premature
convergence, which prevents them from converging towards the global optima. Some more advanced algorithms such as gradi-
ent descent33 have also been widely applied, especially for the optimisation in the field of deep learning34,35. However, these
methods required gradient information of the objective function, which made them not applicable when the objective function
is not differentiable.
In order to provide better local optima avoidance, some population-based optimisation algorithms have been proposed and

became popular in the past few years. By utilising multiple search candidates and meanwhile balancing between exploration and
exploitation, they provided higher possibilities to approach the global optima. As a sub-class of population-based algorithms,
swarm-based algorithms36 utilised multiple search candidates for the purpose of exploration. These search candidates then
iteratively evolve, and eventually the healthier individuals will survive, making the exploitation become possible. Kennedy et
al.,37 presented the Particle Swarm Optimisation (PSO) algorithm that mimicked the behaviour of birds in a flock which keep
track of their individual and global best positions. The PSO involved only primitive math operations and was computationally
inexpensive. Yang38 proposed the Firefly Optimisation algorithm (FFA), which was inspired by fireflies. During flying, fireflies
are attracted by other fireflies with higher brightness. The effectiveness of the algorithm was verified on several test functions.
A Whale Optimisation algorithm (WOA) was proposed by Mirjalili et al.,39 which was inspired by the bubble-net hunting
strategy of humpback whales. TheWOA algorithm mathematically modelled this behaviour to guide optimisation. A GreyWolf
Optimiser (GWO) was also proposed by Mirjalili et al.,40 which modelled the social hierarchy of grey wolves during hunting
to guide the optimisation process. Besides, Mirjalili27 put forward the Moth-flame Optimisation algorithm (MFO), which was
one of the most famous swarm-based optimisers. The MFO utilised a population of moths to act as search candidates so that the
probability of approximating the global optima was increased. Inspired by the transverse orientation characteristic of moths, the
location of moths will be updated based on their transverse oriented path, with extra parameters controlling the exploration and
exploitation. Each search candidate was iteratively assessed by a fitness function and hence the MFO algorithm was gradient-
free. After several generation of evolvements, the fittest moth will be regarded as the optimised result. Experiments on several
benchmarks27 demonstrated that compared with several counterparts, theMFO algorithm can achieve better optimisation results
with statistical significance, while also converge in a fast manner.

2.3 Research Opportunity
Considering that past edge-cloud computation offloading models suffered from these aforementioned drawbacks, we find it
promising to propose an optimisation model that is both profit and cost-oriented. In terms of costs, the heterogeneous commu-
nication cost should be considered in a fine-grained manner. Moreover, a heterogeneous cost model should also be applied for
tasks to make the model more practical. Besides, during computation offloading, load balancing should be taken care of to avoid
computation node overloading.
A comprehensive optimisation model and an excellent optimiser are both indispensable to produce a better task offloading

strategy. Given the suitability of the MFO algorithm such as a higher chance to converge towards the global optima and its
gradient-free merit, we propose an improvedMoth-flame optimiser that addresses some design flaws of the original MFO, which
can boost the effectiveness when working on the proposed computation offloading model.

3 BACKGROUND

In this section, we firstly introduce the background of the Moth-flame Optimisation (MFO) algorithm, including how it works,
its advantages and its suitability to be utilised to solve the PECCO model. Then, some deficiencies of the MFO algorithm are
pointed out which provide room for improvements for its improved version.

Jiashu Wu ET AL 5

3.1 The Moth-flame Optimisation Algorithm
Motivation and Rationale As a nature-inspired optimiser, the Moth-flame Optimisation algorithm is population-based as it
involves a population of moths. The moth has a special navigation mechanism called transverse orientation, which they use as
a flight path maintaining method. As shown in upper portion of the conceptual Figure 1, the moth attempts to maintain a fixed
angle (marked in pink) between its flying direction and the moon, so that they can fly in a relatively straight path since the moon
is far away from the moth. However, as illustrated in the lower part of Figure 1, the moth can sometimes confuse the artificial
light with the moon. Then, it will try to maintain the transverse orientation mechanism with the light which is much closer than
the moon, leading to the entrapment towards the light and eventually hit it.

FIGURE1 Flight mechanism of themoth. The upper portion illustrates the transverse orientationmechanism. The lower portion
illustrates the artificial light entrapment. The moth is represented using the blue arrow.

Inspired by this phenomenon, the Moth-flame Optimisation regards moths as search candidates, and treats the lights (flames)
as potential optimal solutions. The Moth-flame Optimisation algorithm mimics the transverse orientation mechanism and hopes
that the moth can reach the most optimal flame, which is regarded as the approximation to the global optima. By utilising a
population of moths instead of a single one, the Moth-flame Optimiser possesses higher chance to avoid local optima entrapment
and hence better approximates the global optima.
General Framework The Moth-flame Optimisation algorithm works under the general framework of swarm-based

algorithm41. The species population will firstly be initialised, then they will keep evolving, eliminating individuals with bad
fitness and updating until the termination criteria are reached. Eventually, the fittest individual will survive and will be treated
as the optimal solution.
Formulation The Moth-flame Optimisation algorithm involves n moths, each is a search candidate wandering in the search

space. Each mothMn ∈ ℝd is a d dimensional vector, where d is the number of features to be optimised. Hence, it leads to the
moth matrixM with dimension n × d, represented as follows:

M =

⎡

⎢

⎢

⎢

⎢

⎣

M1
M2
⋮
Mn

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

m1,1 m1,2 … m1,d
m2,1 m2,2 … m2,d
⋮ ⋮ ⋱ ⋮
mn,1 mn,2 … mn,d

⎤

⎥

⎥

⎥

⎥

⎦

(1)

A fitness function f is required to evaluate the fitness of each mothMn by taking it as input, and returns its fitness, i.e., the
objective value. The objective function has the following formulation:

f ∶ ℝd → ℝ, f (Mn) = OMn (2)

6 Jiashu Wu ET AL

and hence, the corresponding fitness vector OM is defined as follows:

OM =

⎡

⎢

⎢

⎢

⎢

⎣

f (M1)
f (M2)

⋮
f (Mn)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

OM1
OM2
⋮

OMn

⎤

⎥

⎥

⎥

⎥

⎦

(3)

In the Moth-flame Optimisation algorithm, the flames are not the real flames in the real world. Instead, they are set to be
moths with top k highest fitness values that have the right to survive (as in line 9 in Algorithm 3), hence the flame matrix F has
dimension k×d. Without prior knowledge about which moth location is better, initially, the Moth-flame Optimisation algorithm
randomly initialises the flame matrix F with k = n. During iterations, the k will be gradually decreased as the population
evolves. The flame matrix F is represented as follows:

F =

⎡

⎢

⎢

⎢

⎢

⎣

F1
F2
⋮
Fk

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

f1,1 f1,2 … f1,d
f2,1 f2,2 … f2,d
⋮ ⋮ ⋱ ⋮
fk,1 fk,2 … fk,d

⎤

⎥

⎥

⎥

⎥

⎦

(4)

and its corresponding fitness vector OF is defined as follows:

OF =

⎡

⎢

⎢

⎢

⎢

⎣

f (F1)
f (F2)
⋮

f (Fk)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

OF1
OF2
⋮
OFk

⎤

⎥

⎥

⎥

⎥

⎦

(5)

The details on how the Moth-flame Optimisation algorithm is integrated in the PECCOmodel, i.e., what moth matrixM stands
for, etc., will be explained in Section 4.5.2.
As is previously mentioned, if there is no knowledge about which initial position is better, then a random initialisation will

be applied to generate both the moth matrix and the flame matrix using the following random generator:
mi,j = (ub(i) − lb(i)) ∗ random() + lb(i) (6)

where ub and lb are the upper and lower bound of the range constraint, respectively. The random() function is a random number
generator with range in [0, 1].
Deficiency 1: The Moth-flame Optimisation algorithm applies a random initialisation as it assumes there is no prior knowl-

edge about which initial location is better. However, if prior knowledge presents, the random initialisation will degrade the
performance. Besides, the random initialisation is not density-aware, i.e., the random initialisation may produce random vectors
that are highly similar and hinder the diversity of the random population. An initial population with poor diversity will impair
the benefit of population-based optimisers.
Balancing Exploration andExploitationTheMoth-flameOptimisation algorithm puts effort to balance between exploration

and exploitation. Initially, there are n moths and n flames, each moth pursues its corresponding flame as illustrated by the solid
arrows in Figure 3, which encourages exploration to avoid local optima stagnation as much as possible. During iterations, the
moths will be sorted based on their fitness value in descending order, and the moths with top k highest fitness value will survive
while other moths will be eliminated as shown in Algorithm 3. The value of k keeps decreasing based on the following formula
during iterations so that the exploitation will be gradually emphasised:

k = round(n − CI ∗ n − 1
MI

) (7)
where n is the initial number of moth/flame,MI denotes the total number of iterations (Max iteration), CI stands for the current
iteration. Eventually, kwill decrease to 1, the last survived flame is regarded as the optimal solution produced by the Moth-flame
Optimisation algorithm. The decreasing trend of k has been illustrated in Figure 2.
The number of flames k keeps decreasing while the number of moths n remains unchanged, the Moth-flame Optimisation

algorithm therefore designs a moth-flame pairing mechanism as presented in Figure 3 so that the moths can decide which target
flame is designated for them to pursue. At the beginning, the number of moths and flames are equal, i.e., n, hence each moth
will pursue its corresponding flame, i.e.,Mi → Fi, as represented by the solid arrows in Figure 3. During iterations, the value
of k will keep decreasing, hence the number of flames will be less than the number of moths. Under the MFO moth-pairing

Jiashu Wu ET AL 7

0 20 40 60 80 100
Iteration

0

4

8

12

16

20

N
um

be
r o

f F
la

m
es

FIGURE 2 Illustration of the decreasing trend of the number of flames k, i.e., Equation 7.

mechanism, the mothMi will still pursue its corresponding flame Fi if flame Fi still survives, or otherwiseMi will chase the
last flame Fk as represented by the dashed arrows in Figure 3.

FIGURE 3 The original moth-flame pairing mechanism. The moths are represented using blue boxes while the flames are
represented using orange boxes.

Deficiency 2: During moth evolvement, at any given time, moth Mi will always pursue a single designated flame, which
increases the chance of being trapped in the local optima.
Deficiency 3: During moth evolvement, those moths that have their corresponding flame being eliminated will always pursue

the last surviving flame, which is the flame with the worst fitness. Neither pursuing the worst flame nor letting lots of moths
pursuing a single flame is a reasonable design.
In terms of the moth updating mechanism, the Moth-flame Optimisation algorithm mimics the transverse orientation based

on the following equation:
U (Mi, Fj) = Di,j × ebt × cos(2�t) + Fj (8)

where Fj is the paired flame designated forMi to pursue, t is a random number in range [r, 1], r is a random number that will
linearly decrease from −1 to −2 during iterations, b is the shape parameter, and Di,j denotes the L1-distance betweenMi and
Fj which is defined as follows:

Di,j = |Fj −Mi| (9)

8 Jiashu Wu ET AL

FIGURE 4 Illustration of the exploration vs exploitation of the Moth-flame Optimisation algorithm.

The shape of an example updating path, i.e., the spiral shape, has been illustrated in Figure 1 and 4.
Specifically, the t parameter decides how close to the flame will the moth’s terminal position be. As illustrated in Figure 4, a

t value that is closer to 1 will let the moth ends up with a position that is farther from the flame (the blue shaded area), which
emphasises exploration. On the other hand, a negative t value will draw the moth closer towards its target flame as indicated by
the green shaded area in Figure 4, which encourages exploitation. Since t is within the range of [r, 1], initially, r has value −1
which promotes exploration by avoiding the moth to be too close to the flame. As the process evolves, r linearly decreases from
−1 to −2, which gradually encourages exploitation over exploration.
Termination The termination criterion is when there is only one flame remaining. It will be treated as the optimal solution.
Advantage andApplicability In summary, theMoth-flameOptimisation algorithm has the following advantages whichmake

it applicable in our case:
• Since the PECCOmodel is hard in nature, applying this population-based algorithmwith multiple search candidates while

enabling the balance between exploration and exploitation will possess higher chance to approximate the global optima.
• Since the objective function in the PECCO model is not differentiable, the Moth-flame Optimiser becomes applicable as

it evaluates each search candidate using the fitness function and therefore is gradient-free.
• Compared with its counterparts, the Moth-flame Optimiser achieves superior optimisation results and converges in an

efficient manner.
Room for Improvements As is aforementioned, the Moth-flame Optimisation algorithm suffers from three deficiencies,

which leave us with room for improvements. We propose three new mechanisms to tackle these deficiencies as follows:
• The profit, cost and density-aware initialiser→ Deficiency 1
• The dynamic hierarchical flaming mechanism→ Deficiency 2
• The lifetime-enabled moth-flame pairing strategy→ Deficiency 3

Together, these mechanisms form the improved PECCO-MFI algorithm. The details will be presented in Section 4.5.1.

4 MODEL AND METHOD

In this section, the problem formulation will be provided, followed by the presentation of the proposed PECCO optimisation
model, in which the profit and cost component of thePECCOmodel will be explained. Then, wewill explain how theMoth-flame
Optimisation algorithm is improved and integrated to form our PECCO-MFI algorithm.

Jiashu Wu ET AL 9

4.1 Problem Formulation
In the edge-cloud environment, there are cloud nodes and edge devices (nodes), with a connection topology to form a connected
graph. Hence, we formulate the problem as a graphG = (V ,E)where V stands for a set of cloud/edge nodes and E represents a
set of communication links. There are in totalN computing nodes, in which it contains I cloud nodes and J edge nodes, hence
we have

V C = {V C
1 , V

C
2 ,⋯ , V C

I }, V E = {V E
I+1, V

E
I+2,⋯ , V E

I+J}
V = V C ∪ V E , V C ∩ V E = ∅, N = I + J

(10)

Note that we can simplify the notation V X
n , X ∈ {C,E} to be Vn as the range of subscript n can tell whether the node belongs

to the cloud or the edge.
For each computing node Vn, it has the following properties. Firstly, each computing node is capable of handling certain

capacity of computation tasks. Hence CapVn_max denotes the maximum number of units of computation workload that node
Vn is capable of handling, while CapVn_min stands for the minimum workload of node Vn when it is idle. We assume that no
node can be overloaded by computation tasks. By considering the capacity of each node, it can also indirectly model other
performance factors such as power consumptions.
As for edges E in the graph G, there are in total Q edges, denoted as Eq , or interchangeably E<Vs,Vt>, which stands for edge

Eq is an edge that starts from node Vs and points to node Vt. To make the heterogeneous model more generalisable, the length
of each edge is also considered instead of being ignored as in19,24, and is denotes as LEq (or LE<Vs,Vt> using the interchangeable
notation).
In terms of tasks to be executed, there are in total K of them, each task Tk has a property WLTk that represents how many

units of computation workload does task Tk have. Each task can only be allocated on either a cloud node or an edge node, and
a task is allowed to stay if its initial allocation is good enough. Hence, we define I

Tk
and O

Tk
to be the initial and offloaded

allocation of task Tk, which satisfies
I
Tk
,O

Tk
∈ V X , X ∈ {C,E} (11)

Moreover, vectorO is defined to represent the offloaded allocations of all K tasks as follows:

O =

⎡

⎢

⎢

⎢

⎢

⎣

O
T1

O
T2
⋮

O
TK

⎤

⎥

⎥

⎥

⎥

⎦

(12)

Besides, the PECCO model applies a heterogeneous cost model for tasks. Instead of applying a homogeneous task cost as
in19, for each task, it has different costs CC

Tk
if it is executed on the cloud, or CE

Tk
if being allocated to the edge. By utilising

a heterogeneous cost model for each task, it can reflect that different tasks can have different costs when being allocated to
different sides, which makes the model more realistic. To make the model profit-oriented, each task is also associated with two
profits, i.e., P C

Tk
and P E

Tk
, which stand for the profit gained of completing task Tk on the cloud and edge, respectively. By jointly

considering profit and cost, it makes the proposed PECCO model become profit and cost-oriented.

4.2 PECCO Cost Model
The PECCOmodel is a multi-factored model that jointly considers both the generalised heterogeneous communication cost and
the heterogeneous computation cost.

4.2.1 Generalised Heterogeneous Communication Cost Model
Considering that previously proposed communication cost models in past researches suffered from several drawbacks (e.g.,
applied the unrealistic symmetric and cost-free assumption, failed to consider communication distance, applied homogeneous
communication costs between node pairs, etc.) which made them become hardly generalisable in practice, it naturally leads to
the rationale of our generalised heterogeneous communication cost model.
There are in general four types of communication costs, i.e., wCC , wEE , wCE and wEC . The CE here for instance represents

the communication from a cloud node to an edge node. Inside each type of communication cost, it can also have different costs
between different nodes, which is denotes as wXX

<Vs,Vt>
. For example, wEC

<V E
j ,V

C
i >

denotes the communication cost from edge node

10 Jiashu Wu ET AL

V E
j to the cloud node V C

i . As different nodes may work under different conditions like being operated by different service
providers, the communication cost between node pairs can be different even if they are situated on the same side. Therefore,
the model is more realistic in practice. This kind of generalisation also offers convenience to represent communication failures
for instance, by setting the edge-wise communication cost to be a large value. The communication cost function CE<Vs,Vt> is
formulated as follows:

CE<Vs,Vt> = sum(LE<Vs,Vt> × [1Vs,Vt∈V C , 1Vs,Vt∈V E , 1Vs∈V C ,Vt∈V E , 1Vs∈V E ,Vt∈V C]⊙ [wCC
<Vs,Vt>

, wEE
<Vs,Vt>

, wCE
<Vs,Vt>

, wEC
<Vs,Vt>

]) (13)
inside it, for instance, 1Vs∈V C ,Vt∈V E will return 1 if Vs is a cloud node and Vt is an edge node, and will return 0 otherwise, other
indicator functions carry the similar meaning. The ⊙ represents the element-wise multiplication operator and × is the scalar
multiplication operator. Hence, the communication cost function CE<Vs,Vt> will return the length of the inputted edge times the
corresponding cost of that type of communication so that the heterogeneous communication costs between node pairs can be
considered.
After defining the generalised heterogeneous communication costmodel, the optimal cost path between any pairs of computing

nodes can be pre-computed using the shortest path algorithm. The optimal cost path between node Vi and Vj is denoted as
OCP<Vi,Vj>, and therefore we can define the optimal communication cost from node Vi to node Vj as follows:

COMM<Vi,Vj> =
∑

E<Vs,Vt>∈OCP<Vi,Vj>

CE<Vs,Vt> (14)

and therefore, the total communication cost is defined as follows:

COMM(G, T ,I ,O) = argmin
O

{
K
∑

k=1
COMM<I

Tk
,O

Tk
>} (15)

The optimisation algorithm should find an optimal offloading strategyO to offload task Tk so that it can achieve a commu-
nication cost COMM(G, T ,I) as low as possible. In summary, the proposed generalised heterogeneous communication cost
model overcomes the drawbacks of previously proposed communication models and has the following benefits:

• It no longer ignores the communication cost between nodes on the same side (i.e., cloud-cloud, edge-edge).
• The asymmetry between communication costs is considered, cost from cloud to edge and from edge to cloud communi-

cation can be heterogeneous.
• It considers distances when modelling communication cost between two nodes.
• It allows different node pairs to have heterogeneous communication costs.

4.2.2 Heterogeneous Computation Cost Model
Next, the heterogeneous computation cost model is defined which also takes the heterogeneities between computing tasks into
account. Generally, for each task Tk, it possesses cost CC

Tk
and CE

Tk
, which is the cost of executing task Tk on the cloud and

edge, respectively. Due to the diversity of tasks, CC
Tk

is not necessarily lower than CE
Tk
. The previously proposed homogeneous

computation cost model for tasks is infeasible, it is unreasonable to assume that all tasks share exactly the same computation
cost when being executed on a single side. Hence, the computation cost model for tasks we considered in the PECCO is more
generalisable. The overall computation cost is formulated as follows:

COMP (G, T ,O) = argmin
O

{
K
∑

k=1
(1O

Tk
∈V C × CC

Tk
+ 1O

Tk
∈V E × CE

Tk
)} (16)

where the indicator function 1O
Tk
∈V C will return 1 if the allocation for task Tk O

Tk
is a cloud node, and will return 0 otherwise,

similar for 1O
Tk
∈V E .

4.3 PECCO Profit Model
Different from previously proposed works, the proposed PECCO model is not only cost-oriented, but also profit-oriented. For
each task Tk, it has profit P C

Tk
and P E

Tk
when being executed on the cloud and edge, respectively. The overall profit is formulated

Jiashu Wu ET AL 11

as follows:
PROFIT (G, T ,O) = argmin

O
{
K
∑

k=1
(1O

Tk
∈V C × P C

Tk
+ 1O

Tk
∈V E × PE

Tk
)} (17)

4.4 Overall Optimisation Objective
Finally, the PECCO optimisation model will integrate the aforementioned cost and profit model to become profit and cost-
oriented. The objective function is defined as follows:

Obj(G, T ,I) = argmin
O

{(COMM(G, T ,I) + COMP (G, T ,O)) + � × PROFIT (G, T ,O)} (18)
where � is a ratio parameter being set to a negative value to integrate the profit into the objective to be minimised. By having
�, the objective function can minimise the cost and simultaneously maximise the profit.
By jointly optimising the profit and cost-oriented optimisation model PECCO, we can find a solution that can jointly optimise

costs and the profit as much as possible.

4.5 The PECCO-MFI Optimiser
In this section, we will introduce the proposed improved Moth-flame Optimiser with detailed explanations to the improvements
we made. Then, how the improvedMoth-flame Optimisation algorithm is integrated to optimise the PECCOmodel is explained,
i.e., what moths stand for in the PECCO-MFI algorithm, how are tasks offloaded based on the optimised allocation strategyO,
etc.

4.5.1 Algorithm Improvement
To tackle the deficiencies mentioned in Section 3.1 and therefore boost the performance, we propose an improved Moth-flame
Optimiser called PECCO-MFI with three improvements to tackle three deficiencies, respectively.
Improvement 1 (Profit, Cost and Density-awareMoth Initialiser): To tackle the Deficiency 1: trivial random initialisation,

we design a new moth initialiser that is profit, cost and density-aware, as shown in Algorithm 1.
Profit and Cost-awareness: The newly designed moth initialiser will allocate tasks (elements in each moth) to cloud or edge

side based on their profit and cost. It is natural to allocate services to the side in which they possess a lower profit-cost objective
than the other side. Conversely, if the allocation is done in the reversed way, then this task is likely to be migrated during the
optimisation process, which therefore incurs unnecessary costs. The profit and cost-aware moth initialisation mechanism has
been shown in line 7 - 13 in Algorithm 1. By utilising this prior knowledge, the improved Moth-flame Optimisation algorithm
is reasonable to outperform its knowledgeless random counterpart.
Density-awareness: The rationale of applying the population-based paradigm is to maximise the chance of approximating the

global optima as close as possible. However, if somemoths are initialised to have a close proximity, the benefit of the population-
based paradigm will be greatly hindered. To ensure the initialised moths have rich diverity, the newly designed initialiser will
generate more moth vectors than required, then it will iteratively remove the closest pair of moths and keep the average of them.
The procedure has been given in line 15 - 19 in Algorithm 1. The removal will be continued until the number of moth vectors is
satisfied as required. By leveraging this mechanism, moth vectors that are initialised to be too close will be merged into a new
one to prevent the performance degradation from happening. Therefore, the proposed moth initialiser is density-aware.
Improvement 2 (Dynamic Hierarchical Flaming Mechanism): To deal with the Deficiency 2: Single moth-flame pairing,

a dynamic hierarchical flaming mechanism is applied. As pursuing a single flame will lead to higher risk of being trapped in
local optima, inspired by the social hierarchy possessed in the moth species, the moths with top 3 highest fitness values will be
regarded as leaders, which will provide guiding reference for other moths to pursue. Hence, instead of pursuing a single flame,
in the newly designed algorithm, each moth will chase the linear combination of its designated flame and the leader flames, as
shown in line 3 - 8 in Algorithm 2.
Exploration and Exploitation Balance: At the beginning of the training process, putting too much dependency on the top 3

flames will incur risk of local optima stagnation as the performance of flames at the beginning is not promising enough. Hence,
an adjusting factor ! is introduced which linearly increases from 0 to 1 during the training process as indicated in line 2 in

12 Jiashu Wu ET AL

Algorithm 1 The profit, cost and density-aware moth initialiser initialiser(nsa, G, T , ub, obj,I) of the PECCO-MFI
Algorithm
Input:

Number of search candidates (moths) nsa,
Edge-cloud graph G,
Tasks Tk ∈ T ,
Allocation upper bound ub,
Objective function Obj() as defined in Equation 18,
Initial allocationI

Output: Profit, cost and density-aware moth initialisation with dimension nsa ×N
1: for Tk in T do
2: Calculate costs based on Equation 15 and 16
3: Calculate the profit based on Equation 17
4: Calculate the profit and cost-oriented objective based on Equation 18
5: end for
6: for i in range(nsa × 1.5) do
7: for k in range(K) do
8: if allocate task Tk to the cloud side yield a lower objective value then
9: Store random number in range [0, ub

2
) intoI

i
10: else
11: Store random number in range [ub

2
, ub] intoI

i
12: end if
13: end for
14: end for
15: while len(I) ≠ nsa do
16: Find pair (I

i ,
I
j) with minimum intra-pair L2 distance

17: Add I
i +

I
j

2
intoI

18: Remove bothI
i andI

j fromI

19: end while
20: return

Algorithm 2. After applying the adjusting factor ! as in line 5 and 7 in Algorithm 2, exploration will be encouraged at the
beginning by putting less emphasise on the top 3 flames since initially the value of ! is small. As the training progresses, !
will gradually increase, which will emphasise more exploitation, since the guiding reference of top 3 flames will be gradually
reinforced as the ! keeps growing. As such, the utilisation of adjusting factor ! in the newly designed dynamic hierarchical
flaming mechanism will balance between exploration and exploitation.
Improvement 3 (Lifetime-enabled Moth-Flame Pairing Strategy): Finally, to solve the Deficiency 3: naive moth-flame

pairing, we design a fairer pairing strategy as indicated in line 9 - 21 in Algorithm 2. Instead of letting all moths whose cor-
responding flames are eliminated to chase the last surviving flame, we introduce a lifetime parameter � with lifetime threshold
set as 0.8. Due to the elimination of their unpromising flames, these moths are not promising themselves and hence the lifetime
parameter � is used to decide whether certain moth will be re-initialised, i.e., starting a new lifetime. Hence, as indicated in line
11 - 12 in algorithm 2, if the randomly generated lifetime parameter � is higher than the lifetime threshold, the moth will start a
new lifetime by pairing with a newly initialised flame. Otherwise, the moth will continue its lifetime, and the algorithm will let
it to pair with a randomly selected survived flame to promote a fairer exploration. By randomly pairing with a survived flame,
these moths will fairly explore all possible survived flames instead of all exploiting the worst-fitted flame. During the re-pairing
process, the aforementioned dynamic hierarchical flaming mechanism will be utilised again to provide better exploration and
exploitation balancing while enabling the guiding reference of top 3 flames as in line 16 - 20 in Algorithm 2. By utilising this
enhanced moth-flame pairing strategy, the exploration of the algorithm will be further encouraged and hence leading to a higher
chance to approach the global optima.

Jiashu Wu ET AL 13

Algorithm 2 The dynamic hierarchical flaming mechanism and the lifetime-enabled moth-flame pairer
enℎanced_pairer(CI,MI) of the PECCO-MFI Algorithm
Input:

Current iteration CI ,
Max iterationMI

1: Define F1, F2, F3 as the flames with top 3 fitness values, respectively
2: !← CI

MI
3: if mothMi’s corresponding flame Fi still survives then
4: if there are ≥ 3 flames survive then
5: Mi will pursue Fi+!×F1+!×F2+!×F3

1+3×!
6: else if there are 2 flames survive then
7: Mi will pursue Fi+!×F1+!×F2

1+2×!
8: end if
9: else
10: � ← random(0, 1), where � is the lifetime parameter
11: if � > 0.8 then
12: F ← a randomly initialised flame
13: else
14:  ← random(0, k)
15: end if
16: if there are ≥ 3 flames survive then
17: Mi will pursue F+!×F1+!×F2+!×F3

1+3×!
18: else if there are 2 flames survive then
19: Mi will pursue F+!×F1+!×F2

1+2×!
20: end if
21: end if

4.5.2 Integration of the Moth-flame Optimiser
We apply the improved Moth-flame Optimiser PECCO-MFI to optimise the PECCO model. The pseudocode of the algorithm
has been presented in Algorithm 3. In the PECCO-MFI algorithm, each moth vector Mi is a 1 × K vector, where K is the
number of tasks waiting to be allocated. The values in the moth vectorMi are within the range of [0, ub], where ub is a constant.
If the value is in range [0, ub

2
), it indicates that this task will be executed to the cloud side, otherwise, this task will be offloaded

to the edge side. Then, the algorithm will find the computing node with the cheapest communication cost in the designated side
and allocate the task to that computing node. If the computing node will be overloaded by taking this task, the algorithm will
find the node at the designated side with the second cheapest communication cost and so on. Eventually, the task will either be
allocated to a computing node without causing overloading, or it will not be satisfied due to workload unavailability.

5 EXPERIMENT

In this section, we will introduce our experimental setup and the dataset we utilised during experiments. Then, experimental
results will be presented and explained to testify to the superiority of the proposed method. Specifically, objective values yielded
by different methods are compared, followed by the comparison of profit, cost and profit-cost ratio to demonstrate the effec-
tiveness of the PECCO-MFI algorithm in terms of joint profit and cost optimisation. Finally, to demonstrate the PECCO-MFI
algorithm offloads computation tasks wisely, the task allocation and the resource utilisation are compared and analysed.

5.1 Dataset, Parameter and Experimental Setup
Dataset. The dataset we use to simulate the edge-cloud environment42 is the Sydney train station parking dataset obtained from
the Open Data Portal provided by the New South Wales Government Department of Transportation43. The dataset contains the

14 Jiashu Wu ET AL

Algorithm 3Workflow of the PECCO-MFI Algorithm
Input:

Shape parameter b,
Number of search candidates (moths) nsa,
Allocation upper bound ub,
Objective function Obj() as defined in Equation 18

Output: Resource allocation strategyO of computation tasks, which is the best flame F
1: Initialise moth matrixM ← initialiser(nsa, G, T , ub, obj,I) (in Algorithm 1)
2: OM ← Obj(M)
3: while len(F) ≠ 1 do
4: Update k
5: OM ← obj(M)
6: if CI = 1 then
7: F ←M.sortBy(OM)
8: else
9: F ←M.sortBy(OM)[0 ∶ k]
10: end if
11: Update moth-flame pairing using enℎanced_pairer(CI,MI) (Algorithm 2)
12: for i in range(nsa) do
13: for j in range(K) do
14: Update r and t
15: Calculate D with respect to the paired moth and flame using Equation (9)
16: Update moth position using Equation (8)
17: end for
18: end for
19: end while
20: OF ← obj(F)
21: return F , OF

parking lot availability information at each train station in Sydney, Australia. Train stations in City of Sydney are treated as
cloud nodes, and suburban train stations act as edge nodes. Each station has a parking with limited available parking lots, which
represents the capacity of the node. The length of connected edges are the length of the shortest road between train stations. The
dataset contains communication heterogeneity as paths between different nodes can have different charges due to factors such
as toll roads, etc. Parking requests are simulated as tasks which will be allocated to nodes. We pick 20 stations from the City of
Sydney to act as cloud nodes, and 30 stations from Sydney suburban areas as edge nodes, numbered from 1 to 20, and from 21
to 50, respectively. We utilise 200 tasks, each with certain amount of parking requests that will be treated as workloads. Parking
in the city or in the suburban area can yield different parking fares, which serves as the cost of the task when being executed on
the cloud side and edge side, respectively. Finally, successfully allocating each parking task will earn certain profit.
Parameter Setting. We now introduce parameter settings in two parts: PECCO optimisation model parameter settings, as

well as improved Moth-flame Optimiser parameter settings.
PECCO Optimisation Model Parameter Setting. To reflect the communication heterogeneity, we set the communication cost

wCC , wCE , wEC and wEE to have an average of 1, 2, 4 and 6, respectively. Thanks to the powerful network infrastructure
equipped in cloud centres, the intra-cloud communication should be the cheapest among communication directions. The down-
load cost should be cheaper than the upload cost and hence the cost is set to reflect this pattern. Finally, due to the limited
network capacity between edge devices, it is natural to possess the highest communication cost.
The ratio parameter � that balances between cost and profit is set to be −8 so that the algorithm can jointly minimise the cost

and profit times this negative ratio.
PECCO-MFI Parameter Setting. We set the default allocation upper bound ub to be 1, and the Moth-flame shape parameter

b to be 1 to comply with ub. If the shape parameter b is set to be too small, then the shape of the spiral will be very tight and it
will never allocate tasks to some nodes. On the other hand, if b is too large, then the spiral will be too wide and it may generate

Jiashu Wu ET AL 15

offloading strategy which does not make sense. The default number of search candidates, i.e., moths, is set to be 30, and the
number of iterations is set to be 100 to make the algorithm efficient. The default value of the threshold of the lifetime parameter
� is set to be 0.8.
Experimental Setup and Hardware Configuration. We compare the PECCO-MFI algorithm with two edge-cloud com-

putation offloading algorithms, including the LARAC algorithm, which traverses the shortest path during communication and
optimises the computation cost, as well as GREEDY, which allocates each task to the side that will yield lower objective value,
then greedily select the nodewhich has the shortest distance from the initial location of the task. The effectiveness of thePECCO-
MFI is also compared with 9 swarm-based optimisers, including Bat Algorithm (BAT)44, Sine Cosine Algorithm (SCA)45,
Whale Optimisation Algorithm (WOA)39, Cuckoo Search Algorithm (CS)46, Firefly Algorithm (FFA)38, Particle Swarm Opti-
misation (PSO)37, Grey Wolf Optimisation (GWO)40, Differential Evolution (DE)47 and the original Moth-flame Optimisation
Algorithm (MFO)27. To make the experimental results concrete, all experiments are repeated 10 times and the average results
are reported.
We implement the method using python 3.8, and conduct all experiments on a server equipped with Intel Core i9 9900K CPU

and 32GB of memory.

XXXXXXXXXXXValue
Method LARAC Greedy BAT SCA WOA CS

Overall Objective -19253.93 -22615.6 -41317.38 -41496.97 -42489.74 -44088.8
Profit 2650.29 3054.72 5388.28 5407.45 5531.59 5737.87
Cost 1948.38 1822.16 1788.83 1762.64 1762.98 1814.15

Profit/Cost Ratio 1.36 1.67 3.02 3.07 3.14 3.17
XXXXXXXXXXXValue

Method FFA PSO GWO DE MFO MFI
Overall Objective -44741.63 -45546.13 -46494.95 -46598.59 -45953.91 -48069.48

Profit 5814.99 5915.65 6039.85 6050.26 5969.91 6229.31
Cost 1778.32 1779.07 1823.88 1803.52 1805.37 1765.0

Profit/Cost Ratio 3.28 3.34 3.32 3.36 3.32 3.53

TABLE 1 Objective value, profit, cost and the profit-cost ratio of different algorithms. Note the MFO stands for the original
MFO algorithm, while the MFI stands for the improved PECCO-MFI algorithm.

5.2 Comparison of Objective Optimisation between Algorithm
To verify the effectiveness of the PECCO-MFI algorithm in terms of objective optimisation, the objective results of the PECCO-
MFI and 11 compared methods are listed in Table 1. As we can notice, the proposed PECCO-MFI algorithm achieves the lowest
objective value among all compared methods. As we can observe from Figure 5, the PECCO-MFI algorithm produces a 4.6%
and 3.16% objective value reduction compared with the original Moth-flame Optimisation algorithm and the best-performed
Differential Evolution algorithm when tackling this optimisation problem, demonstrating the effectiveness of the PECCO-MFI
algorithm. The significant performance improvement achieved by the PECCO-MFI over the original Moth-flame Optimiser also
verifies the effectiveness of improvements we made on the MFO.

5.3 Comparison of Profit and Cost between Algorithms
After investigating the total objective, we now look at the profit and cost component. As indicated in Table 1 and Figure 6(a), the
PECCO-MFI algorithm achieves the highest profit among all comparing methods. Specifically, the profit achieved is 4.35% and
2.96% higher than the original MFO algorithm, as well as the best-performed Differential Evolution, respectively. Besides, the
PECCO-MFI achieves the second lowest cost during computation offloading, which is only 0.1% higher than the SCA algorithm,
who has the lowest cost. However, when it comes to the profit-cost ratio, the PECCO-MFI yields the best performance. As
indicated in Figure 6(b), the PECCO-MFI algorithm achieves significant profit-cost ratio boost compared with all other methods.

16 Jiashu Wu ET AL

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method

0

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 o

f O
bj

ec
tiv

e
R

ed
uc

tio
n

(%
)

FIGURE 5 The percentage of objective value reduction achieved by the PECCO-MFI algorithm compared with other methods.
Since the objective value reduction yielded by the PECCO-MFI is 149.7% and 112.6% compared with LARAC and GREEDY,
respectively. Therefore, for better visualisation, these two methods are omitted from the plot.

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method
(a)

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 o

f P
ro

fit
 In

cr
ea

se
 (%

)

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method
(b)

4

6

8

10

12

14

16

18

Pe
rc

en
ta

ge
 o

f P
ro

fit
-C

os
t R

at
io

 In
cr

ea
se

 (%
)

FIGURE 6 The percentage of increase on profit and profit-cost ratio achieved by the PECCO-MFI algorithm compared with
other methods are presented in sub-figure (a) and (b), respectively. Since the profit achieved by the PECCO-MFI is 135% and
103.9% higher than LARAC and GREEDY, respectively, and the profit-cost ratio is 159.6% and 111.4% higher than LARAC
and GREEDY, respectively. Therefore, for better visualisation, these two methods are omitted from plots.

The higher the profit-cost ratio is, the more profit will be yielded by spending one unit of cost, i.e., the computation offloading
is wiser as it can achieve higher profit by spending unit amount of cost. According to Figure 6(b), the PECCO-MFI has a profit-
cost ratio that is 6.33% and 5.06% superior than the original MFO and Differential Evolution counterparts, respectively, which
demonstrates the effectiveness of the PECCO-MFI in terms of profit and cost-oriented offloading optimisation. It also indicates
that the PECCO-MFI can draw a computation offloading strategy that can utilise cost wisely to produce excellent profit.

5.4 Comparison of Task Allocation between Algorithms
We now focus on task allocation done by different algorithms. If offloading in an unwise manner, some computing nodes will
be overloaded, causing some tasks failed to be allocated. As we can see from Table 2, the proposed PECCO-MFI algorithm
achieves the highest task allocation number. A high number of tasks being allocated after computation offloading indicates that
the PECCO-MFI algorithm can offload tasks wisely without causing severe overloading. Hence, most number of tasks can be
successfully allocated and completed instead of being stuck on overloaded computing nodes.
In terms of the profit-allocation ratio, both Table 2 and Figure 7 show that except for the extreme case LARAC due to poor

task allocation, the PECCO-MFI algorithm produces the highest profit-allocation ratio. The higher the profit-allocation ratio
is, the more profit will be yielded by completing each task. As visualised in Figure 7(a), the PECCO-MFI algorithm achieves
4.26% and 2.03% higher profit-allocation ratio compared with the original MFO and the best-performed Differential Evolution,

Jiashu Wu ET AL 17

XXXXXXXXXXXValue
Method LARAC Greedy BAT SCA WOA CS

#Allocation 64.9 92.9 175.3 170.7 177.2 176.7
Profit/Allocation Ratio 40.96 31.69 30.74 31.68 31.22 32.48
Cost/Allocation Ratio 30.02 19.61 10.20 10.33 9.95 10.27

XXXXXXXXXXXValue
Method FFA PSO GWO DE MFO MFI

#Allocation 178.6 179.2 179.3 177.6 179.1 179.3
Profit/Allocation Ratio 32.57 33.69 33.66 34.06 33.33 34.75
Cost/Allocation Ratio 9.96 9.93 10.17 10.15 10.08 9.84

TABLE 2 Number of computation tasks being allocated, the profit-allocation ratio and the cost-allocation ratio of different
algorithms.

G
R

EE
D

Y

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge
 o

f P
ro

fit
-A

llo
ca

tio
n

R
at

io
 In

cr
ea

se
 (%

)

G
R

EE
D

Y

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f C
os

t-A
llo

ca
tio

n
R

at
io

 D
ec

re
as

e
(%

)

FIGURE 7 The percentage of profit-allocation ratio increase and cost-allocation ratio decrease achieved by the PECCO-MFI
algorithm compared with other methods are shown in (a) and (b), respectively. The extreme case LARAC is omitted for better
visualisation.

respectively. Besides, according to Table 2, thePECCO-MFI yields the lowest cost-allocation ratio, which indicates thePECCO-
MFI causes the lowest cost to satisfy each task, demonstrating its cost-effectiveness. Hence, by achieving the highest number of
task allocation, a high profit-allocation ratio and a low cost-allocation ratio, the effectiveness of the offloading strategy yielded
by the PECCO-MFI algorithm is verified.

XXXXXXXXXXXValue
Method LARAC Greedy BAT SCA WOA CS

Utilisation 121% 112% 95% 92% 95% 95%
Profit/Utilisation Ratio 22.12 32.51 56.97 59.02 57.95 60.28
Cost/Utilisation Ratio 16.10 16.27 18.83 19.16 18.56 19.10

XXXXXXXXXXXValue
Method FFA PSO GWO DE MFO MFI

Utilisation 95% 96% 95% 94% 96% 95%
Profit/Utilisation Ratio 60.82 61.89 63.23 64.02 62.45 65.2
Cost/Utilisation Ratio 18.72 18.53 19.20 19.19 18.81 18.58

TABLE 3 Average computing node workload utilisation, the profit-utilisation ratio and the cost-utilisation ratio of different
algorithms.

18 Jiashu Wu ET AL

5.5 Comparison of Resource Utilisation between Algorithms
Finally, the computing node workload resource utilisation, the profit-utilisation and cost-utilisation ratio are indicated in Table
3. As we can observe, except the LARAC and GREEDY algorithm which overloads some computing nodes, all other methods
produce offloading strategy that is free from overloading.
As we can see from Figure 8, the profit-utilisation ratio produced by the PECCO-MFI algorithm is significantly higher than

all other compared methods. Specifically, the PECCO-MFI algorithm achieves a 4.4% and 1.8% increase in terms of profit-
utilisation ratio compared with the original MFO and Differential Evolution, respectively. The higher the profit-utilisation ratio
is, the more profit will be yielded by utilising one unit of computing node resource. On the other hand, the PECCO-MFI yields
a relatively low cost-utilisation ratio, which means the algorithm will not incur a high cost by utilising one unit of computation
resource. Hence, the excellent profit-utilisation and cost-utilisation ratio indicate the effectiveness of thePECCO-MFI algorithm,
i.e., producing a computation offloading strategy that can utilise computation resource wisely to achieve a high profit and a low
cost, without overloading any computing nodes.

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge
 o

f P
ro

fit
-U

til
is

at
io

n
R

at
io

 In
cr

ea
se

 (%
)

BA
T

SC
A

W
O

A

C
S

FF
A

PS
O

G
W

O D
E

M
FO

Method

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
ta

ge
 o

f C
os

t-U
til

is
at

io
n

R
at

io
 D

ec
re

as
e

(%
)

FIGURE 8 The percentage of profit-utilisation ratio increase and cost-utilisation ratio decrease achieved by the PECCO-MFI
algorithm compared with other methods are shown in (a) and (b), respectively. The extreme cases LARAC and GREEDY are
omitted from the plot.

6 CONCLUSION

In this paper, we propose a profit and cost-oriented edge-cloud computation offloading model PECCO which jointly considers
the heterogeneous communication and computation cost, as well as the profit yielded after computation offloading. An improved
Moth-flame Optimisation algorithm with three improvements is proposed which addresses several deficiencies of the original
MFO and is then integrated to produce an optimised edge-cloud computation offloading strategy, forming the PECCO-MFI
algorithm. Comprehensive experiments are conducted and the PECCO-MFI algorithm is compared with several other baseline
methods to testify to the effectiveness of the PECCO-MFI algorithm when optimising the edge-cloud computation offloading
model, as well as the effectiveness of the improvements made over the original MFO.

ACKNOWLEDGEMENT

This work is supported in part by Key-Area Research and Development Program of Guangdong Province (2020B010164002)
and Zhejiang Provincial Natural Science Foundation of China (LZ22F020002).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Jiashu Wu ET AL 19

References

1. Shafique K, Khawaja BA, Sabir F, Qazi S, MustaqimM. Internet of things (IoT) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging 5G-IoT scenarios. Ieee Access 2020; 8: 23022–23040.

2. Shen S, Huang L, Zhou H, Yu S, Fan E, Cao Q. Multistage Signaling Game-Based Optimal Detection Strategies for Sup-
pressing Malware Diffusion in Fog-Cloud-Based IoT Networks. IEEE Internet of Things Journal 2018; 5(2): 1043-1054.
doi: 10.1109/JIOT.2018.2795549

3. Zhang K, Tian J, Xiao H, Zhao Y, Zhao W, Chen J. A Numerical Splitting and Adaptive Privacy Budget Allocation Based
LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT. IEEE Internet of Things Journal 2022: 1-1. doi:
10.1109/JIOT.2022.3145845

4. Li T,Wang H, He D, Yu J. Blockchain-based Privacy-preserving and Rewarding Private Data Sharing for IoT. IEEE Internet
of Things Journal 2022: 1-1. doi: 10.1109/JIOT.2022.3147925

5. Wu J, Wang Y, Fan X, Ye K, Xu C. Toward fast theta-join: A prefiltering and amalgamated partitioning approach.
Concurrency and Computation: Practice and Experience; n/a(n/a): e6996. doi: https://doi.org/10.1002/cpe.6996

6. Marjani M, Nasaruddin F, Gani A, et al. Big IoT data analytics: architecture, opportunities, and open research challenges.
IEEE Access 2017; 5: 5247–5261.

7. Li M, Wu J, Dai J, et al. A self-contained and self-explanatory DNA storage system. Scientific Reports 2021; 11(1): 1–15.
8. Shakarami A, Ghobaei-Arani M, Masdari M, Hosseinzadeh M. A survey on the computation offloading approaches in

mobile edge/cloud computing environment: a stochastic-based perspective. Journal of Grid Computing 2020; 18(4): 639–
671.

9. Li Q, Zhang Q, Huang H, Zhang W, Chen W, Wang H. Secure, Efficient and Weighted Access Control for Cloud-assisted
Industrial IoT. IEEE Internet of Things Journal 2022: 1-1. doi: 10.1109/JIOT.2022.3146197

10. Shen Y, Shen S, Wu Z, Zhou H, Yu S. Signaling game-based availability assessment for edge computing-assisted
IoT systems with malware dissemination. Journal of Information Security and Applications 2022; 66: 103140. doi:
https://doi.org/10.1016/j.jisa.2022.103140

11. Ren J, He Y, Huang G, Yu G, Cai Y, Zhang Z. An edge-computing based architecture for mobile augmented reality. IEEE
Network 2019; 33(4): 162–169.

12. ZhangW, Chen J, Zhang Y, Raychaudhuri D. Towards efficient edge cloud augmentation for virtual reality mmogs. In: SEC
’17. Association for Computing Machinery; 2017: 1–14.

13. Mao Y, You C, Zhang J, Huang K, Letaief KB. Mobile edge computing: Survey and research outlook. arXiv preprint
arXiv:1701.01090 2017.

14. Yu W, Liang F, He X, et al. A survey on the edge computing for the Internet of Things. IEEE access 2017; 6: 6900–6919.
15. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: Vision and challenges. IEEE internet of things journal 2016; 3(5):

637–646.
16. Zhao Y, Chen J. A Survey on Differential Privacy for Unstructured Data Content. ACM Comput. Surv. 2021. Just

Accepteddoi: 10.1145/3490237
17. Shi W, Dustdar S. The promise of edge computing. Computer 2016; 49(5): 78–81.
18. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A. Edge computing: A survey. Future Generation Computer Systems

2019; 97: 219–235.
19. Du M, Wang Y, Ye K, Xu C. Algorithmics of cost-driven computation offloading in the edge-cloud environment. IEEE

Transactions on Computers 2020; 69(10): 1519–1532.
20. Wang J, Pan J, Esposito F, Calyam P, Yang Z, Mohapatra P. Edge cloud offloading algorithms: Issues, methods, and

perspectives. ACM Computing Surveys (CSUR) 2019; 52(1): 1–23.
21. Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications

Surveys & Tutorials 2017; 19(3): 1628–1656.

http://dx.doi.org/10.1109/JIOT.2018.2795549
http://dx.doi.org/10.1109/JIOT.2022.3145845
http://dx.doi.org/10.1109/JIOT.2022.3145845
http://dx.doi.org/10.1109/JIOT.2022.3147925
http://dx.doi.org/https://doi.org/10.1002/cpe.6996
http://dx.doi.org/10.1109/JIOT.2022.3146197
http://dx.doi.org/https://doi.org/10.1016/j.jisa.2022.103140
http://dx.doi.org/https://doi.org/10.1016/j.jisa.2022.103140
http://dx.doi.org/10.1145/3490237

20 Jiashu Wu ET AL

22. Wang W, Zhou W. Computational offloading with delay and capacity constraints in mobile edge. In: IEEE. ; 2017: 1–6.
23. Li Z, Wang C, Xu R. Computation offloading to save energy on handheld devices: a partition scheme. In: CASES ’01.

Association for Computing Machinery; 2001: 238–246.
24. Juttner A, Szviatovski B, Mécs I, Rajkó Z. Lagrange relaxation based method for the QoS routing problem. In: . 2. IEEE. ;

2001: 859–868.
25. Wu H, Knottenbelt W, Wolter K, Sun Y. An optimal offloading partitioning algorithm in mobile cloud computing. In:

Springer. ; 2016: 311–328.
26. Dong L, Wang F, Shan J. Computation offloading for mobile-edge computing with maximum flow minimum cut. In: CSAE

’18. Association for Computing Machinery; 2018: 1–5.
27. Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems

2015; 89: 228–249.
28. Liu J, Wang X, Shen S, Yue G, Yu S, Li M. A Bayesian Q-Learning Game for Dependable Task Offloading Against DDoS

Attacks in Sensor Edge Cloud. IEEE Internet of Things Journal 2021; 8(9): 7546-7561. doi: 10.1109/JIOT.2020.3038554
29. Shi H, Liu S, Wu H, et al. Oscillatory Particle Swarm Optimizer. Applied Soft Computing 2018; 73: 316-327. doi:

https://doi.org/10.1016/j.asoc.2018.08.037
30. Lai X, Zhou Y. Analysis of multiobjective evolutionary algorithms on the biobjective traveling salesman problem (1, 2).

Multimedia Tools and Applications 2020; 79(41): 30839–30860.
31. Davis L. Bit-climbing, representational bias, and test suit design. In: ; 1991: 18–23.
32. Lourenço HR, Martin OC, Stützle T. Iterated local search. In: Springer. 2003 (pp. 320–353).
33. Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 2016.
34. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press . 2016.
35. Li S, Xie B, Wu J, Zhao Y, Liu CH, Ding Z. Simultaneous Semantic Alignment Network for Heterogeneous Domain

Adaptation. In: Association for Computing Machinery; 2020: 3866–3874.
36. Keerthi S, Ashwini K, VijaykumarM. Survey paper on swarm intelligence. International Journal of Computer Applications

2015; 115(5).
37. Kennedy J, Eberhart R. Particle swarm optimization. In: . 4. IEEE. ; 1995: 1942–1948.
38. Yang XS, He X. Firefly algorithm: recent advances and applications. International journal of swarm intelligence 2013;

1(1): 36–50.
39. Mirjalili S, Lewis A. The whale optimization algorithm. Advances in engineering software 2016; 95: 51–67.
40. Sm A, Smm B, Al A. Grey Wolf Optimizer. Advances in Engineering Software 2014: 46–61.
41. Mirjalili S. Genetic algorithm. In: Springer. 2019 (pp. 43–55).
42. Huang D, Fan X,Wang Y, He S, Xu C. DP_Greedy: A Two-Phase Caching Algorithm for Mobile Cloud Services. In: IEEE.

; 2019: 1–10.
43. Transportation N. Commuter Carparks TfNSW Open Data Hub and Developer Portal. https://opendata.transport.nsw.gov.

au/dataset/commuter-carparks; . Accessed: 2021-07-01.
44. Yang XS, Gandomi AH. Bat algorithm: a novel approach for global engineering optimization. Engineering computations

2012.
45. Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems 2016; 96: 120–133.
46. Yang XS, Deb S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and

Numerical Optimisation 2010; 1(4): 330–343.
47. Price KV. Differential evolution. In: Springer. 2013 (pp. 187–214).

http://dx.doi.org/10.1109/JIOT.2020.3038554
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.08.037
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.08.037
https://opendata.transport.nsw.gov.au/dataset/commuter-carparks
https://opendata.transport.nsw.gov.au/dataset/commuter-carparks

	PECCO: A Profit and Cost-oriented Computation Offloading Scheme in Edge-Cloud Environment with Improved Moth-flame Optimisation
	Abstract
	1 Introduction
	2 Related Work
	2.1 Offloading Model
	2.2 Model Optimiser
	2.3 Research Opportunity

	3 Background
	3.1 The Moth-flame Optimisation Algorithm

	4 Model and Method
	4.1 Problem Formulation
	4.2 PECCO Cost Model
	4.2.1 Generalised Heterogeneous Communication Cost Model
	4.2.2 Heterogeneous Computation Cost Model

	4.3 PECCO Profit Model
	4.4 Overall Optimisation Objective
	4.5 The PECCO-MFI Optimiser
	4.5.1 Algorithm Improvement
	4.5.2 Integration of the Moth-flame Optimiser

	5 Experiment
	5.1 Dataset, Parameter and Experimental Setup
	5.2 Comparison of Objective Optimisation between Algorithm
	5.3 Comparison of Profit and Cost between Algorithms
	5.4 Comparison of Task Allocation between Algorithms
	5.5 Comparison of Resource Utilisation between Algorithms

	6 Conclusion
	Acknowledgement
	Data Availability Statement
	References

