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Abstract
Based on the consideration of Boolean dynamics, it has been hypothesized that cell types may
correspond to alternative attractors of a gene regulatory network. Recent stochastic Boolean network
analysis, however, raised the important question concerning the stability of such attractors. In this
paper a detailed numerical analysis is performed within the framework of Langevin dynamics. While
the present results confirm that the noise is indeed an important dynamical element, the cell type as
represented by attractors can still be a viable hypothesis. It is found that the stability of an attractor
depends on the strength of noise related to the distance of the system to the bifurcation point and it
can be exponentially stable depending on biological parameters.
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INTRODUCTION
We have entered the post genomic era. The human genome has been sequenced as have a
number of other organisms. We are now confronted with the problem of understanding the
behavior of simple and complex genetic regulatory networks. For example, the human genome
has between 20,000 and 25,000 genes whose activities are coordinated by a regulatory network
of their products. As such, the genome is a parallel processing nonlinear dynamical system.
For a number of decades, this system has been modeled by a variety of approaches, ranging
from random Boolean networks introduced by [1], to differential equations [2], and piecewise
linear differential equations [3]. Such nonlinear dynamical systems typically have state spaces
with dynamical trajectories that each flow to an attractor, which might be a steady state, limit
cycle, quasi-periodic orbit, or strange attractor. Because, even in the binary idealization of
Boolean nets, a genome with 25,000 genes has states, and a human has only about 265 cell
types [4], it is obvious that not all states of gene activities can correspond to cell types. A
plausible hypothesis is that cell types correspond to alternative attractors of the network [5].

At present, no data support or refute the hypothesis that cell types correspond to alternative
attractors. However, Aldana et al. [6] have made the important criticism with respect to Boolean
networks that noise may render such attractors a poor model of cell types because closure of
an attractor (a state cycle) in the discrete dynamics is delicate. This is an important criticism.
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In response to this concern we have, first, noted that metaplasias in organisms may in fact be
a response to such noise [5] and here undertake a study of a very simple bistable model genetic
circuit comprised of continuous variables. The move to continuous variables creates a
continuous state space. Here the two alternative stable steady states of the system each lie in
a continuous valued basin of attraction, such that small noise will leave the system in the same
basin. Our model contains a parameter which, when tuned, causes the system to bifurcate such
that it loses its lower stable steady state.

We utilize Langevin equations [7] to model noise in this simple system and study mean escape
times as a function of the noise level and a bifurcation parameter Z. Our results show that escape
from an attractor is exponentially distributed in time, but can be made very long for small noise.
In addition, we study the occupancy distribution for this noisy small circuit and show for a
range of parameter values that the system remains in the vicinity of the steady states. Overall,
our results suggest that noise is an important issue, that attractors remain attractive dynamical
objects to constitute cell types in the presence of small amounts of noise and implies the
possibility that network motifs [8-10] may have evolved to dampen such noise.

THE MODEL GENETIC CIRCUIT
The equations for our model were based on a Boolean function of three variables, where Y
responded to inputs received from X or from Z and X responded directly to Y. The system of
differential equations was as follows:

dx
dt = y 2

(y + 1)2
− K1x

dy
dt =

(x + z)2

((x + z) + 1)2
− K2y

In these equations, we treat Z as an exogenous parameter that is varied in our numerical
experiments. To determine the steady states of the system the null clines were plotted. There
are three steady states in our model: a lower stable steady state, an unstable steady state slightly
above the lower one, and an upper steady state well above the unstable steady state. The lower
and upper steady states are separated by a separatrix that travels through the unstable steady
state. The separatrix divides the x-y state space into two basins of attraction. Trajectories above
and below the separatrix flow to the upper and lower stable steady state respectively. The
separatrix itself is a manifold of dimension 1 where trajectories flow to the unstable steady
state (Figure 1).

This system of equations also has the property that as Z increases the steady states bifurcate.
At Z = 0 the lower steady state is at the origin but as Z increases the lower steady state moves
up toward the unstable steady state, which moves simultaneously towards the lower stable
steady state. Eventually the two states merge and disappear leaving only the stable upper steady
state and the whole system bifurcates.

In order to study the effects of noise on our system we used a Langevin equation where a noise
term was added to the end of each of the equations. For each variable, x and y, the additive
noise term was governed by a Gaussian distribution with a variance equal to the absolute value
of the sum of the two terms in the deterministic differential equation for that variable. The
variance equation was developed using the work of van Kampen [7] on the diffusion
approximation. The scale of the noise term was controlled by the use of a constant
multiplicative factor, λ, which served to increase or decrease the variance of the noise. Thus,
the equations are:
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dx
dt = ( y 2

(y + 1)2
− K1x) +λ

dy
dt = ( (x + z)2

((x + z) + 1)2
− K2y) + λ

where λ respectively equals:

λ = γ∣ y2

(y + 1)2
+ K1x∣

λ = γ∣ (x + z)2

((x + z) + 1)2
+ K2y∣

To simulate the noise we sampled values from a Gaussian distribution with a mean of zero.
We note that the use of a Langevin equation to model noise in real genetic circuits is a very
crude approximation. To be realistic one would need to model molecular noise at each step in
the transcription, translation and gene regulation process. Our aim is not detailed realism but
to obtain a qualitative view of the effects of noise on a small, bifurcating, genetic circuit model.

MATERIALS AND METHODS
The system of equations was solved algorithmically using the 4th-order Runge-Kutta method.
The Gaussian distribution was sampled by the use of the Box-Muller method [11].

The addition of a noise term to our system of equations presented the problem that values could
now go negative. Because negative values have no counter point in biological reality we needed
to set boundary conditions to avoid them. The variance equation prevented negative values
close to the origin since the variance goes to zero but negative values were possible along the
axes away from the origin. Our chosen method was to throw out noise that produced negative
values and resample until we stayed within bounds. This was an effective solution because for
most conditions negative values were rare. But under certain conditions discussed later it did
create a positive bias in the noise and compounded some problems that created meaningless
numerical data under some circumstances.

In order to determine how stable the upper and lower steady states were in the presence of
noise the first question we asked is under what conditions do trajectories released at or near
one steady state move across the separatrix. More precisely, as a function of the noise level,
λ, and Z, what is the distribution of these first passage trajectories from one basin of attraction
across the separatrix into the other basin.

In order to study this question it was necessary to determine the location of the separatrix itself.
Thus the first step was to determine the function that described the sepratrix. We did this by
selecting a point on each axis and then determining if a trajectory starting at that point was
above or below the sepratrix. We would then select a point either larger or smaller on the axis
and check again. We sampled points above and below the sepratrix moving points closer to
each other each time until we could no longer calculate whether we were above it or below the
separatrix. We determined that this was where trajectories leaving those infinitesimal
neighborhoods of each axis flowed along the separatrix to the unstable steady state. To do so,
we followed the deterministic vectors from each axis. The vector magnitudes approached zero
at the unstable steady state so the system was on a trajectory extremely close to the true
separatrix. The vectors' directions relative to each other and the unstable steady state
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approximated a straight line. We then calculated the line equation that best approximated the
separatrix.

To determine the distribution of first passage times for each value of λ, the scale of the noise,
and each value of Z, the algorithm was run with noise. We carried out 1000 runs for each value
of λ and Z and initial state studied. Each run was carried forward for 1000 time steps or until
we detected that the system had crossed the line equation approximating the sepratrix. We
outputted the time iteration at which this occurred as the first passage time. Thus, we generated
a distribution of first passage times for crossing the separatrix.

We used a range of λ values from 0.5 to 5.0 with increments of 0.5 for each run. We also
examined the effects of Z by starting with Z = 0 and increasing it by 0.01 until we reached the
bifurcation value of around Z = 0.16. The initial values for x and y are necessary for the Runge-
Kutta method. For Z values greater than zero we used the stable steady state calculated using
the null clines as the initial conditions. For Z = 0 though the steady state was at the origin and
no noise would be present. So we used a range of initial conditions between the origin and the
separatrix.

We next examined the occupancy grid generated by running the simulation for a set number
of points around each of the stable steady states. To generate the occupancy grid we ran the
program for 10,000 time steps 1,000 times for a total of 10,000,000 points. We did this rather
than just using 10,000,000 time steps so the noise variance would be reset regularly making
sure the system did not become trapped around the origin. Visualization for 10,000,000 points
became difficult so a random sample of 500,000 points was drawn from each run and was used
for graphing.

The Z values for both steady states were selected the same way as for the first passage time.
We started with Z = 0 and increased it by 0.01 until we reached the bifurcation value of around
Z = 0.16. The λ for the lower steady state ranged from 0.5 to 5.0 in increments of 0.5. The
upper steady state required lower values of noise to achieve meaningful data, so the λ values
ranged from 0.1 to 1.0 in increments of 0.1.

RESULTS
The first data we gathered were the vector field for the deterministic equations showing the
lower steady state, the separatrix, and the upper steady state. The vector fields were generated
for a range of increasing Z values showing the lower steady state moving up toward the
separatrix till they merge and the system is left with only the upper steady state (Figures 2 and
3). This is the bifurcation point and was calculated to occur at approximately Z = 0.16.

The mean escape times for the lower steady state proved to be exponentially distributed under
the Gaussian noise model. A probability plot for the exponential distribution, shown in Figure
2, provides evidence for this assertion. The values Z = 0.5 and λ = 1.0 were used. Ideally, if
the data do come from an exponential distribution (with some unknown parameter), all data
points should lie on a straight line. The superimposed straight line (dashed) is the robust linear
fit of the sample order statistics corresponding to the first and third quartiles. Note that the fit
is quite good and the deviation only begins to occur after probability of approximately 0.99,
which is in the tail of the distribution. This fact is hardly surprising, because it corresponds to
data with a very low probability of occurrence (i.e., very large escape times). Indeed, similar
deviations in the tail of the distribution would occur with pseudorandom numbers generated
from an exponential distribution.

As further validation, we computed the maximum likelihood estimate of the parameter, μ, of
the exponential distribution and plotted the cumulative distribution function (cdf) with this
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parameter together with the empirical cdf generated from the data. Figure 3 illustrates this for
Z = 0.5 and λ = 1.0. Additionally, lower and upper confidence bounds for the empirical cdf,
calculated using Greenwood's formula [12], are shown with dashed lines. Visual inspection
strongly suggests that the exponential distribution provides the correct fit to the data.

An interesting result that we found for Z = 0, where the lower steady state was at the origin,
was escape across the separatrix had to occur early in the run. If escape did not occur early it
did not occur at all. We interpret this as a consequence of the fact that as the system follows
trajectories of the deterministic system towards the lower steady state at the origin, the noise
term's variance goes to 0. Hence, once very close to the origin, escape does not occur.

The system of equations bifurcates as Z increases to approximately 0.16. As Z increased and
the lower steady state moved toward the separatrix, the mean escape time for each value of λ
decreased. Figure 4 shows the distribution of exponential escape time values as a function of
λ and Z. Larger values of λ produced smaller mean escape times for the noise. Similarly, larger
Z produced smaller mean escape times.

The upper steady state presented several problems. The positive bias in the boundary conditions
became important at this point. The distance needed to travel from the upper steady state across
the separatrix is several magnitudes greater than from the lower steady state to the separatrix.
The noise, therefore, must also be several times greater in magnitude to create any significant
passage. Noise that is large enough to cause passages across the separatrix at this level is also
large enough to cause the system to go into the negative range of values. Our approach to
dealing with negative values was to toss them out and regenerate noise until we got a positive
value. Because negative noise values had a significant chance of crossing the axis, resulting in
negative values, we discarded a lot of negative noise. Positive noise, though, can not cross the
axis. Therefore, we discarded large amounts of negative noise and kept all positive noise. This
creates a bias for positive noise that pushes the values of the system beyond anything that is
meaningful. When we bring the noise value low enough so we do not have to throw out values
then there is not enough noise to create any significant number of passage times across the
separatrix.

The occupancy grids for both the upper and lower steady state showed little deviation around
the steady state for a small enough range of noise. The upper steady state also showed stability
for noise values about a tenth of the size used for the lower steady state. Occupancy was also
calculated for 10,000,000 time steps. Because the 10,000,000 point files were to large for
visualization we randomly selected 10,000 points and used them to construct graphs. Figure 5
shows such a graph and that for smaller ranges of noises escapes did not occur even over very
long time periods.

DISCUSSION
We have carried out simulations of a simple bistable model genetic network in the presence of
noise, modeled as additive Gaussian noise. The circuit undergoes a bifurcation as an exogenous
input, Z, is increased from 0.0 to approximately 0.16. As the bifurcation is approached, the
lower stable steady state approaches the unstable steady state lying on the separatrix. Our initial
conditions were either the lower steady state for Z > 0, or a set points at increasing distances
from the lower steady state at the origin for Z = 0. As expected, using Gaussian noise, the first
passage time across the separatrix was exponentially distributed. As shown in Figure 5, in
general, increasing noise, λ, and increasing Z before bifurcation led to shorter mean escape
times. It is important to note that the infinite-tailed Gaussian of the standard Langevin equation
is not established as a good model of the detailed noise fluctuations concerning actual
transcription, translation, and product life times. In real cells, the numbers of molecules is low
and may require another detailed noise model.
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Our purpose in utilizing the standard Langevin equation was to begin to gain some insight into
the effects of noise on bistable model genetic circuits. The main results show that, for low
enough noise, the system remains in the vicinity of the lower or upper steady state for very
long times. Our efforts are a response to a criticism of random Boolean network models of
gene networks by Aldana et al. [6], who point out that a small fraction of single gene “flips”
move the system from one attractor to another, hence that attractors are unstable to noise. The
use of stochastic differential equations here yields two steady states with continuous, finite
sized basins of attraction around each stable steady state. In this context, attractors remain a
viable model of cell types: With small enough noise the system remains near the initial steady
state for arbitrarily long times. At the biological level, we do not know if real cells rarely change
to new cell types, although the phenomenon of metaplasias may reflect such transitions. We
should point out that in a related genetic circuit the full range of stability has been absorbed in
vivo experimentally and modeled mathematically [13].

Only future work will establish whether real cell types correspond to attractors and the extent
of perturbation by noise and possible rare transitions to other cell types induced by endogenous
noise. In the meantime, the hypothesis that attractors correspond to cell types in the presence
of some low amount of noise appears justified.
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FIGURE 1.
Plot of the vector field for the deterministic equation. There are three steady states. A lower
stable steady state at the origin, an upper steady state around x = 2.5 and y = 2.5 and an unstable
steady state around x = 0.25 and y = 0.25.
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FIGURE 2.
(A) A probability plot for the exponential distribution (Z = 0.5, γ = 1.0). The fact that most
points lie on a straight line indicates that they are exponentially distributed.
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FIGURE 3.
(B) The empirical and theoretical maximum likelihood estimated cumulative distribution
functions for Z = 0.5 and λ = 1.0. Lower and upper confidence bounds are shown.
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FIGURE 4.
Graph of the mean escape times, μ, as a function of Z and λ. As λ increases the escape times
become smaller. As Z approaches the bifurcation the escape times also decrease. For Z = 0
each of the initial conditions is shown. For all conditions of Z = 0 the system either escaped
early or did not escape at all so there was little change in escape time as λ changed.

TOULOUSE et al. Page 10

Complexity. Author manuscript; available in PMC 2006 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 5.
Plot of 10,000 time steps in an occupancy grid around the lower steady state. This graph shows
that even in the presence of noise the system can stay very close to the steady state.
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