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SUMMARY

The formidable dissemination capability allowed by the current network technology makes it increasingly
important to devise new methods to ensure authenticity and integrity. Nowadays it is common practice to
distribute documents in compressed form. In this paper, we propose a simple variation on the classic LZ-77
algorithm that allows one to hide, within the compressed document, enough information to warrant its
authenticity and integrity. The design is based on the unpredictability of a certain class of pseudo-random
number generators, in such a way that the hidden data cannot be retrieved in a reasonable amount of time
by an attacker (unless the secret bit-string key is known). Since it can still be decompressed by the original
LZ-77 algorithm, the embedding is completely ‘transparent’ and backward-compatible, making it possible
to deploy it without disrupting service. Experiments show that the degradation in compression due to the
embedding is almost negligible. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The growing concern about authenticity, confidentiality, and the protection of intellectual property

on the Internet has recently raised the interest in information hiding. The main areas of research in

information hiding are steganography and watermarking. Whereas steganography is the science of

concealing the existence of secret messages within larger ones from an external observer, watermarking
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can be thought as a stronger version of steganography, since it usually requires robustness against

attacks aimed at removing the watermark (for an introduction see, e.g., [1–5]).

A new type of watermark, called fragile, has recently been proposed for digital images [6–8].

A fragile watermark is designed to ensure that the document cannot be changed without destroying

the watermark. The most immediate application is document authenticity and integrity. The watermark

becomes some sort of a ‘witness’ to the authenticity and integrity of the document.

So far, most of the research in watermarking has been focused on multimedia (images, audio,

video) and source code. Techniques that hide messages in English texts range from line-shifting,

word-shifting and font encoding (see, e.g., [9–11]) to natural language processing approaches (see,

e.g., [12]). Whereas the first groups of techniques are particularly sensitive to attacks by optical

character recognition, the second groups subtly change the text and that may not be tolerable for some

applications. In general, the problem of watermarking English text appears to be quite challenging.

The difficulty in hiding information in textual data is justified in the literature by the following

consideration [1, p. 332]

. . . text is in many ways the most difficult to hide data . . . due largely to the relative lack

of redundant information in a text file as compared with a picture or a sound file . . .

also repeated in [5, p. 36]

. . . unlike noisy data, written text contains less redundant information which could be used

for secret communication . . .

Any practitioner of lossless data compression knows that texts can be lossless-compressed equally or

sometimes even more than an image or an audio file. This observation sparked our initial idea of hiding

information within a compressed representation of text.

It is also well known that compression aids encryption by reducing the redundancy of the plain text.

The lower the redundancy of the plain text being fed to an encryption algorithm, the more difficult is

the cryptanalysis of that algorithm [13,14]. Compression has been proposed as a method of encryption

[13,15,16], but several attacks have been studied: on Huffman encoded texts [17], dynamic on Huffman

encoded texts [18], but in particular on arithmetic coded files [16,19–21].

To the best of our knowledge, the work by Cachin [22] is the only one which combines information

hiding and textual data compression. He modifies Willems’ algorithm [23] to illustrate a steganographic

system in which he proves to achieve asymptotically perfect security.

The scheme by Ziv and Lempel [24] (LZ-77) implemented in the popular gzip/zip family of

archivers has nowadays become a standard. Files are distributed over the Internet, commonly in

compressed form. In Section 2 we first consider the problem of hiding a secret message M within the

Lempel–Ziv compressed representation of a document. The objective is to make sure that M cannot be

retrieved by the attacker in any reasonable amount of time (unless the secret bit-string key is known).

The security of the system is the topic of Section 3. In Section 4 we describe how to use our findings

for document authentication. Some experiments are reported in Section 5.

2. HIDING MESSAGES IN LZ-77

The typical cryptographic protocol involves two parties, traditionally named Alice and Bob. We use T

to denote the document that Alice desires to send to Bob, and M the secret message. We assume T over
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AliceAlice

BobBob

MalloryMallory

Figure 1. While Alice and Bob are exchanging some documents, Mallory is eavesdropping on the conversation
and devising ways to tamper with the files.

an alphabet �, and M over the alphabet {0, 1}. The text T should be ‘long enough’ to accommodate M ,

as explained below.

When we decompose the text T in uvw, i.e. T = uvw where u, v and w are strings over �, strings

u, v and w are called substrings, u is called a prefix of T , and w is called a suffix of T . Given a string T ,

the number of symbols in T defines the length |T | of T . Throughout this document, we assume |T | = t

and |M| = m.

We write T[i], 1 ≤ i ≤ t to indicate the ith symbol in T . We use T[i,j ] shorthand for the substring

T[i]T[i+1] . . . T[j ], where 1 ≤ i ≤ j ≤ t , with the convention that T[i,i] = T[i]. Substrings in the form

T[1,j ] correspond to the prefixes of T , and substrings in the form T[i,t ] to the suffixes of T .

We denote by H a one-way cryptographic hash function (for example, MD5 [25]).

Suppose that our two friends, Alice and Bob, desire to exchange T and they want to ensure that what

they receive is authentic and integral, i.e. they want to establish some proof of authorship that cannot be

forged or reused. Sitting between Alice and Bob, however, there is Mallory. Mallory is eavesdropping

on the conversation and devising a plan on how to tamper with T (see Figure 1).

Before starting the exchange of documents, Alice and Bob agreed upon (and memorized) a secret

key k. We suppose that the key k is the only parameter unknown to Mallory, as the Kerckhoffs’ principle

dictates. The idea is that even if Mallory understood the internals of the system, he should never be

able to change T and get away with it without knowing k. In fact, we want to ensure that Mallory is

completely prevented from retrieving the secret message M from the compressed text.

When Alice decides to send (T ,M) to Bob, she compresses the text T with a modified version of

LZ-77, called LZS-77 (‘S’ for secret), which secretly embeds M . A description of the original LZ-77

is in order, followed by the one for LZS-77.

The LZ-77 algorithm [24] processes the data on-line as it is read, i.e., parses the file sequentially

left to right and looks into the sequence of past symbols to find a match with the longest prefix of the
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Figure 2. The multiplicity of the next phrase is four (q = 4). Choosing one of the four possible
pointers hides two bits of the secret message.

string starting at the current position. The longest prefix is substituted with a pointer, which is a triple

composed of (position, length, symbol). Several variations on LZ-77 have been proposed (see, e.g., [26]

and references therein), but the basic principle remains the same.

Let us suppose that the first i − 1 symbols of the string T have already been parsed in n− 1 phrases,

i.e. T[1,i−1] = y1y2 . . . yn−1. To identify the nth phrase, LZ-77 looks for the longest prefix of T[i,t ] that

matches a substring of T[1,i−1]. If T[j,j+l−1], j < i is the substring that matches the longest prefix,

then the next phrase is yn = T[i,i+l−1]. The algorithm issues the pointer (j, l, T[i+l]) and updates the

current position i to i + l + 1. The reason we need T[i+l] is to be able to advance when l = 0, which is

common in the very beginning.

In the LZS-77 algorithm, we slightly modify the LZ-77 encoding to be able to embed M . We define a

position i in the text corresponding to the beginning of a new phrase to have multiplicity q if there exists

exactly q matches for the longest prefix that starts at position i of T . The positions with multiplicity

q > 1 are the places where we embed some bits of the secret message M . Specifically, the next log2 q

bits of M will secretly drive the selection of one particular pointer out of the q choices (see Figure 2).

Suppose again that the initial portion of T , say T[1,i−1], has already been parsed. Let {(p0, l, T[i+l]),

(p1, l, T[i+l]), . . . , (pq−1, l, T[i+l])}, q ≥ 1 be the set of feasible pointers for the longest prefix of

T[i,t ], where l > 1, and 1 ≤ pl ≤ i for all 0 ≤ l ≤ q − 1. In particular, we consider the positions with

multiplicity q > 1. When q = 1 we simply skip to the next phrase.

When q > 1, we first generate a random permutation of the set S = {0, 1, . . . , q − 1} as

follows. We store S in a balanced data structure which supports the operation EXTRACT(S, n) in

time O(log q), such as a 2-3 tree (there are tree schemes that achieve O(log log q) performance, but

they are mostly of theoretical interest). The operation EXTRACT(S, n) returns and simultaneously

removes the nth smallest element in S. We generate a pseudo-random sequence a1, a2, . . . using

BBS [27], with seed a0 = H(k, i, p0, p1, . . . , pq−1). Then, for each j = q − 1, q − 2, . . . , 1, 0

we set bj = EXTRACT(S, aj mod (j + 1)). It is easy to prove that {b0, b1, . . . bq−1} is a uniformly

distributed permutation of S. We use the random permutation to re-order the pointers as R =

{(pb0
, l, T[i+l]), (pb1

, l, T[i+l]), . . . , (pbq−1
, l, T[i+l])}.

We now assign a unique binary code to each pointer by building the tree of the optimal binary prefix

code of a uniform distribution on q symbols. We first write the multiplicity q in binary notation as

qK−1 . . . q1q0, where K = ⌊log2(q)⌋ + 1 and q =
∑K−1

j=0 2jqj . We build a complete binary tree B of
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Figure 3. The trees for q = 5 and q = 6.

height K , where each node has a unique code identified by the path from the root to the node, using

the convention that going to a left child corresponds to a ‘0’ and going to a right child corresponds to a

‘1’. At the end of the process described next each pointer will be assigned to a node of the tree B and

hence it will have a unique binary label. We initially assign the first 2K−1 pointers of the set R to the

nodes at level K − 1 of tree B. If there remain unlabeled pointers, that is if q > 2K−1, we consider the

q − 2K−1 leftmost nodes at level K − 1. For each of these, we ‘move’ the pointer down to its left child

and we assign the next unlabeled pointer to the right child.

Figure 3 shows the two trees for the cases q = 5 and q = 6. For example, if q = 5 we get the code

{000, 001, 01, 10, 11} which has an average length of 2.4 bits, while log2 5 = 2.3219. If q = 6 we get

the code {000, 001, 010, 011, 10, 11} which has an average of 2.6666 bits, while log2 6 = 2.5839.

Finally, we use the next bits of M to choose one of the q pointers. Suppose that the first r − 1 bits

of M have already embedded. We traverse the tree B using the longest prefix of M[r,m] that ends up in

a node marked with a pointer, say pbj . We then emit (pbj , l, T[i+l]), we move the current position to

i + l + 1, and we increment r by the length of the code of pbj . The complete algorithm is summarized

in Figure 4.

We want to stress that these changes do not affect the internal structure of LZ-77 encoding, other than

a possible re-shuffling of the pointers. A file compressed with LZS-77 can still be decompressed by

a standard LZ-77 algorithm. This backward-compatibility makes LZS-77 particularly easy to deploy

gradually without disrupting service. Moreover, the compression is still on-line, i.e. the file is not

required to be stored entirely in primary memory.

An important parameter for any watermarking technique is the capacity of the watermarking channel.

We studied the capacity of LZS-77 channel both theoretically and experimentally. From the theoretical

perspective, we proved in [28] that the average multiplicity tends to a constant as the size of the text

tends to infinity. This is also confirmed by our experiments in Section 5.

In practice, if Alice finds that there are not enough positions with multiplicity q > 1 to encode M , she

simply has to append some more irrelevant data to T . Vice versa, if the text is longer than she needs, she

can increase the security by distributing the bits of the message in a subset of the set of positions with

multiplicity q > 1. Let L = {l1, l2, . . . , ls} be the set of positions with multiplicity q > 1, as collected

in a full scan of the LZ parsing. She can select a random permutation of a subset of L by using the
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LZS-77 ENCODER (T ,M, k)

1 let i, r, t,m, P ← 0, 0, |T |, |M|, empty string

2 while i < t do

3 let T[i,l] ← the longest prefix of T[i,t ] that matches a substring in T[1,i−1]

4 let R ← {(p0, l, T[i+l]), . . . , (pq−1, l, T[i+l])} be the set of feasible pointers for T[i,l]

5 if q > 1 then

6 initialize the BBS generator with seed a0 = H(k, i, p0, p1, . . . , pq−1)

7 for j ← 1, . . . , q − 1 do

8 let aj ← BBS(aj−1)

9 let S ← {0, 1, . . . , q − 1}

10 for j ← q − 1, . . . , 1, 0 do

11 let bj ← EXTRACT(S, aj mod (j + 1))

12 let B ← tree for the optimal binary prefix code of a uniform distribution on q symbols

13 let pbj ← pointer stored in a leaf of B at the end of a path which begins at the root

of B and spells out the longest prefix of M[r,m]

14 append (pbj , l, T[i+l]) to P

15 let r ← r + ⌊log2 q⌋

16 else

17 append (pq−1, l, T[i+l]) to P

18 let i ← i + l

19 return P

Figure 4. The algorithm for the encoder. T is the text, M is the secret message, k is the secret
key and P is the sequence of pointers.

same algorithm described above, using H(k, l1, l2, . . . , ls) as a seed. The message is embedded only

in the subset obtained by the random sequence. For all the positions with multiplicity q > 1 not used,

she randomly chooses one of the possible pointers. Note however, that now the algorithm is not on-line

anymore.

To decrypt the message, Bob runs his LZS-77 decompressor. Bob decodes the file by expanding, one

after another, the pointers with their respective substring. However, at each expansion Bob also checks

whether there are other possible pointers that could have been used to encode the current phrase,

thereby identifying positions with multiplicity q > 1. In this case, some of the bits of the message

could have been encoded. Bob builds the permutation {b0, b1, . . . bq−1} and the binary tree of height

⌊log2(q)⌋+ 1 in the same way Alice did. The path from the root to the pointer chosen by Alice reveals

the next bits of the message. The algorithm is summarized in Figure 5.

3. SECURITY

Other than tampering with the document, Mallory may try to retrieve the secret message, the key, or

both. We show that if the adversary could determine some bits of the secret message then he would be
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LZS-77 DECODER (P, k)

1 let D,M, i ← empty string, empty string, 0

2 for each (p, l, c) ∈ P do

3 if q > 1 then

4 let R ← {p0, . . . , pq−1} be the set of occurrences of D[p,p+l−1] in D[1,i]

5 initialize the BBS generator with seed a0 = H(k, i, p0, p1, . . . , pq−1)

6 for j ← 1, . . . , q − 1 do

7 let aj ← BBS(aj−1)

8 let S ← {0, 1, . . . , q − 1}

9 for j ← q − 1, . . . , 1, 0 do

10 let bj ← EXTRACT(S, aj mod (j + 1))

11 let B ← tree for the optimal binary prefix code of a uniform distribution on q symbols

12 let h the index such that ph = p

13 let pbj ← pointer stored in a leaf of B at the end of a path which begins at the root

of B and spells out h

14 append the bits of bi to M

15 append D[p,p+l−1]c to D

16 let i ← i + l + 1

17return (D,M)

Figure 5. The algorithm for the decoder. P is the sequence of pointers, k is the secret key, D is
the decompressed text and M is the watermark

able to break a crypto-secure pseudo-random generator (e.g. BBS [27]), which is extremely unlikely

(hence it is just as unlikely that the adversary can get the secret message bits).

Suppose that the adversary knows an algorithm A to retrieve the watermarks from the LZS-77

compressed text. We now describe how to design a method that correctly guesses the next bit of a

BBS generator using A as a subroutine. We set T =ababab, and compress it with LZS-77, starting

from the last copy of ab. The multiplicity of the pointer is two: we have one copy of ab at position 1

and one copy at position 3.

We initialize the seed a0 = H(k, 5, 1, 3), and S = {0, 1}. We run BBS to get the next random

number a1 and we set b1 = EXTRACT(S, a1 mod 2) and b0 = EXTRACT(S, 1). Since A is supposedly

able to retrieve the watermark, it would also be able to obtain b1. The latter is equivalent to the ability

to guess the next bit for a cryptographically secure pseudo-random generator, which cannot be done in

a reasonable amount of computing time.

The security of the key k is based primarily on the one-way hash-function H . We recall that we

use the key only to compute the seed a0 = H(k, i, p0, p1, . . . , pq). However, as the example above

illustrates, a0 is not directly used in the construction of the permutation. The element b0 is always

the last element left in S after all the other q − 1 elements have been randomly chosen. Even in the

very unlikely scenario in which the adversary would be able to obtain a0 from b0, b1, b2, . . . , bq−1, he

should still have the hard task of inverting the one-way function H .
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4. AUTHENTICITY AND INTEGRITY

Fragile watermarks are an alternative to public-key cryptography (PKC)-based digital signatures [29] to

achieve authentication. In order to be effective, the watermark has to meet the following specifications:

� the watermarked text is (semantically) identical to the original text;

� unless someone knows the secret key, it is very hard to add a watermark to a text that would

prove the authenticity of the document;

� the presence of the watermark would hold up in court (i.e. the probability of a false positive is

extremely small);

� the watermark cannot be read without the knowledge of the key;

� the watermarked text and the secret key are sufficient to obtain the original text, and read the

watermark (i.e. it is not necessary to have the original text);

� the security of the watermark is based solely on the key, and not on the secrecy of the method;

� there is resistance to collusion by two people having a different watermarked version of the same

text.

Our solution to the problem of ensuring authenticity and integrity is to use LZS-77 to hide as

part of the watermark the digest of the document T using a one-way cryptographic hash function H

(for example, MD5 [25] which produces a 128-bit digest). It is also good practice to add a certified

time-stamp to the watermark to increase the resilience to certain types of attacks (see, e.g., [30]).

The watermark has to contain the digest of the text T , because otherwise Mallory could easily change

the text and reuse the watermark for T in the different text. For example, a simple way to do it would

be to re-map the symbols of the alphabet of T to a completely different alphabet. This would preserve

the structure of the parsing and therefore the watermark would still be valid.

The scheme has some minor advantages over the PKC-based digital signatures. First, we are not

sending any additional data other than the compressed text itself. As long as Bob keeps the text received

from Alice on his storage in compressed form, the authentication is inseparably bound to the content

and the text remains protected against tampering. This feature clearly simplifies the logistics of file

manipulation. In contrast, the digital signature is naturally a distinct entity that risks being separated

from the file it was supposed to protect.

A second advantage is that our technique is much more general and it allows us to embed any secret

message. For example, one could think of some sort of self-embedding of the text in order to give Bob

the opportunity to know where the text has been tampered with. Although it is not clear how to achieve

this for texts, the idea has been explored for digital images [31].

The third and final advantage is that a casual observer would hardly imagine that a standard LZ-77

compressed file which (1) does not contain any suspicious-looking data and (2) can be decompressed

by any common LZ-77 implementation, is actually protected against tamper-proofing. This could be

used as a ‘bait’ in situations where we want to test the sophistication of the attacker.

The non-casual attacker has a way of detecting the presence of the watermark. Mallory can

decompress the text, and recompress it again with the standard LZ-77. By comparing Alice’s

compressed text with his own, he may discover the re-shuffling of the pointers. He may realize

that something unusual is going on, but our design will prevent him from recovering the content or

reproducing the watermark for a different text.
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Figure 6. The average value of the pointer multiplicity q for increasing portions of
paper2 (left) and news (right) of the Calgary corpus.

For the reason mentioned above, this scheme cannot be used for robust watermarking and/or

steganography. It appears impossible to achieve robust watermarking and/or steganography on LZ-77

compressed files. Once that Mallory has figured out that Alice is messing with the pointers, he just

needs to recompress the text with the standard LZ-77 and send that instead of the compressed file

received from Alice. Mallory can get rid of the message without even bothering to study the internals

of LZS-77.

5. EXPERIMENTAL RESULTS

First, we illustrate that in practice there are plenty of positions with multiplicity q > 1 in structured

texts, like English documents or software source code. We ran a few experiments on some files of

the Calgary corpus, which is the standard benchmark in data compression. As a comparison, we also

included a non-structured document, called mito, which contains the mitochondrial DNA of the yeast.

We instrumented an implementation of LZ-77 based on suffix trees [32], and we kept track of the

multiplicity q for each phrase of the LZ-77 parsing, when the length of the phrase is greater than 2.

The average value of q is shown in Figure 6, for increasing lengths of the prefixes. Note that for both

graphs, the average for q appears to converge asymptotically to some constant.

We also measured the length of the LZ-77 phrase on the first 10 000 symbols of paper2

(see Figure 7), and the value log2 q , which corresponds to the number of bits we could potentially

embed (see Figure 8). As the figure clearly demonstrates, the number of bits that we can embed in the

text T grows linearly with |T |. In particular, we want to attract the attention of the reader to Table I

where we report how many bytes one should compress to be able to encode 128, 256, and 1024 bits.

In our opinion it is truly remarkable that one can easily store 256 bits of a secret message in less than

a page of text (which is about 2000 characters). Only for non-structured texts, such as DNA, we need

a longer text. In any case, about 1000 characters are enough to store an MD5 hash digest.
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Figure 8. The number of bits embedded in paper2 (top-left), progc (top-right), news (lower-left) and mito
(lower-right) of the Calgary corpus (for larger and larger prefixes of the files).
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Table I. The minimum length of the prefixes of texts paper2, progc, news and mito

necessary to embed a given number of bits.

No. of bits Length of the Length of the Length of the Length of the
embedded prefix of paper2 prefix of progc prefix of news prefix of mito

128 1149 863 1115 1488
256 1692 1729 1825 3078

1024 4778 4401 5195 14 310

Table II. The compression of ‘gzip -3’ versus ‘gzipS -3’
for the files of the Calgary corpus; the last column shows the

bits embedded by gzipS.

Bytes
File size gzip gzipS File embedded

111 261 39 473 39 511 bib 1721
768 771 333 776 336 256 book1 14 524
610 856 228 321 228 242 book2 10 361
102 400 69 478 71 168 geo 4101
377 109 155 290 156 150 news 5956

21 504 10 584 10 783 obj1 353
246 814 89 467 89 757 obj2 3628

53 161 20 110 20 204 paper1 937
82 199 32 529 32 507 paper2 1551
46 526 19 450 19 567 paper3 893
13 286 5 853 5 898 paper4 249
11 954 5 252 5 294 paper5 210
38 105 14 433 14 506 paper6 738

513 216 62 357 61 259 pic 3025
39 611 14 510 14 660 progc 736
71 646 18 310 18 407 progl 1106
49 379 12 532 12 572 progp 741
93 695 22 178 22 098 trans 1201

Next, we modified the code of gzip-1.2.4 to evaluate the impact of our method on compression

performance. gzip is an optimized implementation of the sliding window variant of LZ-77. gzip

is slightly different from the formal description of LZ-77 given in the previous section. gzip does

not issue pointers in the entire history of past symbols, but only in a fixed-size window preceding the

current position. This implies that the ‘position’ field of the pointers is a fixed size binary number

(for example, 15 bits for the typical window of 32 KB). For the ‘length’ field, gzip employs eight bits

which correspond to strings from 3 to 258 symbols. Strings smaller than three characters are encoded

as literals.
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In the presence of multiple choices gzip always chooses the most ‘recent’ occurrence of the longest

prefix. The documentation explains that

. . . the hash chains are searched starting with the most recent strings, to favor small

distances and thus take advantage of the Huffman encoding . . .

In fact, the stream of LZ-77 pointers is encoded with Huffman. Always choosing the most recent

occurrence has the effect of producing frequent short displacements that get shorter representations in

the Huffman tree.

The compression performance of the gzipS (which implements LZS-77) with respect to the original

gzip is illustrated in Table II on the Calgary corpus dataset. As one can expect, the embedding of the

secret message degrades the compression performance. The degradation, however, is quite limited, in

the order of 1–2% on average for the files in the Calgary corpus. It is worth noting that the difference in

length between the files produced by gzip and gzipS is smaller than the numbers of bytes embedded.

This suggests a variation on LZ-77, which could also improve compression by embedding a portion

of the text that one wants to compress in the selection of the pointers (instead of using the rule of

always choosing the most recent occurrence).

6. CONCLUSIONS

We have shown how a simple modification to the original LZ-77 algorithm could ‘upgrade’ your

favorite archiver with some quite powerful authentication and integrity detection capabilities. The basic

idea is to drive the selection of the pointers according to the bits of the fragile watermark. The security

of the system is based on the unpredictability of a certain class of pseudo-random generators.

The results show that the degradation in compression performance is marginal, and surprisingly it

turns out to be smaller than the number of bits of the embedded message.

Despite the popularity gained by LZ-77 because of the family of compressors zip/gzip and

the image format PNG, several other textual compression methods are widely used. For example,

LZ-78 [33] (and its variant LZW [34]) are used in compress and GIF. The LZ-78 scheme appears

less prone to the sort of treatment we covered here. The only ‘arbitrary choice’ seems to be the initial

assignment of codes to the symbol of the alphabet, which could hide a secret message. The size of the

message, however, would be limited by the cardinality of the alphabet.

Finally, there is an interesting connection between our approach and the error-resilient textual

compression by Storer and Reif [35]. To achieve resilience to transmission error, they make sure that

each time a new phrase wa is added to the dictionary, w ∈ �∗, a ∈ �, the multiplicity of the pointers

to w is at least b, where b is a predetermined constant that depends on the number and the type of

errors allowed. In this way, if less than half of the b copies get corrupted, one can still decode wa by a

voting process and therefore the error will not be propagated. If we had to hide information in such a

modified version of LZ, we would be able to store at least log2 b bits at each phrase.
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