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Data centers today host a number of computational resources

to support increasing demand for computation and storage.

Understanding how these physical and virtualmachines tran-

sition between different states of operation (referred to as

machine lifecycle) enables more efficient job/task schedul-

ing decisions to be carried out for user applications. Fur-

thermore, it helps data center operators define policies on

how new computational resources can be added or exist-

ing infrastructure decommissioned. Using Google cluster

trace data set version3 collected from approximately 96k

machines, we analyze machine failure and changes in ma-

chine lifecycle over time. We observed that there is a 13%

chance of another machine failure under the same network

switch within one minute of the previous machine failure.

A Markov chain-based model is proposed, that can predict

machine states at any given time. Using the model and es-

timated probabilities, we predicted machine state over a

multi-day period with a high probability. Using predicted

machine state, we reconstructed the activemachines trend,

comparing this with the trend reported in the data set – ob-

serving an error of 1.76%.
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1 | INTRODUCTION

The rising demand for storage and computing resources has compelled cloud service providers to upgrade and adjust

their resource pool on a regular basis. Increasing requirement of accessing remote services has led to cloud providers

updating/ decommissioning their computational infrastructure over time. As the data centers have to deal with larger

and heterogeneous workloads, one of the major issues is how to efficiently manage the available resources while min-

imising operational cost. This aspect involves a number of considerations, such as: resource utilization optimization,

optimalmaintenance scheduling, etc – requiring a deeper understanding ofmachine dynamics and use. A better under-

standing of machine dynamics will also lead to more effective data center management policies. However, challenges

in finding publicly available data sets have limited the potential studies on data center operations1,2.

Google is committed to accelerating studies on data centers by regularly providing workload trace data sets.

Google initially published this data set in 20103, followed by an updated in 20114,5. In 2020, Google published

v3 of this data set consisting of traces collected during May 2019 from approximately 96k machines belonging to

eight different cells. Inside the cluster, machines can differ in hardware architecture and configuration. Machines of

one particular hardware architecture and configuration are grouped and referred to belonging to the same platform.

Machine behavior is somewhat dependent on the platform it belongs to – some requiring more maintenance than

others.

Our work focuses on understanding machine operation/states belonging to different platforms in Google data

centers through workload traces. In particular, we are interested in understanding how machine availability is im-

pacted by machine failure and maintenance operations. This can be used to predict machine state at any given time.

Knowledge of machine state can provide better insight on scheduling applications on these resources and offer po-

tential mechanisms for managing user workloads (and potential impact these are likely to have on user-based Service

Level Agreements). Using this data set, we extended the Markov chain-based model from1 to predict machine state.

We reconstructed the timeline from the events to address common queries such as: (a) if a machine is removed from

the cluster, what is the likelihood of the machine rejoining the cluster and after what duration? (b) how often do

machine failures happen, i.e. machines that leave the cluster and do not re-join; (c) how does a machine failure impact

other machines under the same network switch? (d) do machine failures happen randomly, or are these more likely to

happen at particular times of the day?

The rest of the paper is organized as follows. After presenting related work in section 2, we briefly describe the

data set used and its properties in section 3. We detail our experimental setup and results under section 4. A Markov

model to predict machine state is described in section 5, along with model evaluation and results. In the end section 6

discusses concluding remarks and future work.

2 | RELATED WORK

Scheduling and reliability remain important considerations for user applications deployed over cloud infrastructure.

A number of publications addressing these concerns exist at different levels of granularity. Availability of real-world

traces to better understand and characterize these problems remains limited however. To understand the dynamics of

machine operation and availability, a large-scale deployment of machines is necessary to fully study their usage. Only

a few data sets collected from large-scale deployments are available for public research. Google has such a large-scale

deployment of machines and in 2010 for the first time a 7-hour sample of resource-usage information from a Google

production cluster3. Google has subsequently been releasing anonymized Google Cluster Workload Traces data sets
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periodically. In 2011 a second version of Google Cluster Workload Traces data set was released4,5 covering 29 days,

and including activities of jobs, tasks and machines in a data center with a total of 12583 single-cell machines. In 2020

Google made available another cluster data set (v3)6, which includes machines, collections, comprising instances of

8 cells, with approximately 96.4k machines and 12.6k machines per cell. Google Cluster Workload Traces data set

v3 has seen limited analysis in the research community compared to v2. Data center cluster can be divided into two

categories:

1. analysis that relates to jobs and/or tasks – with some of the primary questions in this context being: how jobs are

scheduled? what is their turnaround time? and how job priority is maintained?

2. analysis of machine behavior in a data center. The primary aspect is to analyze the state transition as machines

move between different states (e.g., NEW, REMOVE, REJOIN, UPDATE, etc.), and potential events that lead to

these transitions. This aspect is also useful to understand how the capacity of a data centre changes over time

and the likely resource pool a user application can access and maintain access to over time.

Although significant work already exists focusing on job scheduling, e.g. analyzing job performance metrics in

clusters and data centers7,8,9,10,11,12, limited attention has been given to understand machine dynamics. In particu-

lar,11,7 studied task events, and using a clustering algorithm classified tasks based on their characteristics. Mishra et

al.7 deem task resource consumption significant for both task scheduling and capacity planning. Their workload clas-

sification entails: (1) identifying workload dimensions; (2) constructing task classes using an off-the-shelf clustering

algorithm, such as k-means; (3) determining the breakpoints for qualitative parameters (i.e. duration, core, and mem-

ory, etc.) for the workload; and (4) merging adjacent task classes to reduce the number of tasks to be scheduled. In11,

the authors identify a Pareto-similar distribution to approximate the number of applications and resource attributes.9

took into account scheduling limitations imposed by tasks associated with a job, as well as how frequently jobs are

killed/evicted and then rescheduled.13 analyzed traces and present a comparing of v3 with v2 of the Google Cluster

Workload Traces data set.14 and15 show that due to significant heterogeneity in cloud resources and task execution,

popular simplifications techniques are unsuitable. Their analysis confirmed a strong need to build new cloud resource

schedulers that are able to respond to the highly dynamic nature of cloud workloads.

As jobs generated from user applications are executed on physical machines, understanding machine dynam-

ics is vital, as this directly impacts the execution of these jobs. Several studies focused on software and hardware

failures16 17 18 19 and general availability of machines18 20 21 22 23 24 25 26 27 28. All of these generally make use of

self-collected data sets for analysis. In particular,16 described a model for data centers to highlight dependencies

among machine availability. Similarly,17 built a Naive Bayes classifier that predicts job failure probability using a self-

collected data set of failures from scientific workload running on Amazon Web Services (AWS). In19, the authors

proposed replacing the commonly used exponential and Pareto distributions with eitherWeibull or hyper exponential

distributions to estimate the reliability of 105 grid computing systems. The authors in18 looked at the the empirical

and statistical properties of system errors and failures over the course of a year on a network of nearly 400 hetero-

geneous servers executing a variety of workloads. Their research demonstrated that the system error and failure

patterns are made up of time-varying behavior with long periods of stagnation. These stagnant intervals reveal a

variety of strong correlation structures and periodic patterns, which have an impact on performance but can also be

used to solve problems. In20, the authors used two DEC VAX clusters to identified correlated failures.

In21, the authors suggest a heuristic strategy for extracting intermittent faults from error logs, which they call

Dispersion Frame Technique(DFT). The DFTwas tested using data gathered over 22months from 13 file servers, prov-

ing its ability to remove intermittent mistakes and verify hypotheses with just a fourth of the number of entry points
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required by traditional statistical analysis. Failure times are fitted using a Weibull distribution with shape parameters

of 0.92 for permanent faults (those requiring the restoration of an operator) and 0.5-0.8 for intermittent failures. In22,

the authors investigated the dependability of a diverse group of approximately 1200 Internet hosts. The average

time to failure and repair is 17-20 days and 2-4 days, respectively – with the authors suggesting that both failure and

repair times are not exponentially distributed. Over 40 days, Krishnan et al.23 collected data on failures observed by

websites, followed by a statistical analysis on this data. The authors discovered that host failures take less time to

repair than network failures, with a mean time to repair of less than 15 minutes in 70% of cases and a mean interval

between failures of 4 days.

In24, the authors examined the dependability of roughly five hundred Windows NT servers over four months.

The authors discovered that software and hardware problems are the two most common causes of system downtime.

Although scheduled maintenance and changes in hardware and software configurations take less time, they account

for 31% of all reboots. Reboots of one or more machines in the same domain happen in bursts, implying that an issue

frequently necessitates multiple reboots to resolve. The Weibull distribution is also a suitable fit for the mean time

between failures in this scenario, with a shape parameter of 0.5 to 0.95 when solely considering software failures.

In25, the authors present a framework for developing highly accessible Internet services. The time-to-boot is best

described as aWeibull distribution (rather than exponential or Pareto) with a shape parameter between 0.33 and 0.49

for all three clusters investigated.

In26, the authors looked at data center network reliability to see which components were the least unreliable

and how failures affected overall system performance. Device failures are less common than link failures, according

to the authors of26. Device failures occur in bursts daily, and large-scale maintenance causes times of high frequency

(authors include in the failure definition events where devices are power cycled during planned maintenance). Al-

though software problems outnumber hardware breakdowns, the latter causes the greatest downtime. In28 failure

statistics are used from the high-performance computing facility at Los Alamos National Laboratory over 9 years, con-

taining 23K failures across 20+ distinct systems. The authors used this data set to identify root cause of failure, the

average time between failures, and the average time to repair. They discovered that typical failure rates vary greatly

between systems, ranging from 20 to 1000 per year, and that time between failures is effectively described by a

Weibull distribution with decreasing hazard rate. The average repair time varies from less than an hour to more than

a day depending on the system, and repair times are effectively represented by a Lognormal distribution.

Although the studies listed above carry out job analysis across cloud and high performance computing resources,

the general limitation has been the lack of analysis of other related aspects – such as machine behavior. We posit that

machine behaviour should be an important consideration in understand resource failure and subsequent re-integration

of the machine into the resource pool. We therefore analyse Google traces to investigate the role that machine states

have on the behavior of jobs executing on these machines.

3 | GOOGLE CLUSTER WORKLOAD TRACES DATA SET

Google Cluster Workload Traces v34 holds events of machines collected from 8 cells, with approximately 96.4k ma-

chines and 12.6k machines per cell. Machine events consist of three types of events – ADD, REMOVE and UPDATE.

In a cluster, the machines can either be active or inactive. When a machine is in the active state, it is available to the

cluster. Machines go to the inactive state for software/ hardware maintenance. Some of the machines never rejoin

the cluster. ADD event lead to machines moving from inactive to the active state, REMOVE event does the opposite,

and UPDATE event keeps the machine in available state. Machine state transitions are shown in Figure 1.
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Inactive Active

UPDATE 
(4459)

ADD 
(155730)

REMOVE 
(153779)

F IGURE 1 Machine events (as defined in data set) along its frequency and state transition

The Google data set only represents ADD, REMOVE and UPDATE events, providing a high-level overview of

machine state transition. To get an in-depth overview of machine behavior and its state transition, we derived NEW

ADD and REJOIN events from existing ADD events, discarding existing ADD events – as ADD events are the union

of NEW ADD and REJOIN events. We know that Machine IDs usually remain the same across the whole machine life

cycle13, based on this we can split ADD events into NEW ADD and REJOIN as described in Algorithm 1.

Algorithm 1 Split ADD events into NEW ADD and REJOIN events

Require: A: set of all ordered ADD events

Ensure: Ñ : set of all NEW ADD events

Ensure: R̃ : set of all REJOIN events

Ñ ← ∅; R̃ ← ∅; M ← ∅;

for all a ∈ A do

m ← Get-Machine-ID(a)

if m in M then

R̃ .i nser t (a)

else

Ñ .i nser t (a)

M̃ .i nser t (m)

end if

end for

Similarly, REMOVE events represent both temporary removals for software/ hardware maintenance as well as

permanent removal of machines. To provide a better distinction between these categories, we derived permanently

REMOVE events from the more general REMOVE events as defined in Algorithm 2. Our analysis therefore assumes

NEW ADD and REJOIN as two separate events and mention REMOVE (permanent) separately. Figure 2 describes

state transition as a result of an event and frequency of each event across the entire data set.

Similar to v24 of this data set, v3 holds events of machines, collections and instances. Google Cluster Workload

Traces v2 has one cell and 12.6k machines, whereas v3 consists of 8 cells, with approximately 96.4k machines and

12.6k machines per cell. A brief comparison of both data sets is given in Table 1. We see that on average, v3 has a

greater number of events compared to v2, except for the UPDATE event. This may be either due to fewer changes

to machine attributes or a change in the way attributes are assigned to machines. Repair probability is the probability

that the machine will rejoin the cluster if a machine is REMOVEd. According to Table 1, repair probability in v3 is

98.24% and is approximately 0.677% lower than v2.
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Algorithm 2 Extract REMOVE (permanent) Events

Require: E : set of all ordered events

Ensure: R : set of all REMOVE (permanent) events

R ← ∅; R̃ ← ∅;

for all e ∈ E do

t ← Get-Event-Type(e) ; m ← Get-Machine-ID(a)

if t is REMOVE then

R .i nser t (e)

R̃ .i nser t (m)

end if

if t is ADD and m in R̃ then

i ← Get-Index-Of(m, R̃ )

R .r emoveAt (i )

R̃ .r emoveAt (i )

end if

end for

TABLE 1 Comparison between 2011 (v2) and 2019 (v3) traces data set

Version 2 Version 3 Version 3

(cell) (total) (cell avg)

Total Events 37780 309833 38729

Initial Machines 12477 91902 11487

NEW ADD 106 4653 582

REMOVE 8957 153779 19222

UPDATE 7380 324 40

REJOIN 8860 151077 18884

REMOVE (Permanently) 97 2702 338

Repair Probability 0.98917 0.98243 -
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F IGURE 2 Events, state transitions and event frequency for machines
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F IGURE 3 Distribution of Machines by Platform across cells

Based upon CPU vendor/architecture and memory module types, machines of similar configurations are grouped.

One such configuration is known as a hardware platform. In the data set, each Platform is represented by its unique

hash. For better readability, those hashes are replaced with letters, and letters are used throughout the paper. Initial

analysis of the data set shows eight hardware platforms that mismatched the description provided by Google. After

a thorough examination of machine events, we found that one hardware platform has only 4135 unique ADD events.

Considering machine events from these 4135 machines, we observed that the CPU and memory capacity of these

machines are missing. After ADD event, there is an UPDATE event lagging by a few seconds, and this event holds both

CPU andmemory capacity information, and the platform hash is different. We speculated that a specific platform hash

is given to the machine during initialization. We removed all the 4135 unique ADD events and changed the incoming

UPDATE event to be ADD events. Figure 3 shows the distribution of machines by platform across different cells. We

see that across the whole cluster, some cells have some Platforms in abundance as compared to other Platforms.

Considering Figure 3 and Table 2, Platform E and F have lesser number of initial machines compared to other

Platforms. We also see that Platform G initially has 27 machines and later all of them are removed, based upon that

we can speculate that Platform G was retired.



8 Umer et al.

TABLE 2 Machine Events and Repair Probability by Platform

A B C D E F G Overall

Initial Machines 32194 18716 14063 11958 9449 5495 27 91902

NEW ADD 2127 1686 437 141 208 54 0 4653

REMOVE 52447 31610 25610 17228 19314 7543 27 153779

UPDATE 133 21 74 47 40 9 0 324

REJOIN 51914 31208 25276 17066 18114 7499 0 151077

REMOVE 533 402 334 162 1200 44 27 2702

(Permanently)

Total Events 106621 64525 51397 34482 37676 15105 54 309833

Repair Probability 0.989837 0.987283 0.986958 0.990597 0.937869 0.994167 0 0.982429

We observed that only 2.9872% of all ADD events represent the addition of a new machine. In contrast, all other

events represent rejoining an existing machine removed, most likely for maintenance. According to Table 2 there

exist 7 different types of platforms. Each Platform had some machines at the beginning of trace collection, and more

machines are added afterward. A lot of machines rejoins after being removed, and a few machines failed to join back.

Any machine that rejoins is mostly removed for scheduled maintenance.

Google Cluster Workload Traces Data set version 3 has a size of 2.7TB in compressed form. Google provided

the data set in JSON format and as BigQuery tables. In the case of JSON, the data set size exceeds 7TB. That size

of data set comes will its unique challenges. Using the Google BigQuery version of the data set resolves the majority

of challenges associated with JSON format. However BigQuery is expensive, on the other hand using JSON format,

we can use commodity hardware. For this study, the data set is downloaded in compressed JSON format from the

Google Storage bucket. Uncompressed JSON requires a lot of memory and as an optimization step, compressed JSON

is loaded in Spark Cluster and saved as Apache Parquet format. Only the required data from Apache Spark Parquet is

read, transformed, and saved to a CSV file for further processing using Python.

4 | EXPERIMENTS AND RESULTS

We groupedmachine events by Platform and plotted histograms for each event type, where time is expressed in hours

and bin size is set to 24 hours. Figure 5 contains a histogram for different types of events across all platforms and also

for each individual platform where y-axis on the left represents the actual frequency of events. It is worth noting that

the frequency of events is well spread over the whole duration across all platforms. To compare event volume across

all platforms, we normalized events by initial machines in respective platform (plotted on right y-axis) and observed no

resembles across platforms. Each Platform is behaving differently from the other. For some platforms, new machines

are introduced at a higher frequency than others. Similarly event volume differs for each platform.

We observed in Figure 5 that the REMOVE and REJOIN events are quite similar. This is because 98.24% of

removedmachines rejoined. We also observed several spikes in REMOVE/REJOIN events for all platforms. This might

be due to critical software updates being rolled out. The machines’ maintenance and software updates are frequent,

and overall a maximum of 10% of the initial machine count is observed. It varies across platforms and Platform B has

the highest observed REMOVE and REJOIN frequency within 24 hrs at 16%. We also observed across all platforms

UPDATE event frequency is very low. This might be due to machine attributes not being changed as often as machine
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maintenance is performed.

Furthermore, NEW ADD events are low in numbers and usually have spikes. For example, for Platform B, more

than 300 machines are added within 24 hours. Similarly, for Platform A, up to 400 machines are added within 24

hours. Overall that counts to 1.6% and 1.2% of the number of initial machines in respective Platforms. Looking at

REMOVE (Permanently) histograms of Figure 5 we can observe machine failures are spread out over the whole period,

but there are spikes in failures, for instance, we see 400+ machines belonging to Platform E failed within a day which

might be some scheduled degradation of hardware rather than actual machine failures. Moreover, across all platforms,

new machine additions are higher than machine failures, which means that the number of the machines inside the

cluster/cell increase with the time.

Further, we reconstructed the timeline of active machines and plotted active machines over time, as shown in

Figure 4. On the surface, it looks like the number of machines keeps on fluctuating. Over 1 month period, an average

of 93,040 machines with a standard deviation of 820 were active all the time while a minimum of 91,649 and a

maximum of 94,334 active machines are observed. Overall we observed an increasing trend in number of active

machines. For better understanding and explanation we split timeline into four sections. In the beginning, as shown

in Figure 4 section a, the number of active machines are fluctuating, but the trend is steady. However, on the 8th day

of trace collection, as shown in Figure 4 section b, the number of active machines raised within 48hrs by about 1,500.

Looking at Figure 5 we can see new machine additions to Platform A and Platform B caused the spike. New machine

additions to Platform C and D keep on fluctuating for the rest of the period. As more and more machines were added,

the number of active machines rose to a maximum of 94.3k. Soon after that lot of machines were removed from

Platform E, but very few rejoined immediately, causing the number of active machines to fall to about 93.5k as shown

in Figure 4 section c. Afterward, there exist few fluctuations, but the active number of machines trend remained

steady as shown in Figure 4 section d.

We investigate the presence of temporal correlation between the failure of one machine leading to the failure of

more machines under the same network switch using scatter plots. Figure 6 plots machine failures by network switch

over time (only network switches having more than 20 machine failures are plotted to improve visuals). From Figure

6, we observe a relationship between the failure of one machine leading to the failure of more machines under the

same network switch. Out of 2,702 total machine failures, 1,110 machine failures are plotted in Figure 6. However,

it seems fewer machine failures happening at once or with very short delay under the same network switch. We first
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machines (right y-axis) on different hardware platforms

calculated the delay between the two consecutive machine failures under the same network switch to understand

this better. We found that around 13% of machines failed within 1 minute of another machine failure under the same

network switch. Figure 7 plots the distribution of delay between twomachine failures under the same network switch

(bin size is 1 minute). We see that most of the machines fail within 1 minute of the previous machine failure; afterward,

subsequent machine failures within the network switch drops exponentially.

All the timestamps in the data set are relative to the trace collection start date. Assuming trace starts fromMonday
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F IGURE 6 Machine failures by network switch
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F IGURE 7 Delay between two machine failures using the same switch

at midnight, we formed a scatter plot with number of machine failure as bubble size, hour of the day on the x-axis

and the day of the week on y-axis, as shown in Figure 8. We observed failures are spread out fairly over the whole

duration. Increasing failures on Tuesday at midnight andWednesday at noon are due to a spike in Platform F machine

failures as can be see in the fifth column of Figure 5.

We calculated the time to recover from the timeline we constructed, i.e., the period between REMOVE and ADD

events for a given machine that rejoined recently. We observed that the distribution of time to recover is heavily

skewed. On average, it took 47minutes for a machine to rejoin, while the standard deviation is 4.5hours. It took a

minimum of 1.2seconds and a maximum of 26.5days to recover. After two days, there are quite a few recoveries, and

removing those gives us a normal distribution. Figure 9 plots distribution of time to recover where x-axis is limited to

2days. Most of the machines recover within 24hrs, as seen in Figure 9. Machines recovering within an hour are most

likely to be those that have been taken offline for software upgrades.

Considering Figure 9, we can answer why REMOVE and REJOIN histograms look similar in Figure 5. As bin

size in Figure 5 is 24hours, and on average machine recovers within 47 minutes, it leads to identical REMOVE and

REJOIN histograms. This observation is also consistent with the observation provided by Google. Machines are
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F IGURE 8 Machine failures at different hours

images/time-to-recover-eps-converted-to.pdf

F IGURE 9 Time to recover

removed for software maintenance and other hardware/ software related upgrades. Most of the machines join back

after software update or sometimes when the critical issues are resolved. We conclude that machine behaviour
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differs across platforms – with no similarity in behaviour across platforms. To consider what makes a platform behave

differently, we looked at other available machine information in the data set. Machine within a cluster are identical,

although some can differ in hardware and operating – which can also change device drivers hosted on these machines.

Hence platform behaviour differs due to different resource life-cycle and patches issued to OS and installed system

software.

5 | MODEL

To predict machine state, we build a simpleMarkovian chainmodel. Markovian chain is a sequence of random variables

X0, X1, X2, . . . that satisfied the rule of conditional independence. For any positive integer n and possible states

i0, i1, . . . , in of the random variables, Markovian property is defined as:

P (Xn = in | Xn−1 = in−1) = P (Xn = in | X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

Thus, only previous state knowledge is necessary to determine the probability of the current state. ForMarkovian

chain X at time t , probability of machine state transition is governed by transition matrix Pt . Given an ordering of a

matrix’s rows and columns by the state space S , the (i , j ) t h element of the matrix Pt is given by:

(Pt )i ,j = Ð(Xt+1 = j | Xt = i )

Transition matrices have the property that the product of subsequent ones describes a transition along the time

interval spanned by the transition matrices. That is to say, P0 · P1 has in its (i , j ) t h position the probability that X2 = j

given that X0 = i . And, in general, the (i , j ) t h position of Pt ·Pt+1 · · · · ·Pt+k is the probability of Ð(Xt+k+1 = j | Xt = i ) .

The k -step transition matrix is P
(k )
t = Pt · Pt+1 · · · Pt+k−1 and satisfies:

P
(k )
t =

©­­­­­­­
«

Ð(Xt+k = 1 | Xt = 1) Ð(Xt+k = 2 | Xt = 1) · · · Ð(Xt+k = n | Xt = 1)

Ð(Xt+k = 1 | Xt = 2) Ð(Xt+k = 2 | Xt = 2) · · · Ð(Xt+k = n | Xt = 2)

.

.

.

.

.

.

.

.

.

.

.

.

Ð(Xt+k = 1 | Xt = n) Ð(Xt+k = 2 | Xt = n) · · · Ð(Xt+k = n | Xt = n)

ª®®®®®®®
¬

In our model as shown in Figure 10, machine can be in either of four pools, Pnew , Pact iv e , Pi nact iv e and Pf ai l ed .

Pnew holds machines which can be added to system. From Pnew machine can jump into Pact iv e which represents active

machines pool represented by timed transition Tadd . From Pnew machine is either updated in-place represented by

timed transition Tupdat e , or removed from pool represented by time transition Tr emove event and moved to Pi nact iv e

pool. From Pi nact iv e pool, machine is either discarded represented by timed transitionTd i scar d and joined Pf ai l ed pool

which holds discarded machines, or rejoined the Pact iv e pool represented by time transition Tr epai r . State transition

probabilities (Tupdat e , Tr emove , Tr epai r and Td i scar d ) are calculated from data set, however Tadd cannot be calculated

as that depends on data center operators.

To evaluate the model, we first discarded NEW ADD machine events and reconstructed the timeline. To predict
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F IGURE 10 Machine State Transition: Markov Model
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F IGURE 11 Timeline reconstruction using proposed Markovian Model excluding newly added machines

activemachines timeline, we first predicted individual machine state for every hour in the trace collection period, using

the initial number of machines as input. Using the estimated state transition probabilities, the model is used to predict

the next state. Given a per hour machine state (from the data), we constructed a timeline of the active number of

machines. Comparison of predicted and actual active number of machines timeline is shown in Figure 11. Initially both

timelines run in parallel, but on the 18th day of trace collection, there is a significant drop in active machines and the

model is not able to follow this significant drop. Restarting the model from the 19th day of trace collection, providing

number of active machines at 19th day of trace collection as input, the model was able to follow the remaining trend.

One significant deviation of predicted active machines from actual active machines is that predicted active machines

doesn’t have momentary spikes as we have observed in actual active machines trend.

As NEW ADD machine events depends on data centre operators, we picked NEW ADD events from actual data

set and added NEWADD events to predicted active machines timeline as shown in Figure 12. Trend is looking similar

other than the the significant drop in activemachine on 18th day of trace collection. Wemeasuredmodel performance

by first reconstructing the active machine timeline from predicted machine state transitions and comparing that with

the actual active machine timeline from the data set. We calculated the mean absolute percentage error of 1.76%.

Using our model, we predicted the trend for active machines over the the next 15 days as shown in Figure 13. We

observe a down ward trend which aligns with the actual data set. The active number of machines drops and data

centre operators keep adding new machines to compensate and extend the resource pool.
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F IGURE 12 Timeline reconstruction using Markov model combined with NEW ADD events
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F IGURE 13 Predicted Active Machines trend for next 15 days using a Markov Model
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6 | CONCLUSION

In this paper we analysed machine failures from the recently published Google data center data set. We observed

that 98.24% of machines recover/rejoins on average in 47 minutes with a standard deviation of 4.5 hours. The active

number ofmachines keeps on fluctuating during the collection period, but the overall trend remains steady if we ignore

the new machine additions. Less that 2% of machines fail to join the cluster, and failures happen regularly. Machine

maintenance/software updates are frequent, and we have observed REMOVE/REJOIN events up to 10% of the initial

number of machines inside the cluster within a day. Furthermore, we find that the cluster/cell grows as more new

machine added as compared with failed machines. We also found that failure in a machine sometimes leads to more

machine failures. Specifically, if a machine fails, there are 13% chances of another machine failure under the same

network switch within 1 minute. We extended a Markov chain based model that takes state transition probabilities

and predict next state of machine. By predicting individual machine state, we can construct an activemachine timeline.

Comparing predicted with actual machine timeline we observed MAPE (Mean Absolute Percentage Error) of 1.76%,

demonstrating that our model is able to predict machine state with high accuracy.
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