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Abstract. Data warehouse queries pose challenging performance problems that
often necessitate the use of parallel database systems (PDBS). Although dynamic
load balancing is of key importance in PDBS, to our knowledge it has not yet
been investigated thoroughly for parallel data warehouses.
In this study, we propose a scheduling strategy that simultaneously considers
both processors and disks while utilizing the load balancing potential of a Shared
Disk architecture. We compare the performance of this new method to several
other approaches in a comprehensive simulation study, incorporating skew as-
pects and typical data warehouse features such as star schemas.

1  Introduction

A successful data warehouse must ensure acceptable response times for comple
lytical queries. Along with measures such as new query operators [8], specialized i
structures [13, 19], intelligent data allocation [18], and materialized views [3],parallel
database systems (PDBS)are used to provide high performance [5]. For effective pa
allelism, good load balancing is a must, and many algorithms have been propose
general PDBS. But we are not aware of load balancing studies for data warehouse
characteristic features such as star schemas and bitmap indices.

In this paper, we evaluate a new approach todynamic load balancingin parallel data
warehouses based on the simultaneous consideration of both CPUs and disks. The
frequent bottlenecks in the voluminous scan/aggregation queries characteristic o
warehouses. A balanced utilization of both resources depends not only on thelocation
(on which CPU) but also on thetiming of load units such as subqueries. We thus pr
pose to perform both decisions in an integrated manner based on the resource re
ments of queued subqueries as well as the current system state.

To this end, we exploit the flexibility of theShared Disk (SD)architecture [16] in
which each processing node can execute any subquery. For scan workloads, the b
of CPU load does not depend on the data allocation, permitting query scheduling
shared job queues for all nodes. Disk contention is harder to control because the
load per disk is predetermined by the data allocation and cannot be shifted at run

In a detailed simulation study, we compare the new integrated strategy to se
simpler methods of dynamic query scheduling. We use a data warehouse setting
on the APB-1 benchmark comprising a star schema with a huge fact table support
bitmap indices, both declustered across many disks for parallel access. The
scan/aggregation queries we regard stress both disks and CPUs, creating a challe



-crit-
e,

nes
re de-
erfor-
tails
[11].

gen-
ty of
xten-
revi-
ain

, 14].
rom
g and
6].

ncing
also
po-

es
umen-
disk

t re-
rela-
t,
ding
timi-

s and
tion

isk
ed
ces.
-
Each
scheduling problem. We particularly consider the often neglected but performance
ical treatment ofskew effects. As a first step in the field, we focus on single-user mod
but our scheduling approaches can also be applied in multi-user mode.

In Section 2 of this paper, we briefly review some related work. Section 3 outli
our general load balancing paradigm, whereas our specific scheduling heuristics a
fined in Section 4. Section 5 describes our simulation system and presents the p
mance evaluation of the scheduling strategies. We conclude in Section 6. De
omitted due to space constraints can be found in an extended version of this paper

2  Related Work

We are not aware of any load balancing studies for parallel data warehouses. For
eral PDBS, load balancing problems have been widely researched, for a varie
workloads and architectures [4, 6, 9, 10, 16]. Many of these approaches rely on e
sive data redistribution too costly in a large data warehouse. Furthermore, most p
ous studies have been limited to balancing CPU load, sometimes including m
memory [14]. Even so, the need for dynamic scheduling has been emphasized [2
Conversely, load distribution on disks has largely been considered in isolation f
CPU-side processing. Most of these studies have focused either on data partitionin
allocation [7, 15, 17] or on limiting disk contention through reduced parallelism [1
Integrated load balancing as proposed in this paper has not been addressed.

The Shared Disk architecture has been advocated due to its superior load bala
potential especially for read-only workloads as in data warehouses [9, 12, 16]. It
offers great freedom in data allocation [15]. But the research on how to exploit this
tential is still incomplete. SD is also supported by some commercial PDBS fromIBM,
ORACLE, andSYBASE. These and other data warehouse products (e.g.,INFORMIX, RED

BRICK, MICROSOFT, andTERADATA) support star schemas and (mostly) bitmap indic
as well as adequate data fragmentation and parallel processing. But since no doc
tation is available on disk-sensitive scheduling methods, we believe that dynamic
load balancing is not yet supported in current products.

3  Dynamic Load Balancing for Parallel Scan Processing

This section presents our basic approach to dynamic load balancing, which is no
stricted to data warehouse environments. We presume a horizontal partitioning of
tional tables into disjointfragments. If bitmap indices or similar access structures exis
they must be partitioned analogously so that each table fragment with its correspon
bitmap fragments can form an independent unit of processing. We focus on the op
zation of scan queries and exploit the flexibility of the Shared Disk architecture.

The two performance-critical types of resources for scans are processing node
disks, but their respective load balance depends on different conditions: CPU utiliza
is largely determined byhow muchdata each processor is assigned. A balanced d
load, on the other hand, hinges onwhenthe data residing on each device are process
because their location is fixed. We thus aim for an integrated view on both resour

When a query enters the system, acoordinatornode that controls its execution par
titions the query into subqueries based on the presumed horizontal fragmentation.
subquery scans either a fragment or apartition of the relevant table, where a partition
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comprises all table fragments residing on one disk. Fragments known to contain n
rows are excluded. We thus obtain independent subqueries that can be processed
processing node, yielding great flexibility in the subsequent scheduling step.

Fragments, being smaller than partitions, permit a more even load distribution e
cially in case of skew. Partition-sized subqueries, however, reduce the scheduling
communication overhead as well as disk contention as no two subqueries will pro
the same table partition, although some interference may still stem from index ac

Scheduling.Presuming full parallelism for the large queries we examine, we are
with the task of allocating subqueries to processors and timing their execution. We
sider thisschedulingstep particularly important as it finalizes the actual load distrib
tion in the system. To this end, the coordinator maintains a list of subqueries tha
dispatched following a given ordering policy (cf. Section 4) and processed locally
described below. All processors obtain the same number of subqueries (±1) up to a giv-
en limit roughly corresponding to the performance ratio of CPUs to disks; remain
tasks are kept in a central queue. When a processor finishes a subquery and repo
local result to the coordinator, it is assigned new work from the queue until all subq
ries are done. Finally, the coordinator returns the overall query result to the user.

This simple, highly dynamic approach already provides a good balance of proce
load. A node that has been assigned a long-running subquery will automatically ob
less load as execution progresses, thus nearly equalizing CPU load. Since no two
queries address the same fragment, we may also achieve low disk contention depe
on the order in which subqueries are dispatched. This aspect is elaborated in Sec

Local Processing of Subqueries.When a node is assigned a fragment-sized subque
it processes any required bitmap fragments and the respective table fragment sim
neously, minimizing memory consumption while exploiting prefetching and para
I/O. For the scan/aggregation queries we assume, the measures contained in the s
tuples are aggregated locally to avoid a shipping of large datasets, and the partial r
are returned to the coordinator at subquery termination. For partition-sized subque
a node will process its partition sequentially, skipping irrelevant fragments. Multi
subqueries on the same processor coexist without any need for intra-node coordina

4  Scheduling Order of Subquery Execution

Since we regard the scheduling of subquery execution as the most important asp
load balancing in our processing model, we now present four scheduling policies b
on either static (Section 4.1) or dynamic (Section 4.2) ordering of subqueries. Deta
calculations and some variant strategies can be found in the extended paper [11]

4.1  Statically Ordered Scheduling

Our simpler heuristics employ astatic orderingof subqueries. Even under these strat
gies, however, our scheduling scheme as such is still dynamic as the allocation of w
load to processing nodes is determined at runtime based on the progress of exec

StrategyLOGICAL. This heuristic – taken from our previous study on star schema a
cation [18] as a baseline reference – assigns fragment-sized subqueries in the logic
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der of the fragments they refer to. Since the allocation scheme applied here doe
maintain this order (cf. Section 5.1),LOGICAL will not yield optimal performance.

StrategyPARTITION . Partition-sized subqueries are dispatched in a round-robin fa
ion with respect to their logical disk numbers. In single-user mode, this means that
table partition is accessed by only one processor at a time. However, bitmap acce
required) can cause each subquery to read from multiple disks, so that access co
may not be avoided completely. Still, we expect this policy to minimize disk contenti

StrategySIZE . This method starts fragment-sized subqueries in decreasing orde
size, based on the expected number of referenced pages. It implements an LPT (longest
processing time first) scheme that provides good load balancing for many schedul
problems. It does not consider disk allocation but may be expected to optimize the
ance of processor load based on the total amount of data processed per node.

4.2  Dynamically Ordered Scheduling

The static policies above tend to optimize the balance ofeitherCPUor disk load. For
an improved, integrated load balancing we reckon with both criteria based on adynamic
ordering. To distribute disk load over time and reduce contention, we try to exec
concurrently subqueries with minimum overlap in disk access. To simultaneously
ance CPU load, we also consider subquery sizes similar to the previous section. F
1 illustrates the following considerations using a 4-disk example with 4 subquerie

Strategy INTEGRATED. We model the disk load characteristics of each subquery in
shape of aload vector➀ containing the expected number of pages referenced on e
disk. This number is calculated from the query's estimated selectivity and includes
table and bitmap fragments. The load vector is normalized➁ to represent the relative
load distribution across the disksat a given point in timerather than its total magnitude.

In addition to the single load vectors for each subquery, we keep a global vecto
current disk load, defined as the sum of the load vectors of all subqueries currently
ning ➂. We can then compute an expected rate of access conflict between the cu
load and any queued subquery by comparing their respective load vectors. Specifi
the products of local intensities per disk➃, added over all disks➄, yield a measure of
the total access conflict between each candidate and the current load➅. To integrate
disk conflict estimates with the distribution of CPU load, we divide the expected d

running subqueries queued subqueries

➀ ➁

➂

➃ ➄ ➅ ➇

➈

➀

➆

➆

➁

Fig. 1.Sequence of load vector calculation in strategyINTEGRATED (graph scaling varies)
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access conflict for each subquery by its total size➆➇, so that long-running tasks may
be executed earlier than shorter ones even if they incur a slight increase in disk co
tion. The subquery that minimizes the resulting ratio➈ (thus optimizing the trade-off
between both criteria) will be dispatched in the next scheduling step.

5  Simulation Study

We now present our simulation study, first introducing the simulation system u
(Section 5.1), then discussing the performance of our scheduling schemes (Section
and finally testing the scalability of our methods in speed-up experiments (Section

5.1  Simulation System and Setup

Our proposed strategies were implemented in a comprehensive simulation syste
parallel data warehouses that has been used successfully in previous studies [18]
ulating a Shared Disk PDBS with 20 processors and 100 disks, it realistically refl
resource contention by modeling both CPUs and disks as servers. CPU overhe
reckoned for all relevant operations, and seek times in the disk modules depend o
location (track number) of the desired data within a disk. Each processor owns a b
module with separate LRU queues for fact table and bitmap access. The network in
communication delays proportional to message sizes but models no contention, so
avoid specific network topologies unduly influencing experimental results.
Our sample data warehouse is modeled as a relational star schema for a sales a
environment (Figure 2) derived from theAPPLICATIONPROCESSINGBENCHMARK(APB-
1) [1]. The denormalizeddimension tables PRODUCT, CUSTOMER, CHANNEL andTIME

each define ahierarchy(such as product divisions, lines, families, and so on). Thefact
table SALEScomprises severalmeasureattributes (turnover, cost etc.) and a foreign ke
to each dimension. With adensity factorof 1%, it contains a tuple for 1/100 of all value
combinations. We incorporate commonbitmap join indices[13] to avoid costly full
scans of the fact table. We employstandard bitmaps for the low-cardinality dimensions
TIME andCHANNEL, but usehierarchically encoded bitmaps[19] for the more volumi-
nous dimensionsPRODUCTandCUSTOMERto save disk space and I/O. With these ind
ces, queries can avoid explicit join processing between fact table and dimension tab
in favor of a simple selection using the respective precomputed bitmap(s).

We follow a horizontal, multi-dimensional fragmentation strategy for star schem
that we proposed and evaluated in [18]. Specifically, we choose a two-dimensi

Fig. 2.Sample star schema

RefProduct
RefCustomer

RefTime
RefChannel

UnitsSold
DollarSales

PRODUCT

division
line

family
group
class
code

SALES CUSTOMER

retailer
store

CHANNEL

channel

TIME

year
quarter
month~ 2.4 billion facts

45,000

49

4,500

24

Cost

3,025
1,500

375
75
24 499

8
2

Fig. 2.Sample star schema
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fragmentation based onTIME.MONTH andPRODUCT.FAMILY. Each resulting fact table
fragment thus combines all rows referring to one particular product family within o
particular month, creating 375⋅ 24 = 9000 fragments. This can significantly reduc
work for queries referencing one or both of the fragmentation dimensions; it also
ports both processing and I/O parallelism and scales well. As demanded in Secti
the fragmentation of bitmaps follows that of the fact table.

Since one focus of our study is on skew effects, we explicitly modelattribute value
skewin the fact table, using zipf-like frequency distributions with respect to dimens
values. This leads to varying densities and sizes of table fragments, potentially ca
severe load imbalance. To help alleviate suchdensity skew, we employ agreedy data
allocation algorithmsimilar to [17] which allocates fact table fragments in decreasi
order of size onto the least occupied disk at each time to keep disk partitions balan
Corresponding bitmap fragments of each bitmap are stored on adjacent disks to su
parallel bitmap access. Note, however, that a smart allocation scheme is merely a
plement, not a replacement for intelligent scheduling techniques employed at run

As our study regards single-user mode for the time being, queries are exec
strictly sequentially. Focusing on fact table access, we assume simple aggregation
ries that do not require joins to the dimension tables. All queries within a single ex
iment are of the same type (e.g.,QDIVISION, aggregating data from one product division
but with random parameters (e.g., the specific division selected). However, diffe
simulation runs will use the same set of queries, facilitating a fair comparison of res

5.2  Scheduling Strategies

Since the performance of our strategies will depend in part on the type of query b
processed, we consider both disk-bound and CPU-bound workloads, as well as bo
line cases that shift between categories. In our case, theselectivityof a querywithin the
relevant fact table fragments determines the ratio of CPU to I/O load. Our CPU-in
sive queries each have a 100% selectivity within the fragments they access. I/O-b
loads, in contrast, select only some of the tuples in each fragment, causing less
work per I/O, and use bitmap indices, which are also cheap to process on the CPU
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Fig. 3.Disk-bound queries
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All queries are tested for our four scheduling strategies under varying degree
skew on the two fragmentation dimensions,TIME andPRODUCT, using the same degree
of skew to both dimensions. Under the zipf-like distributions we employ, the skew
rameter may range from 0 (no skew) to values around 1 (heavy skew).

Disk-Bound Queries.In Figure 3, we show simulation results for two disk-bound qu
ries,QCHANNELandQSTORE. With our greedy allocation scheme, balanced disk partitio
can be processed in constant time regardless of skew under a proper scheduling m
PARTITIONachieves the best response times as would be expected for disk-bound w
loads, keeping disks optimally loaded at nearly 100%. It also minimizes the inevita
disk contention caused by concurrent access to fact table and bitmap fragments.INTE-

GRATEDperforms equally well asPARTITIONfor theQCHANNELquery with only 1% devi-
ation; it is only slightly worse onQSTORE with at most 15% response time increase
Apparently, the conflict analysis it performs is similarly effective to avoid disk conte
tion as a strict separation of partitions, despite the additional size criterion.

The other strategies are less successful here as they do not respect disk alloca
the same degree. The worst case isLOGICAL, which processes fragments in their logica
order that is unrelated to their disk location under the greedy scheme, more than
bling the response time.SIZE mimics partitionwise scheduling to some extent becau
it processes fragments in the same size-based order in which they were allocated
it cannot contend with the near-optimalPARTITION, with differences of up to 35%.

CPU-Bound Queries.The CPU-bound queriesQDIVISION andQQUARTERperform a se-
lection on the skewed fragmentation dimensionsPRODUCTandTIME, respectively, and
thus respond markedly to skew effects (Figure 4). Although partition sizes are well
anced for the database as a whole, this is not the case for single product divisions o
endar quarters and the largest fragmentwithin such a subset can dominate the query
response time. This can be corrected by data allocation only to a limited extent.

The best results are achieved bySIZE as it balances the sheer amount of data pr
cessed per node, which is essential for CPU-bound queries.PARTITIONperforms worst
(up to 58% forQDIVISION and 46% forQQUARTER) because it does not permit more tha
one processor to access the same disk even under low disk utilization. The othe

Fig. 4.CPU-bound queries
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strategies achieve good success;INTEGRATEDapproximatesSIZE most closely with only
10% deviation, demonstrating good performance for CPU-bound workloads as w

Increasing skew changes the ranking in favor ofPARTITION. With QQUARTER, PARTI-

TION becomes by far the best strategy for extreme skew, now offsettingSIZE by 46%.
This is because the skewed fragment sizes turn the querylocally disk-bound, i.e., a sin-
gle disk becomes the bottleneck even though the query as a whole is CPU-bound

This situation is analyzed in detail in Figure 5, which shows the response time
queries referencing the least densely and most densely populated quarters for eac
en degree of skew. The smaller queries remain CPU-bound for the entire range be
density skew is less severe toward the lower end of our zipf-like distribution curve.
large quarters, however, both the size of the respective quarter and the fragment i
ance increase with growing skew. It is only these queries that shift from CPU-boun
locally disk-bound so thatPARTITION wins out by 43% for high skew.

Discussion.The results show that no single scheduling scheme is optimal for all sit
tions. For (globally or locally) disk-bound queries, minimal response times are norm
ly achieved under thePARTITION heuristic, whereas CPU-bound workloads are be
processed usingSIZE. The choice of the truly best strategy then depends on the ‘bou
ness’ of a query, as determined by its selectivity and index utilization, the degre
skew, and a number of other parameters. A cost-based query optimizer of a PDBS m
make a sensible decision by comparing the total (estimated) processing cost on the
and disk side, respectively, although locally disk-bound queries may be hard to d

On the other hand, our dynamic scheduling scheme based on theINTEGRATEDheu-
ristic was able to adapt to different types of queries and performed near-optimal
most experiments. Using this strategy thus promises to be more robust for com
workloads and avoids the need to select among different scheduling approaches
on error-prone cost estimates. Especially in a multi-user environment, we expect
an adaptive method to react more gracefully to the inevitable fluctuations in sys
load. In contrast, the correct selection betweenPARTITIONandSIZE will be very difficult
against a continually changing background load alternating between CPU-bound
disk-bound states. This aspect, however, needs to be investigated in future studie

Fig. 5.Shift from CPU-bound to disk-bound
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5.3  Speed-up Behavior

In this simulation series, we test the scalability of our query processing and sched
strategies with varying numbers of disks and processors. For each configuration, w
the queriesQQUARTER and QRETAILERMONTH under a medium skew degree of 0.4 an
against skewless data, respectively. Results are shown in Figure 6.

SinceQQUARTERis CPU-bound, we test its speed-up in relation to the number of p
cessors, usingSIZE as the scheduling strategy according to the previous results. Aga
skewless data,QQUARTERshows linear speed-up until the disks of the system beco
bottlenecks and speed-up with respect to processors is no longer achievable. With
(dashed graph), the curves decline earlier because response times are dominated
work on the largest fragment, causing locally disk-bound processing.

To test the speed-up for disk-bound queries, we useQRETAILERMONTH which is more
responsive to skew thanQCHANNELandQSTOREused above.QRETAILERMONTH is scheduled
usingPARTITION, and speed-up is evaluated in relation to the number of disks.

As in the the previous case, speed-up is near-linear with skewless data but lim
by the largest fragment in case of skew. The effect is even stronger this time as sk
more pronounced on lower hierarchy levels (months) than on higher ones (quarte

For both types of workload, theINTEGRATEDpolicy we proposed achieved equiva
lent results to the above (not shown here). Overall, our load balancing method s
very well for all relevant scheduling policies; limitations due to skewed fragment si
are not caused by scheduling and must be treated at the time of data allocation.

6  Conclusions

In this paper, we have investigated load balancing strategies for the parallel proce
of star schema fact tables with associated bitmap indices. We found that simple sc
uling heuristics likePARTITIONandSIZE can be very effective. But the selection of th
appropriate method depends on whether a query is disk-bound or CPU-bound, w
can be difficult to determine especially under skew conditions. As an alternative,
proposed a more complex, dynamically ordered scheduling approach (INTEGRATED) that
yields only slightly worse performance but naturally adapts to different query type

Fig. 6.Speed-up behavior of queriesQQUARTER andQRETAILERMONTH
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While we assumed a Shared Disk environment, most of the results can be t
ferred to other architectures, in particular, Shared Everything. Shared Nothing sys
are restricted to strategies similar toPARTITION, which we found to be non-optimal. This
demonstrates the benefits of Shared Disk and justifies our architectural choice.

The extension of our findings to multi-user mode is not trivial. As the simple he
risticsPARTITIONandSIZE may no longer be sufficient, we expect our integrated stra
gy to gain importance. Verifying this assumption will be a focus of our future work
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