|Q-Services: Network-Awar#liddleware for Interactive
Large-Data Applications

Zhongtang Cai, Greg Eisenhauer, Qi He, Vibhore Kumar, Karsten Schwan, Matthew Wolf
{ztcai,eisen,ghe,vibhore,schwan,mwdfcc.gatech.edu
College of Computing
Georgia Institute of Technology

Abstract

IQ-Services are application-specific, resource-aware code modules executed by data transport middleware. They
constitute a ‘thin’ layer between application components and the underlying computational and communication re-
sources that implements the data manipulations necessary to permit wide-area collaborations to proceed smoothly,
despite dynamic resource variations. 1Q-Services interact with the application and resource layers via dynamic perfor-
mance attributes, and end-to-end implementations of such attributes also permit clients to interact with data providers.
Joint middleware/resource and provider/consumer interactions implement a cooperative approach to data management
for the large-data applications targeted by our research. Experimental results in this paper demonstrate substantial
performance improvements attained by coordinating network-level with service-level adaptations of the data being
transported and by permitting end users to dynamically deploy and use application-specific services for manipulating
data in ways suitable for their current needs.

1 Introduction

Motivation. Distributed applications that ‘stress’ wide area networks include telepresence[25], remote collaboration
and visualization [45], remote instrument access and control[29, 13], and real-time monitoring and surveillance[43].
Problems arise both from their large data volumes and from their interactive nature, the latter requiring data to be trans-
ferred with low latency and high predictability. Factors contributing to these problems include the heterogeneity and
dynamics of underlying networks, the lack of support for QoS at the network level, and TCP’s end-to-end congestion
control that results in bursty network traffic coupled with the delivery of unstable QoS over time [34]. In addition, it

is difficult to measure available network bandwidth, especially when collaborators or remote users must utilize shared
substrates like the Internet [49].

IQ-Services: resource-aware middlewaikhis paper describes and evaluates middleware-based methods of pro-
viding to interactive wide area applications the data they need at acceptable levels of quality. The idea of the 1Q-
Services resource-aware middleware is to have middleware execute application-defined services for data filtering,
transformation, and scheduling, and to continuously adjust service behavior in accordance with current resource avail-
ability and client needs. This paper’s specific focus is on network behavior, which is captured with dynamic bandwidth
measurement [18, 26] techniques. Network-aware middleware services are installed at runtime and under application
control, initiated by applications and on the machines used by them. An example is a data filtering service installed
by a client on a machine acting as its data source, thereby giving the client complete control of the data sent to it.
A concrete instance is a data downsampling filter used by a visualization client, where the filter continuously varies
data resolution in order to maintain acceptable data transmission rates, despite variations in available network band-
width [17, 15]. Other examples include data reordering, prioritization, and elimination [46, 15], the use of application-
specific compression methods [48], and data transformations that implement tradeoffs in the amounts of processing
vs. data volumes in the overlay networks middleware uses for service execution [4, 6].

The 1Q-Services model is implemented with the IQ-ECho middleware, along with a service-aware communication
protocol underlying such middleware. This protocol, termed IQ-RUDP [15], provides instrumentation less general than

1This work is supported in part by the NSF ANIR program and by the DOE MICS High Performance Networks program.

but akin to the instrumented Linux protocol stacks developed in the Web100 project [26]. In contrast to such work,

however, 1Q-RUDP uses dynamic performance attributes associated with communications to convey monitoring and
control information across the middleware/protocol boundary. Per message monitoring information includes current
RTT (Round Trip Time) and loss rate. Control information includes desired loss tolerance and packet markups with
priorities. Additional resource information is available from system-level monitoring mechanisms described in [19].

The ability to ‘drive’ dynamic changes in middleware services with system- and protocol-level information is
demonstrated with an interactive high performance application, termed SmartPointer [48]. This application permits
remote users to collaboratively view and manipulate data produced by a molecular dynamics simulation [48]. Users
can dynamically specialize data by using middleware-level transformation and filtering services. These services are
dynamically adjusted in accordance with network-level changes in behavior.

Experimental evaluations are performed across wide-area network links and on the NetLab network emulation
facility [22]. Additional measurements now underway involve the use of IQ-ECho to transport large-scale interactive
data across a 10Gbps link connecting Georgia Tech with machines located at Oak Ridge National Laboratories. The
goal is to enable wide-area collaborations like those required in DOE’s Supernova Initiative, where multiple remote
collaborators seek access to output data produced at rates approximating 1GB/sec for future large-scale simulation
scenarios.

Contributions.The contributions of this paper are threefold. First, we experimentally validate earlier simulation-
and emulation-based results [15] in which we show that coordinated application/middleware- and network-level adap-
tations can outperform application-only adaptation methods. Second, we experiment with the concurrent adaptation
of multiple communication links, to adjust their joint behavior to underlying network capabilities. Third, we demon-
strate the generality of the 1Q-Services architecture by applying it to grid applications other than those written by our
group, by creating and evaluating a network-aware version of GridFTP, termed 1Q-GridFTP. 1Q-GridFTP dynamically
adjusts file contents during transfer (via user-supplied data manipulation services) in order to maintain transfer rates
under varying network conditions. Adjustments may result in the partial file transfers specified as part of the GridFTP
standard or they may be size-sensitive changes in file formats and data contents, as when a data provider chooses to
share only the low-resolution data contained in a file with a partner.

We leverage substantial previous work on adaptive systems. In comparison to our own work with application-level
actions like runtime service replication, relocation, or tuning to meet dynamic bandwidth constraints [17, 33], the 1Q-
Services software architecture focuses on ‘lightweight’ services interposed via middleware ‘between’ applications and
underlying operating systems. The intent is to permit end users to write their application-level components in any way
suitable for their domain, rather than dictating the use of certain application programming paradigms. 1Q-Services
simply implement the additional adaptive behaviors relevant to such application components. The role of middleware
is to facilitate the execution of such behaviors. In contrast to previous CORBA-based middleware [51], however, the
IQ-Services architecture and implementation are focused on the high performance/grid domain, and the adaptation
methods employed specifically address this domain’s need to manipulate and transfer large data volumes across wide
area network infrastructures. Our work also borrows concepts and ideas from prior work on the adaptive transfer and
manipulation of multimedia or sensor data, which has already demonstrated that in dynamic systems, application-level
constraints like end-to-end delays can be met only if applications and/or underlying system-level mechanisms [27]
dynamically adapt to runtime changes in resource availability [38, 40]. Finally, we note that industry is currently
pursuing goals similar to those of our group, including in efforts like IBM’s autonomic computing initiative [20].

Overview. The remainder of this paper is organized as follows. In Section 2, sample distributed applications
that use 1Q-Services are outlined, including a description of their performance requirements and of the 1Q-Services
associated with their use. In Section 3, the architecture of IQ-Services is described. The intent is to demonstrate the
general nature of our approach, including its applicability to ongoing OGSA-based standards efforts for grid software.
Experimental results attained on wide area networked machines and on the NetLab emulation facility appear in Section
4. Conclusions and future research are outlined in Section 5.

2 Wide-area Scientific Collaboration

There are multiple, ongoing, wide-area collaborations in high performance computing, ranging from high profile
efforts like Ligo [23, 13] and DOE’s Terascale Supernova Initiative (TSI) [7] to adhoc collaborations between specific
sets of researchers. Collaboration tools like Access Grid [2] and grid portal efforts [31] are evidence of the importance
of remote collaboration to the broader CS and scientific communities.

X-Window
Client
Rendered Images

L

Visualization [~ — — — —*
Bonds N Ray-Tracer e
»| Calculate bonds | >\ —_—
s & raddist AN 4 \
\)
1
|
1
1
'
\

S

Coordinates l) —
@ Coordinates
/ +Bonds
\
@ Raddist \\

\ \

PN '
\ Legend
| / v I [computation

_ |

——» Channel
-3 CustomFier
— Control
C> 1QService

Figure 1: SmartPointer System Overview

Molecular Dynamics L4

IPaq Client
Radial
Distribution

This paper experiments with two tools commonly used in such collaborations: (1) real-time collaborations that
include remote data visualization, and (2) mechanisms for large file transfers. In both cases:
¢ the underlying computing/network infrastructure is heterogeneous, linking high end machines with workstations
and even portable devices, with networks ranging from high speed LANs to wide area to wireless connections;
and
e the amounts of data produced, transported, and consumed are large, expected to be up to 100Gb/sec in applica-
tions like TSI, but in our current work, we use more moderate data volumes.

2.1 Real-time Collaboration

For real-time scientific collaboration, in addition to large data volumes shared across heterogeneous infrastructures,
an important attribute of theirs is that ‘fresh’ or new information may be more relevant to a collaborator than complete
detail. This implies that they share real-time requirements with applications like multimedia and video services [44,
46, 21, 16].

Figure 1 shows a prototypical, distributed collaborative visualization [1, 48]. It implements a many-to-many data-
flow, and the heterogeneous underlying computing/communication platform ranges from low end, ill-connected clients
to high end, well-connected server machines. Collaborative environments like these pose problems to developers both
because of the heterogeneous platforms and because of inherent capabilities expected by end users. For example, data
delivery should be coordinated for effective collaboration, if the information for one collaborator consistently lags that
of the others, collaboration activities may be compromised. The resulting soft real-time constraints on data delivery
imply a need for consistent frame rates (to insure data freshness), perhaps in preference over always receiving data at
the highest level of resolution. Another issue is fairness across multiple connections, which is particularly important
when large data transfers share network links with remote control loops. Sample loops in our application include those
that control a remote data filter and those that implement dynamic annotations on clients’ displays.

Our work addresses some of issues, including:

e information freshness [35],

e end-to-end information quality, and

e fairness, particularly across the multiple connections maintained in collaborative applications.

GridFTP QuenFitr GridFTP
Control Layer A Control Layer
=‘; gt
1Q-ECho L IQ-ECho
ECL Filter XML XML Query/Filter XML Application(GridFTP)
Meta Data Info. Meta Data Info. Layer
cM cM
Network-aware Data Str Network-aware ECL Fil
Adpatation — Adpatation PBIO fer PBIO 1Q-ECho
Meta Data Info. Meta Data Info. Layer
Figure 2: IQ-GridFTP Overview Figure 3: IQ-GridFTP MetaData Mapping

Channel 3D Visulization
i @ Data Clustering C & Sterring

Data Channel VisAd 3d Active
Selector D Interface
Scientific/
Sensor Data Channel Data Analysis
B Data Channel 2d Applet
Filter E Visualization
Legends: Data Channel

Preprocessin: Paim Display

|:| Computational Components

O Event Channels
C> 1Q-Services
C) Portals

Figure 4: Typical Application Scenario

2.2 Large-Data Transfers via 1Q-GridFTP

The second application evaluated in this paper is termed 1Q-GridFTP. IQ-GridFTP extends the Globus GridFTP imple-
mentation [11] by realizing its goal of partial file transfers, that is, to transfer both entire files and also certain regions
of files. The GridFTP standard represents this functionality with ERET (Extended Retrieve) and ESTO (Extended
Store) file access instructions, which include an offset size parameter to fetch relevant file portions. In the future, we
expect file manipulations and transfers to be able to utilize the DFDL (Data Format Description Language) currently
under development. This language will provide the high-level descriptions of file contents needed for realizing finer
grain content filtering, down to the level of individual file data attributes.

Our intent is to utilize partial file transfers to limit network usage from a server to specific clients, by deploying
customized filters at the server-resident data source. Figure 2 demonstrates such functionality by placing a client-
specific XML-based, SQL-like query with the server, which then ensures that only relevant file portions and/or file
attribute data are transferred. We exploit the fact that data sharing in scientific applications means transferring data on
the order of GigaBytes, from one location to another, even when all the data attributes and rows might not be needed or
when certain attributes can be combined to reduce the number of bytes being transferred per row [33]. Finally, as with
the real-time collaborations outlined above, the amounts of data transmitted by filters can then be adjusted to match
available network bandwidth.

3 1Q-Services: Software Architecture

3.1 Architecture Overview

IQ-Services. 1Q-Services are application-specific code modules associated with data transport middleware. Figure 4
shows a prototypical real-time collaboration in which application-level data is distributed to remote collaborators and
is manipulated by computational components like data clustering or data analysis[32]. The role of IQ-Services in this
scenario is illustrated by the additional data filters and selectors associated as ‘handlers’ with the publish/subscribe
event channels used for data distribution. As evident from the figure, 1Q-Services do not replace application-level
computations like data analysis or clustering. Instead, they form a ‘thin’, efficient layer of application-provided func-
tionality that is placed ‘into’ middleware by applications, the purpose of which is to allow middleware to manipulate

Application Components |

1Q-ECho
Publish-Subscribe Infrastructure 1Q-Services(Transport
________ / layer independent)
PBIO Data i Services k
Meta-Rep. Lib | | |
Performance| —————————————— - - ——— !
Attributes :
I

Connection
Manager
Transport Independent CM
Functionalties

| | R
TCP/IP Socket IQ-RUDP ... | Other Modules
Module Socket Module (ATM, Myrinet)

Figure 5: System Architecture Overview

1Q-Services(Transport
layer dependent)

data on its path from providers to consumers and to do so in conjunction with information about network behavior
provided by communication protocols. In the IQ-ECho publish/subscribe infrastructure used in our implementation,
this layer is comprised of dynamically created and deployed ‘event handlers’.

IQ-Services may be associated with clients, servers, or intermediate nodes, thereby forming an overlay network.
Typical configurations of overlays used in interactive applications are described in [32, 5]. We are not concerned with
how to best map overlays to communication/processor networks, but note that the dynamic behavior of end users in
wide area collaborations implies that it must be possible to create overlays dynamically, when desired by applications
or when indicated by substantial changes in network or machine resources. IQ-ECho supports this by permitting the
dynamic creation of overlay nodes and the runtime installation of services on those nodes, using dynamic binary code
generation techniques [8].

Performance Attributes. Another element of IQ-Services are ‘performance attributes’, which implement 1Q-Service/
protocol interactions, by traversing multiple layers of the protocol stack (a) to provide application-level information
like packet priorities or importance to communication protocols, and (b) to provide network-level monitoring infor-
mation like available bandwidth or current packet loss to middleware-level services. Attributes may also be used to
implement end-to-end performance-relevant interactions between data providers and consumers. Examples of such
interactions include a client’s use of performance attributes to set parameters in a server’s data filter, and a server-side
instruction of the middleware handler to upsample the data sent since additional network bandwidth is now available.
End-to-end and cross-layer interactions via performance attributes are depicted by the solid, vertical arrow in Figure 5.

Transport Independence. Figure 5 also shows the multiple levels of abstractions used in IQ-ECho to map an
application-level message submitted to an event channel to a message sent to the underlying protocol stack and com-
munication socket used by a specific source-sink pair: after event submission, the event is mapped to a lower-level
facility called the ‘Communication Manager’, which then sends the event to one of multiple communication proto-
cols. This functionality permits 1Q-ECho to run on top of multiple transport protocols, e.g., the standard TCP protocol
and an instrumented version of RUDP developed in our research. This ‘1Q-RUDP’ protocol employs performance
attributes (1) to provide feedback to the application-level handler also shown in the figure and (2) to adjust its data
transmission behavior (e.g., using attributes to not retransmit certain data upon detected loss). In comparison, for TCP,
for example, network measurement capabilities may be directly associated with communication services, as depicted
in Figure 5 by the ‘measurement’ methods layered between event management and the communication manager. By
placing such methods directly ‘into’ the communication stream, measurements can be performed using the applica-
tion’s native communications, rather than additional packet trains generated for such purposes. This is useful for the
streaming data applications targeted by our work, but should be complemented by active bandwidth measurements for
applications with intermittent or bursty communication behaviors.

For brevity, we do not describe the full set of layers depicted in Figure 5. Instead, we next briefly outline the 1Q-
RUDP transport layer that implements coordinated network and application-layer adaptation. Experiments with this
layer demonstrate the utility of this approach in maintaining application performance in the face of changing network
conditions.

3.2 1Q-RUDP and the Dynamic Adaptation Layer

The IQ-RUDP Instrumented Communication Protocol. 1Q-RUDP is an open transport protocol intended to facil-
itate end system and application-layer adaptations to network conditions. To attain TCP-friendly behavior [24, 41], it
also runs its own congestion control algorithm. The distinctive features of IQ-RUDP are:

e Exposing performance metricdQ-RUDP exposes certain transport-layer performance metrics to the higher
layer by means of performance attributes. Metrics like bandwidth, RTT, and loss ratio can be exploited by
IQ-Services when adapting the data being transported.

e Callbacks Applications can register callbacks along with the conditions under which they should be triggered.

¢ Adaptive and application-controlled reliabilityA typical adaptation adopted by applications is to lower relia-
bility requirements in favor of increased transmission rates. 1Q-RUDP provides prioritized reliability control for
each application-level message.

e Coordinated adaptations between the application and the transp@rRUDP first proposed the idea of coor-
dinating between application-level adaptations and changes in transport-level behavior[15]. The advantages of
coordinated adaptation are particularly apparent for high frequency adaptations that are driven by the protocol
level, or when coordination can prevent conflicting adaptation decisions across different layers of a protocol
stack.

The Dynamic Adaptation Layer (DAL). The primitives provided by IQ-RUDP comprise a basis for runtime traffic
adaptation. However, it can be difficult to translate between application-level information and transport-level metrics,
which limits the direct use of IQ-RUDP primitives by applications. Moderating between lower-level (e.g., IQ-RUDP)
and application-level semantics and desires is the role of the Dynamic Adaptation Layer (DAL) in the 1Q-Services
architecture. The DAL's monitoring methods expose selected performance metrics to upper layers, including RTT,
lossrate, throughput, etc. The DAL can also implement service-specific performance models. Model outputs exported
via performance attributes then ‘drive’ adaptation methods realized in the DAL, which in turn drive the actual adapta-
tions performed by 1Q-Services. Current methods include packet reliability control and coordination across multiple,
concurrent transport-level connections. Two performance ‘models’ utilized in our work employ (1) linear bandwidth
regression and (2) an end-to-end method for measuring available bandwidth. In either case, the output of such dynamic
measurement methods is made available to upper layers (i.e., to 1Q-Services) via performance attributes or models.
Conversely, applications or IQ-Services can use attributes to dynamically adjust certain parameters of bandwidth mea-
surement algorithms, such as frequency of measurement and accuracy/overhead tradeoffs. Finally, the DAL can use
additional threads to execute adaptation methods and/or periodically run network measurement tools like Pathload [18]
or Netlets [37].

The following adaptation methods are currently integrated into the DAL:

e Coordinated Packet Reliability Contrgermits applications to define different levels of packet reliability re-
quirements, which are then handled in a coordinated fashion by the combined actions of the IQ-Service/DAL/IQ-
RUDP layers. In Section 4, per packet reliability indications are used to send high priority packets reliably,
whereas low priority packets are sent unreliably and only when there are sufficient network resources.

e Congestion Avoidandeplemented in the DAL uses application-level methods for controlling the traffic volume
imposed on the underlying network. In this paper’s experiments, the DAL interacts with the 1Q-RUDP protocol
to control the transport layer’s sending rate and congestion control behavior, so as to avoid possible congestion,
recover faster from existing congestion, and improve throughput while still maintaining TCP-like fairness prop-
erties. Specifically, the DAL periodically polls 1Q-RUDP for available bandwidth and loss rate measurements
and based on these measurements, adjusts the sending rate of the application messages ‘pushed into’ the 1Q-
RUDP layer. Since loss rates are updated more frequently than measurements of available bandwidth, they are
used as ‘quick’ traffic adjustments in between bandwidth measurements.

e Connection CoordinationFor multiple connections to/from a single address space, the DAL can implement
coordination schemes for the traffic imposed on those connections. Consider a real-time collaboration in which

100Mbps

Figure 6: Testbed Configuration

Table 1: 1Q-ECho Microbenchmarking

Data size(bytes) Send side cost(ms) receive side cost(ms
100K 0.0088 0.0107
10K 0.0073 0.0098
1K 0.0066 0.0092

several clients communicating with a server. Since the clients’ network connections differ, they will exhibit
different RTTs and therefore, will not be treated fairly by TCP protocol when they share a common network
bottleneck: clients with larger RTTs to the server will receive a smaller fraction of the shared bottleneck than
those with smaller RTTs. The DAL can use application-level heuristics to implement collaboration-friendly traf-
fic coordination schemes. This paper’s simple ‘fairness’ scheme compensates for the unfairly treated client and
improves synchronization among collaborators, by pacing the packets in the flow that is favored by the network.

4 Experimental Evaluation

This section presents experimental results that demonstrate the ability of the 1Q-Services architecture and implemen-
tation to dynamically manage traffic behavior in response to network resource availability:
e demonstrations that coordinated network- and middleware-level adaptation can substantially improve the per-
formance of wide area applications;
e sample adaptations performed for interactive high performance applications, focusing on online collaboration
via large data sets; and
e comparisons of results attained with different network measurement methods.

4.1 Testbed and Microbenchmarks

The testbed used to evaluate coordinated network- and middleware-level adaptation consists of multiple wide- and
local-area network links, as depicted in Figure 6 with link capacity labeled. The two CERCS stouw$in and
guadeloupeare connected to an intranet backbone with 100Mbps and 1Gbps links, respectively. In another building
(GCATT), vegaandaltair both have 1Gbps links up to the backbone. The RTTs between stmartin and guadeloupe
are typically in the range of 0.06ms to 0.13ms. The RTTs between the GCATT and CERCS nodes are slightly larger
(0.2ms to 0.4ms). The topology, bandwidth, and delajNofleOto Node3 are configured through the Netlab(an
Emulab site[22]) in Georgia Tech. These nodes are actually part of another cluster in CoC, and the RTTs between
Noder and CERCS nodes typically range from 0.3 to 0.5ms, while the RTTs betweern:ldadésCATT nodes range

from 0.5 to 0.8ms. The node at Oak Ridge National Laboratories has a 1Gbps uplink to a 10Gbps link to Atlanta, which
in turn has multiple 1Gbps uplinks to Georgia Tech. Future experiments will use these links to evaluate operation
across high end wide area links. The node at Louisiana State University represents a lower end Internet-connected
collaborator, using a 10Mbps network link. Finally, a ‘home’ DSL link represents ill-connected collaborators.

Microbenchmarks. The microbenchmarks reported in Table 1 establish that our implementation of 1Q-Services

is capable of supporting the large-data applications they target. The table shows the send and receive-side costs
introduced by 1Q-ECho, using the testbed machisé=oyale andguadeloupe The testbed machirisleroyale is

a dual processor Intel XEON at 2.8GHz with 2GB of memory wigiledeloupeis a dual processor Intel XEON at

2.0Ghz with 1GB of memory; the OS on both the machines being Redhat Linux 9. Only one processor of each testbed
machine is used for microbenchmarking. In Table 1, Send side cost is the time between an application submitting data
for transmission to the time at which the infrastructure invokes the underlying network 'send()’ operation. Receive side
costs represent the time between the end of the 'receive()’ operation and the point at which the application receives
the data. Since these costs are in the range of 0.006ms to 0.0107ms, the resulting overheads are small compared
to the typical round trip delays experienced in local area networks (0.1ms-0.3ms in our environment) and negligible
for typical wide area round trip delays (50ms-100ms). Additional performance information comparing IQ-ECho’s
performance to that of other high performance communication infrastructures (e.g., MPICH) appear in [8].

Over our targeted wide area network, these overhead which are less than 0.011 are quite trivial. Even for a high-
speed local area network, e.g. the local network between isleoryal and guadeloupe which are connected with a high
performance CISCO Catalyst 6513 switch, the typical round trip delay is 0.1ms-0.3ms, and 0.01ms cost introduced
by 1Q-ECho is also comparably small. [8] also gives costs breakdown comparision between ECho, COBRA, MPICH
and XML, and shows that ECho provides efficient data transmission with significantly lower overhead.

4.2 Experimental Results with a Real-time Collaboration

Coordinated Packet Reliability Control. Our first experiment shows the effectiveness of coordinating reliability
control between IQ-RUDP and 1Q-services, for collaborative applications that use application-specific methods of
dealing with data loss. In this example, a bondserver (as described above in Section 2.1) application component sends
data over a lossy link (from a home DSL machine to a campus machirsglaloupd. There are three types of
application messages, and in the order of importance, they are: messages with atoms and bonds information [AB],
messages with atoms information only [A], and messages with bonds information only [B]. In addition, different types

of messages are grouped together according to the pattern (AB, B, B, A, B). There is often redundant information
among the messages in one group. Overall, AB messages have to be delivered, both type A and B messages can be
lost, where type B messages have lower priorities than those of type A.

The coordinated reliability control algorithm implemented jointly by the DAL and by 1Q-RUDP dynamically
labels application-level messages with certain priorities and then uses them to differentiate message transmissions, as
follows:

e discards the lowest priority messages without transmitting them;

e attempts to transmit the second priority messages, but will not try to retransmit them if they are lost; and

e guarantees the reliable delivery of the highest priority messages.

The experiments shown set a target rate for type AB messages. When there are significant packet losses and the target
rate is not achieved (as detected by 1Q-RUDP), the DAL layer adaptation algorithm adjusts message priorities, by
setting some portion of type B messages to the lowest priority, and by setting type A messages to the second priority.
The idea is to give the application-level (i.e., the 1Q-Services layer) the ability to distinguish which data are most
important, thereby permitting the network layer to focus on transporting those parts.

Results in Figure 7 show that coordinated packet reliability control successfully achieves the different target rates
set a priori, at the cost of an increased loss ratio of type B messages. Type A messages, which are also much smaller
than the other two types, have very few losses.

Coordinating the Transfer of Two IQ-RUDP Connections. In this experiment, the DAL layer coordinates message
transmission across two 1Q-RUDP connections used by a single application, one example being the co-existence of
a control and a data connection in a remote collaboration, another being the co-existence of a large-data connection
(e.g., visualization data) with a video connection (e.g., for video conferencing). The specific experiment conducted
emulates two remote clients that receive the same visualization data stream. Since these clients are engaged in a
real-time collaboration, their desire is to receive and display the same data at the same time, without undue buffering
Ccosts.

For simplicity, the experiments uses two connections that share a bottleneck link but have different RTTs and
therefore, have different throughput. To better synchronize the two connections, message transmission behavior to

Coordinated Packet Prioritizing Coordinating Two Connections

1 T T T 22 30 T T T T T 30
Bonds only Pkt Loss — Rate Difference —+—

Atoms only Pkt LOSS ---x--- Throughput degradation ---x---

120
25 | 425

20 | 20

Information Loss(%)

10 -

L
N
kS
Actual Rate(Atoms-Bonds Pkts)
Rate Difference btw Two Connections(%)
=
@
T
Throughput Degradation(%)

"
8 10 12 14 16 18 20 22 5000 10000 15000 20000 25000 30000 35000
Target Rate(Atoms-Bonds Pkts/sec) Control Granularity(Bytes)

40000

Figure 7: Prioritized Reliability Control Figure 8: Coordination between Connections

Pacing Adaptation Based on Measured Network Metrics
1400 T T

Pacing Adaptation Based on Measured Network Metrics
1400 T

T T T T T T
Message Deliver Rate(Without Adaptation) —+— Message Deliver Rate(With Adaptation) —+—

1200 1

I !

(‘!‘th\“ it ,,! Perturbation Introduced |
I‘ i

\

;\l‘g L ‘;

! ‘”l h‘

1200

1000

1000

801

3

800

60 m

3

600 &

“ xl‘ hl | m il i | -

Message Delivery Rate
Message Delivery Rate

nl‘ llw T 'Xl il

400

200 1 200

1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 0 20 40 60 80 100 120
Time(s) Time(s)

Figure 9: Without Packet Pacing Adaptation Figure 10: With Packet Pacing Adaptation

each client is adjusted at the 1Q-Services layer in response to network measurements at the IQ-RUDP layer: when the
application starts, it establishes each 1Q-RUDP connection and measures the available bandwidth; IQ-RUDP makes
available to the DAL dynamic throughput information about both connections, which is used to slow down the faster
connection in proportion to the ratio of the two throughput measurements.

The goals of this experiment are twofold. First, it demonstrates the viability of application-level, network-aware
control over multiple connections. Second, it evaluates ‘granularity’ issues concerning such control, the purpose being
to better understand potential control limitations due to application constraints like delays due to differences in the
sizes of application-level messages being sent. In Figure 8, the X-value is the size of the data unit for which the
sending rate is controlled. The left Y-value is the receiving rate difference between the two receivers. The right Y-
value is the throughput degradation of the faster connection. We can see that finer grained control achieves better
synchronization, at the cost of slowing down the faster connection, i.e., not fully utilizing the network bandwidth.

In separate experiment, we use the DAL layer to make two connections share a bottleneck link fairly, using the
bandwidth and RTT measurements at the connection layer. The application adjusts the sending rate based on the RTTs
of the two connections. The adjustment algorithm is based on the TCP throughput formula, which shows that two
connections sharing the same bottleneck link have throughputs that are inversely proporti®fidl*oThe results
attained are very similar to those in Figure 8, although different IQ-RUDP layer measurements are used.

Table 2: Packets Pacing Adaptation - Performance Comparison

Message Delivery Rate(f/s) | Normalized Standard Deviation | Jitter(ms)
Without Adaptation 443.99 0.27 2.41
With Adaptation 599.39 0.17 1.76

Pacing Adaptation Based on Measured Network Metrics(LSU Link) Pacing Adaptation Based on Measured Network Metrics(LSU Link)

Message Deliver Rate(With Adaptation) ——

Message Deliver Rate(Without Adaptation) ——

/Per(u rbation Introduced

Message Delivery Rate
Message Delivery Rate

.
0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 90
Time(s) Time(s)

Figure 11: Without Packet Pacing Adaptation (LSU Link)Figure 12: With Packet Pacing Adaptation (LSU Link)

Table 3: Packet Pacing Adaptation - Performance Comparison(LSU Link)

Message Delivery Rate(f/s) | Normalized Standard Deviation | Jitter(ms)
Expl(Figure 11, Figure 12) Without Adaptation 16.11 0.20 61.9
With Adaptation 16.45 0.17 55.6
Average Over 5 Experiments | Without Adaptation 16.05 0.18 60.2
With Adaptation 16.25 0.17 54.9

Dynamic Packet Pacing. This experiment shows that a ‘pacing adaptation’ based on measured network behavior can
both improve and smooth throughput when there is cross traffic. When the bond server transfers large amounts of data
to some specific client, we inject cross-traffic into the network, thereby decreasing available network bandwidth. With
IQ-Services, network metrics are exposed through performance attributes to middleware and to application modules,
thereby making both ‘aware’ of changes in network status and permitting them to adjust their behavior accordingly. In
this experiment, they adjust the way in which packets are sent out (packet pacing). The packet size used is 66KB, and
the injected cross-traffic over the 1Gbps link is 650Mbps, generated by iperf[9].

Figure 9 illustrates the measured message delivery rate at the client side from a server that is unaware of the cross-
traffic and cannot adapt to changes in network behavior. Figure 10 shows much better performance when the cross-
traffic is injected, since in this case, the server is made aware of the measured loss rate and the available bandwidth
and then paces its packets accordingly (at a better rate). The idea is to ensure that its offered throughput does not
exceed available bandwidth, thereby resulting in reduced congestion and packet losses. The message delivery rate
improves from 434f/s to 599f/s, and it is much smoother: the normalized standard deviation of the message delivery
rate decreases from 0.27 to 0.17, and jitter decreases from 2.41ms to 1.76ms. These result are attained with TCP-based
bandwidth measurement techniques in [36] and loss rate measurement. The idea is for the server to adapt quickly to
network changes by use of loss rate measurement and to avoid oscillations by use of bandwidth prediction.

A similar experiment is performed betwestmartin.cc.gatech.eduandresource.rrl.Isu.edy as shown in Fig-
ure 11 and Figure 12. This link has higher fluctuation in terms of available bandwidth and RTT, since there is signifi-
cant and often unpredictable traffic that also impacts the link besides the traffic we generate. Figure 11 and Figure 12
demonstrate how both throughput and jitter are improved in a typical run of the experiment. Table 3 shows the average
performance improvement over 5 experiments.

Adaptive Downsampling in Congested Networks. As demonstrated via emulation in [15] and experimentally in
this technical report, 1Q-Services can regulate the traffic imposed on the underlying network by ‘pacing’ application-
level messages. Packet pacing can effectively reduce congestion and maintain better message delivery rates. However,
its benefits are limited when the available bandwidth is already below the threshold at which it becomes impossible
to deliver messages as fast as required by an ongoing real-time collaboration. This issue is addressed by deploying
application-level data filters as 1Q-Services and then using them to downsample the actual data being sent prior to
submitting it to the network transport.

Experimental results shown in Figures 13 and 14 demonstrate the necessity and effectiveness of 1Q-Services-level

10

®
8

©
3

T T
Message Deliver Rate(Without Adaptation) —&—

/Perlurbalcn Introduced

T T T
Message Deliver Rate(With Adaptation) —<—

<
3
@
3
T

Perturbation Introduced

2

3

~

=]
T

@

3
T

@

3
T

Frame Rate(ls)
Frame Rate(fls)

N

]
T

@

S
T

@
8
IS
3

20 |

w
]
T

5
N
S

. . . . I
0 50 100 150 200 250 0 20 40 60 80 100 120 140
Time(s) Time(s)

Figure 13: Without IQ-Service Metadata-Based Filtering Figure 14: With 1Q-Service Metadata-Based Filtering

adaptation through dynamic data downsampling. Here, large cross traffic (850Mbps) is injected into the network.
Using a simple data pacing algorithm, the server can only deliver 23.3 f/s(frames per second, average over 5 experi-
ments) to the client. However, when permitting the client to characterize the subset of data most important to it, when
congestion occurs, it can install an 1Q-Service data filter at the server side and get essential data at satisfactory speed.
The data downsampler used removes data relating to visual objects that are not in the user’s immediate field of view.
That is, the client transfers the current position and view point of the user to the filter, which computes at the server
side what data set the user is watching and then transfers exactly those data sets. Such data selection actions are taken
in conjunction with the network layer, in order to adjust the data amounts sent to match available network bandwidth.

4.3 Experimental Results with IQ-GridFTP

The implementation of IQ-GridFTP evaluated in this section replaces the transport layer of GridFTP with IQ-ECho,
thereby making it easy for end users to deploy desired 1Q-Services ‘into’ FTP transfers. As with real-time collab-
orations, such filters may be deployed statically, or via dynamic linking methods, or written with E-Code, a highly
portable subset of C, which is dynamically executed at the source. A return value of one from the filter function causes
the current filtered row to be transmitted over the network, while a return value of zero causes it to be discarded.

We use XML to represent the structure of data contained in the files transported by IQ-GridFTP, specifically,
whenever a client needs to do a partial retrieve on a structured file, say weather.dat, a format description file, say
weather.dat.xml (we assume that such a file exists for large structured files), is first fetched from the source. Next,
the requesting client creates an IQ-ECho structured data channel using the information from the xml file, and then
generates E-Code for the filter using the information supplied. Using IQ-ECho’s facilities for dynamic deployment,
the 1Q-Service that realizes this filter can dynamically: (1) select the specific file attributes that need to be transferred,
(2) select the rows required, and (3) perform data reduction operation like averaging, etc., at the data source, thereby
reducing the data volumes transmitted.

We compare the performance of the 1Q-GridFTP with basic GridFTP in several ways. First, we compare the two
GridFTP implementations’ effective throughput with and without cross traffic, and 50Mbps cross traffic, injected via
iperf into a 100Mbps network that connects two machines running FTP. Figure 15 depicts the throughput time series
for a single experiment, and Table 4 depicts the average attained throughput and its normalized standard deviation
for 5 experiments. These basic experiments demonstrate that 1Q-GridFTP achieves throughput similar to that of
GridFTP. Second and more interestingly, Figure 16 and Table 5 demonstrate the advantage of utilizing 1Q-Services
in conjunction with GridFTP. Here, a large number of data files are transferred from an FTP server to a client. In
IQ-GridFTP, when the client finds the frame rate to be lower than required, it creates a data downsampling filter (an
image resolution reduction filter when data is being visualized) and deploys it on the server, then uses the filter to
reduce data volume, when necessary.

Results demonstrate the importance of domain-specific data downsampling even for general mechanisms like

11

GridFTP Effective Throughput
100

"Message Deliver Rate(GridFTP) ——
Message Deliver Rate(IQ-GridFTP) —x—

Effective Throughput(Mbps)

1 1 1 1 1 1
0 20 40 60 80 100 120 140
Time(s)

Figure 15: IQ-GridFTP Performance Analysis

Table 4: GridFTP Performance Analysis

Cross Traffic | Transport Protocol | Average Throughput(Mbps) | Normalized Standard Deviation
No TCP 85.62 0.002470
No 1Q-RUDP 86.18 0.002459
Yes TCP 36.64 0.006064
Yes 1Q-RUDP 37.52 0.006602

GridFTP. When there is 60Mbps cross traffic in the link, the frame rate at which the GridFTP server can transfer data
to the client drops to approximately 15 frames per second, from 62 frames without network congestion. In contrast,
IQ-GridTP can transfer downsampled, reduced-size images at approximately 60 frames per second. Table 5 lists the
average frame rate and average normalized standard deviation of GridFTP and IQ-GridFTP over 5 experiments. With
adaptation, the frame rate is improved from 14.66 frames per second to 59.50 frames per second and the normalized
standard deviation is improved from 0.045 to 0.017. The response time of such an adaptation (from the time the
available bandwidth is reduced until the client starts to receive adapted image files) is also small, ranging from 0.12 to
0.25 seconds.

Figure 17 compares the performance of GridFTP and 1Q-GridFTP with dynamic cross traffic derived from an real
trace®. Cross traffic is injected via UDP, thereby reasonably emulating actual network behavior. The data the server
transfers to the client is climate data (the size of each record/frame is 172.8K bytes). The client sends a filter to the
server to specify whether it wants IQ-GridFTP to adjust data precision when congestion is noticed and if so, what
percentage of the data will be adjusted. From Table 6, it is clear that the frame rate(averaged over 5 experiments) is
improved from 27.34f/s to 30.03f/s, where the normalized standard deviation of frame rate is reduced from 0.11 to
0.04.

Additional capabilities of IQ-GridFTP now under consideration by our group include per connection adaptations
like dynamic window size adjustments and TCP buffer size auto-tuning, as well as fairness improvements or stream
synchronization when multiple connections are used for single, large file transfers. The latter is important for storage
systems (e.g., DPSS, HPSS) that utilize parallel data transfers and data striping across multiple servers to improve
performance.

5 Discussion and Related Work

A characteristic differentiating 1Q-Services from previous research is its ability to coordinate system- or network-level
reactions to resource changes with application-level adaptations. This extends prior work on application-level flow
control or data striping [3, 42], as well as approaches that focus on the system-level provision of network status in-

1Trace file BWY-1063337799-1.asc from NLANR trace repository(pma.nlanr.net), collected at Columbia Univ (BWY site) on Sep 12th, 2003.

12

1Q-GridFTP Adaptation(60Mbps Cross Traffic) 1Q-GridFTP Adaptation(Dynamic Cross Traffic)

80 T T T — 80
Frame Rate(GridFTP) —+—
Cross Traffic(Mbps) —<—
Frame Rate(IQ-GridFTP) —%—
Cross Traffic(Mbps) —=— - 70

100

Frame Rate(GridFTP) ——
Frame Rate(IQ-GridFTP) —x—

70

80 |

0N uaians

Frame Rate(f/s)
Frame Rate(f/s)

40 |

Cross Traffic(Mbps)

20

0

1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80
Time(s)

1
100
Time(s)

Figure 16: IQ-GridFTP Adaptation(60Mbps Cross Traffidrigure 17: 1Q-GridFTP Adaptation(Dynamic Cross Traffic)

Table 5: 1Q-GridFTP Adaptation(60Mbps Cross Traffic), Average over 5 Experiments.

Cross Traffic | Implementation | Average Frame Rate(f/s) | Normalized Standard Deviation
No GridrFTP 62.23 0.004017
No 1Q-GridFTP 62.30 0.003871
Yes GridrFTP 14.66 0.04510
Yes 1Q-GridFTP 59.50 0.01665

formation [30]. It also distinguishes our work from the many, middleware-level adaptation infrastructures developed
in previous research, including BBN'’s Quo [51] or other object-based infrastructures [50]. Furthermore, IQ-Services
does not require adaptations to be performed in certain ways or at certain system levels. Instead, they can be ‘driven’
from the system and/or application levels. One consequence is that reactions to changes in available network band-
width, for example, can occur at packet boundaries rather than at the boundaries defined by application-level message
sizes and/or by applications’ time slices. The resulting ‘faster’ and bounded reaction times can reduce jitter and
improve system predictability [15, 38].

An important characteristic of our middleware is its support of user-defined ‘handlers’ — 1Q-Services — that im-
plement the actual data adaptations suitable for specific applications. As a result, in comparison to previous domain-
specific solutions (e.g., for the multimedia domain [41, 24]), the IQ-Services architecture can be used to implement
adaptive methods for a variety of target applications. We demonstrate this capability by implementing an I1Q-Services
version of GridFTP, termed 1Q-GridFTP. We note that ‘handlers’ like those used in 1Q-Services are similar to earlier
work in object-oriented operating systems, as with the application-specific policy objects used in [10] or the subcon-
tracts used in [14], the latter also present in the implementation of RMI in Java. In fact, in recent work, we have
associated policy objects and data handlers with SOAP-based communications, in order to dynamically adjust data
transmissions to changes in network resources or client needs [39].

6 Conclusions and Future Work

The software architecture of 1Q-Services shown in Figure 5 offers developers the ability to insert application-specific,
lightweight services into data exchange middleware and mechanisms. In this paper, 1Q-Services are used to support

Table 6: 1Q-GridFTP Adaptation(Dynamic Cross Traffic), Average over 5 Experiments

Implementation | Average Frame Rate(f/s) | Normalized Standard Deviation
GrdFTP 30.03 0.04076
IQ-GridF TP 27.34 0.11218

13

the efficient exchange of scientific data in real-time collaborations, by dynamically adjusting the data sent from infor-
mation providers to information consumers [23, 13, 7]. IQ-Services are also used to implement adaptive file transfers
via an IQ-version of GridFTP. In concurrent work, we are applying the architecture to other communication paradigms
defined by the grid community, such as the M-by-N data exchanges used in remote storage, monitoring, or visualiza-
tion systems [12]. In addition, we have used IQ-Services to create resource-aware communication services that apply
general compression methods to data being exchanged across wide area networks [47]. Finally, in [48] and in ongoing
extensions of that work, we are using 1Q-Services to create adaptive remote graphical displays, for the high end 3D
visual depictions required by applications like molecular dynamics.

The performance improvements attained by use of IQ-Services can be substantial, including up to 25% improve-
ments in message delivery rates when information sources ‘pace’ the data offered in conjunction with available network
bandwidth, and almost threefold improvements in message rates when a client-specific data downsampling service is
used to control the amounts of data sent from data server to client.

Future work will compare service-level adaptations that utilize different network-level techniques for assessing
current network bandwidth [36, 28]. It will also utilize overlay networks to combine the lightweight data filtering and
downsampling methods used in this paper with heavier-weight methods for data transformation and personalization
executed by additional machines interposed into the path between data providers and consumers [4, 32]. Such work
will dynamically deploy lightweight 1Q-Services to utilize alternative network and machine paths from data providers
to consumers.

Acknowledgments

We acknowledge the help of Constantinos Dovrolis and Nagi Rao in defining the network testbeds used in this paper’s
experimentation. Nagi Rao also made available the Internet-connected machine used for wide-area measurements,
and his network measurement methods have been integrated into the current version of IQ-ECho. Neil Bright and the
Utah Emulab team spent many hours to set up Georgia Tech’s NetLab facility.

References

[1] M. Aeschlimann, P. Dinda, L. Kallivokas, J. Lopez, B. Lowekamp, and D. O’Hallaron. Preliminary Report on
the Design of a Framework for Distributed Visualization Pimceedings of International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPJages 1833-1839, Las Vegas, NV, June 1999.

[2] AG. Access Grid.http://www-fp.mcs.anl.gov/fl/accessgrid

[3] M. Allman, H. Kruse, and S. Ostermann. An Application-level Solution to TCP’s Satellite Inefficiencies. In
Proceedings of the International Workshop on Satellite-Based Information Services(WQEB13)996.

[4] F. Bustamante, G. Eisenhauer, P. Widener, K. Schwan, and C. Pu. Active Streams: An Approach to Adaptive Dis-
tributed Systems. IRroceedings of the 8th Workshop in Operating Systems (HotOS-Kitau/Oberbayern,
Germany, May 2001.

[5] P.Chandra, A. Fisher, C. Kosak, and P. Steenkiste. Network Support for Application-Oriented Quality of Service.
In Proceedings of IEEE/IFIP International Workshop on Quality of Servi¢ay 1998.

[6] Y. Chen, K. Schwan, and D. Zhou. Opportunistic Channels: Mobility-Aware Event Deliveriyrdoeedings of
ACM/USENIX International Middleware Conferen@903.

[7] DOE-TSI. TeraScale Supernova Initiativiettp://www.phy.ornl.gov/tsi
[8] G. Eisenhauer. The ECho Event Delivery System. Technical Report GIT-CC-99-08, Georgia Tech, Aug. 1999.

[9] N. L. for Applied Network Research”. Iperf - The TCP/UDP Bandwidth Measurement Tatg://dast.
nlanr.net/Projects/Iperf/

[10] A. Gheith and K. Schwan. Real-Time Objects and Atomicity for Multiprocessd@kdvances in Real-Time
Systemsl994.

14

[11] Globus. GridFTP http://ww-fp.globus.org/datagrid/gridftp.html
[12] Globus.http://www.globus.org/ogsa/ . An Open Grid Services Architecture, 2003.
[13] GriPhyN. The Grid Physics Networkttp://www.griphyn.org

[14] G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A Flexible Base for Distributed Programming. In
Proceedings of ACM Symposium on Operating Systems Princfiages 69-79, 1993.

[15] Q. He and K. Schwan. 1Q-RUDP: Coordinating Application Adaptation with Network Transportdigh
Performance Distributed Computinguly 2002.

[16] H.-Y. Hsieh and R. Sivakumar. A Transport Layer Approach for Achieving Aggregate Bandwidths on Multi-
homed Mobile Hosts. IiProceedings of ACM/IEEE MOBICONbeptember 2002.

[17] C. Isert and K. Schwan. ACDS: Adapting Computational Data Streams for High Performariemcéedings
of IPDPS May 2000.

[18] M. Jain and C. Dovrolis. End-to-end Available Bandwidth: Measurement Methodology, Dynamics, and Relation
with TCP Throughput. IfProceedings of ACM SIGCOMMug. 2002.

[19] J. Jancic, C. Poellabauer, K. Schwan, M. Wolf, and N. Bright. dproc - Extensible Run-Time Resource Monitoring
for Cluster Applications. IfProceedings of International Conference on Computational Scj@tg2.

[20] J. Kephart and D. Chess. The Vision of Autonomic Computibgmputer Magazinelan. 2003.

[21] T. Kim and M. Ammar. Optimal Quality Adaptation for MPEG-4 Fine-Grained Scalable VideBrdoneedings
of IEEE INFOCOM Apr. 2003.

[22] J. Lepreau. The Utah Network Testbéttp://www.emulab.net/ . University of Utah.
[23] LSC. http://www.ligo.org/ . LIGO Scientific Collaboration, 2003.
[24] J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based Flow Control, Jan. 1997.

[25] G. M. Mair. Telepresence - The Technology and Its Economic and Social ImplicatioRsodeedings of IEEE
International Symposium on Technology and SockE397.

[26] M. Mathis. Web100 and the End-to-End Probldrtip://www.web100.org/docs/jtech/

[27] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel, P. Wagle, C. Consel, G. Muller, and R. Marlet.
Specialization Tools and Techniques for Systematic Optimization of System Softéid. Transactions on
Computer System$9(2):217-251, May 2001.

[28] M.Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation
with TCP ThroughputlEEE/ACM Transactions in Networkingug., 2003.

[29] NASA. Using XML and Java for Telescope and Instrumentation ControlPrbteedings of SPIE Advanced
Telescope and Instrumentation Control Softw&@00.

[30] Net100.http://www.net100.org/ . The Net100 Project-Development of Network-Aware Operating Sys-
tems, 2001.

[31] NPACI. Grid Portalshttp://gridport.npaci.edu

[32] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Martin, and J. Vetter. From Interactive Applications to Dis-
tributed LaboratorieslEEE Concurrency6(3), 1998.

[33] B. Plale, P. Widener, and K. Schwan. Taking the Step From Meta-information to Communication Middleware in
Computational Data Streams. Broceedings of IEEE Heterogeneous Computing Worksh@@1 .

15

[34] P.Tinnakornsrisuphap, W. Feng, and I. Philp. On the Burstiness of the TCP Congestion-Control Mechanism in a
Distributed Computing System. Rroceedings of International Conference on Distributed Computing Systems
(ICDCS) 2000.

[35] C. Pu. The InfoSphere Projedittp://www.cc.gatech.edu/projects/infosphere

[36] N. S. Rao, Y.-C. Bang, S. Radhakrisnan, Q. Wu, S. S. lyengar, and H. Choo. NetlLets: Measurement-based
Routing Daemons for Low End-to-End Delay over Networkemputer Communications be published.

[37] N. S. V. Rao, S. Radhakrishnan, and B. Y. Cheol. NetLets: Measurement-based Routing for End-to-End Perfor-
mance over the Internet. Proceedings of International Conference on Network2@Q1.

[38] D. Rosu and K. Schwan. FARACost: An Adaptation Cost Model Aware of Pending Constraiftedeedings
of IEEE RTSSDec. 1999.

[39] B. Seshasayee, K. Schwan, and P. Widener. SOAP-binQ: High-Performance SOAP with Continuous Quality
Management. IfProceedings of ICDCSMar. 2004.

[40] L. Sha, X. Liu, and T. Abdelzaher. Queuing Model Based Network Server Performance ConRacéedings
of Real-Time Systems Symposiilrac. 2002.

[41] D. Sisalem and H. Schulzrinne. The Loss-delay Based Adjustment Algorithm: A TCP-Friendly Adaptation
Scheme. IrProceedings of NOSSDAWuUI 1998.

[42] H. Sivakumar. PSockets: The Case for Application-level Network Striping for Data Intensive Applications using
High Speed Wide Area Networks. FProceedings of IEEE/ACM Supercomputing Conferehlm. 2000.

[43] M. Trivedi, B. Hall, G. Kogut, and S. Roche. Web-Based Teleautonomy and Telepresermcérdings of
SPIE Optical Science and Technology Confere26€0.

[44] J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee, C. Pu, D. Steere, and L. Yu. A Player
for Adaptive MPEG Video Streaming Over The Internet. Rroceedings of SPIE Applied Imagery Pattern
Recognition Workshgashington, DC, Oct. 1997.

[45] R.F. Walters, B. B. Douglas, T. C. Leamy, and W. Yaksick. RC (Remote Collaboration): A Tool for Multimedia,
Multilingual Collaboration, 2000.

[46] R. West and C. Poellabauer. Analysis of a Window-Constrained Scheduler for Real-Time and Best-Effort Packet
Streams. IrProceedings of IEEE Real-Time Systems Sympo&0a0.

[47] Y. Wiseman and K. Schwan. Efficient End to End Data Exchange Using Configurable CompresBimtelad-
ings of ICDCS Mar. 2004.

[48] M. Wolf, Z. Cai, W. Huang, and K. Schwan. Smart Pointers: Personalized Scientific Data Portals in Your Hand.
In Proceedings of IEEE/ACM Supercomputing ConfereNms. 2002.

[49] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputirfeuture Generation Computer Systerh§(5—6):757—-768, 1999.

[50] D. Xu and K. Nahrstedt. Supporting Multimedia Service Polymorphism in Dynamic and Heterogeneous Envi-
ronments. Technical report, 2000.

[51] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural Support for Quality of Service for CORBA Objects.
Theory and Practice of Object SysterBél), 1997.

16

