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The cerebellum and basal ganglia are reciprocally connected with the cerebral cortex, forming many loops
that function as distributed processing modules. Here we present a detailed model of one microscopic loop
between the motor cortex and the cerebellum, and we show how small arrays of these microscopic loops (CB
modules) can be used to generate biologically plausible motor commands for controlling movement. A funda-
mental feature of CB modules is the presence of positive feedback loops between the cerebellar nucleus and
the motor cortex. We use nonlinear dynamics to model one microscopic loop and to investigate its bistable
properties. Simulations demonstrate an ability to program a motor command well in advance of command
generation and an ability to vary command duration. However, control of command intensity is minimal,
which could interfere with the control of movement velocity. To assess these hypotheses, we use a minimal
nonlinear model of the neuromuscular (NM) system that translates motor commands into actual movements.
Simulations of the combined CB-NM modular model indicate that movement duration is readily controlled,
whereas velocity is poorly controlled. We then explore how an array of eight CB-NM modules can be used to
control the direction and endpoint of a planar movement. In actuality, thousands of such microscopic loops
function together as an array of adjustable pattern generators for programming and regulating the composite
motor commands that control limb movements. We discuss the biological plausibility and limitations of the
model. We also discuss ways in which an agent-based representation can take advantage of the modularity in
order to model this complex system. ! 2008 Wiley Periodicals, Inc. Complexity 00: 000–000, 2008
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1. INTRODUCTION

A
natomical and physiological studies have identi-

fied many loops between the cerebral cortex and

two subcortical structures, the basal ganglia, and
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the cerebellum (CB) [1]. These loops, called distributed

processing modules (or DPMs as defined by Houk [2]),

have been regarded as the brain’s substrate for the plan-

ning, initiation, and regulation of movement, as well as

thought. It is estimated that in the human brain there may

be on the order of a hundred DPMs forming a large-scale

neural network. Because the different DPMs have strik-

ingly similar neuronal architectures, their signal processing

operations may be essentially identical. The resultant net-

work of generic DPMs thus provides a promising frame-

work for understanding many questions about how the

mind thinks and controls action.

As a first step toward understanding the DPM frame-

work, our task is to build a computational model for one

well-known set of loops, called the M1-DPM, between the

primary motor cortex (MC), the basal ganglia, and the CB.

Even though the M1-DPM is the module that we know

most about from anatomical and physiological perspec-

tives, its complexity is far beyond conventional computa-

tional modeling. Therefore, instead of studying the whole

M1-DPM, we will start by investigating some of the basic

elements of this module. One basic element is the loop

between the primary MC and the CB. It is responsible for

the generation of the composite motor commands that

control voluntary limb movements [3].

Experimental data underlying the planning and control of

movement were reviewed and synthesized by Houk and

Wise [4]. They concluded that, while the loop through the

basal ganglia uses a combination of context, sensory, and in-

ternal events to select a salient action, the loop through

the CB is responsible for the programming and execu-

tion of the selected action. Figure 2 in the Houk and

Wise paper summarizes the time course of the program-

ming and execution phases of voluntary motor com-

mand generation. Motor commands can be programmed

before they are executed by the signal processing opera-

tions in the loop through the CB.

The essential features of cortical-cerebellar signal proc-

essing were enunciated by Berthier et al. [5] in their ad-

justable pattern generator (APG) model of the CB. Accord-

ing to the APG model, motor programs are stored mainly

in the cerebellar cortex in the weights of parallel fiber syn-

apses onto Purkinje cells (PCs). After training of these

weights is complete, programs can be recalled from these

memory sites by a selection process (ascribed to inhibitory

interneurons called basket cells). In analogy with psycho-

logical ideas about motor programs, many of the parame-

ters of the recalled program are determined centrally. In

line with [4], after a program has been selected, APG mod-

ules wait idle until the arrival of a trigger signal that

‘‘jump starts’’ program execution, analogous to the role of

a cue in a reaction-time task [6]. The trigger is envisioned

as a transient sensory or central input that initiates posi-

tive feedback in the loop between MC and the cerebellar

nucleus (CN). As reviewed in the next section, positive

feedback seems to be the driving force for the generation

of the motor command, while accuracy in direction and

amplitude is regulated by inhibition from PCs. Because

PCs were modeled as bistable devices, motor programs

were initially executed in a feedforward manner. Berthier

et al. proposed that PCs detect when the endpoint of the

movement is about to be achieved, whereupon they switch

to activated states that inhibit positive feedback and thus

terminate motor program execution [5].

The APG array model focused on learning and opera-

tional mechanisms in the cerebellar cortex, whereas this

article focuses on the operational role of the loops

between the CN and MC. These loops were treated

abstractly in [5]. The PC input to the loops modeled here

will be a topic of a future investigation, but in this article

the PC activity is set to a predetermined reasonable value.

We begin by reviewing anatomical and physiological

data regarding reciprocity between CB and MC, converg-

ing upon the necessity to analyze a minimal model of

one microscopic loop, called a CB module. We provide

an analytical analysis of the nonlinear dynamics of a sin-

gle CB module and a numerical analysis of one module’s

capacity to generate plausible motor commands. Next

we present a model of the neuromuscular (NM) modules,

which are the targets of the motor commands sent from

CB modules. We combine the two kinds of modular

models to form CB-NM modules and use these to test

the ability of CB modules to control the duration and ve-

locity of movement. Next we test the capacity of an array

of eight CB-NM modules for controlling the direction

and endpoint of a planar movement. Finally we discuss

the biological plausibility and limitations of the model,

and we consider how modularity can be used to create

an agent-based model.

2. MICROSCOPIC CEREBELLAR MODULES AND THE
ANALYSIS OF THEIR NONLINEAR DYNAMICS
The anatomy and physiology of the two macroscopic

loops between the CB and the MC are treated in detail by

Houk and Mugnaini [3]. The loop through the CN is pre-

dominantly excitatory whereas the loop through the cere-

bellar cortex is strongly inhibitory. The macroscopic loop

through CN is actually comprised of thousands of micro-

scopic loops. Figure 1 illustrates how an MC neuron that

is generating a motor command sends a branch to the

pontine nucleus. Pontine neurons then send a branch to

CN as they project their main axons into CB cortex (only

the branch to CN is shown in Figure 1). CN neurons pro-

ject out of the CB to the thalamus, which is reciprocally

connected to the MC neurons. Motor commands are also

generated by magnocellular red nucleus neurons, which

form analogous connections with the CB [7].
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Figure 1 highlights just one of the thousands of micro-

scopic loops that are formed between MC and CN in the

course of development [8]. Developmental plasticity con-

verts a nonspecific cortical-cerebellar macroscopic loop

into thousands of relatively private microscopic loops. In

[8], Hua and Houk review the literature and present a

computational model of this developmental process.

There is extensive empirical and computational evidence

that positive feedback around the reciprocal microscopic

loops is the main driving force for the generation of the high

firing rates characteristic of motor commands [e.g., 6, 9, 10].

A potent inhibitory input to the CN from PCs in the cerebel-

lar cortex restrains the positive feedback and shapes neural

activity into precise motor commands, commands that pro-

duce accurate limb movements [11]. Individual motor com-

mands are bursts of discharge that display a large range of

intensities and durations in order to control movements of

different velocities and durations [12, 13].

Figure 1 illustrates the convergence of three PCs onto

the CN neuron that participates in the highlighted loop.

Actually more than a hundred PCs contribute to the regu-

lation of the intensity and duration of the loop activity

that is responsible for one motor command [3]. Because

this article focuses on the nonlinear dynamics of recipro-

cal loops, our minimal model of a microscopic module, or

a CB module (see Figure 2), includes only a single equiva-

lent PC that is set to a reasonable value. Furthermore, we

represent information flow around each microscopic loop

with just two neurons. Arrays of these CB modules are

used to control planar movements in different directions.

2.1. The Minimal Model
As shown in Figure 2, the model we are considering con-

tains just two state variables: Vm and Vn, and two parame-

ters: w and p. The variables Vm and Vn represent the mem-

brane potentials of the MC and CN neurons, respectively.

The parameter w represents the synaptic weight from MC

to CN, and for simplicity, also the weight from CN to MC.

The parameter p represents the inhibition from PCs; this

treatment of viewing p as a parameter instead of a variable

tacitly assumes that the inhibition from PC changes on a

relatively slow time scale.

In addition to the two state variables and two parame-

ters, Figure 2 also illustrates two firing rates, Rm and Rn.

Among them, Rm is the output of the activation function

that takes as input Vm, the membrane potential of MC. In

other words, Rm 5 f(Vm), where f denotes the activation

function. It is the same for Rn. Note that it is Rm, the out-

put from the MC neuron, that determines the intensity

FIGURE 1

Reciprocity between the cerebellum and the motor cortex includes a loop of predominantly excitatory connections (green) and an inhibitory pathway
from Purkinje cells in the cerebellar cortex (red). A complex mixture of feedback and feed-forward inputs to the cerebellar cortex, which are not shown
here, is used to regulate the generation of motor commands. Sensory inputs to motor cortex can initiate the generation of a motor command.
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and time course of the motor command. In this article,

the activation function is implemented as the standard

sigmoid function in the form of f(x) 5 1/(1 1 ex). The

model of one microscopic module, therefore, is given by

the following equations:

s _Vm ¼ "Vm þwRn " b (1)

Rm ¼ 1=ð1þ e"VmÞ (2)

s _Vn ¼ "Vn þwRm " p (3)

Rn ¼ 1=ð1þ e"Vn Þ (4)

In Eq. (1), b is a constant that indicates some bias input

to the MC neuron. Considering that our numerical analysis

shows that there is no qualitative difference when b takes

different values as long as it is positive, so it will be fixed to

5 hereafter. The terms 2Vm and 2Vn in Eqs. (1) and (3) rep-

resent the intrinsic membrane potential decay of the neu-

rons MC and CN. In addition, in Eqs. (1) and (3), s is the

time constant. For convenience, in the following dynamics

analysis, we suppose that the time constant s 5 1; but in

the numerical simulations given in Section 2.3 and the fol-

lowing sections, the time constant s will be set to 0.01 to be

consistent with the time scale in real human movements.

By substituting the firing rates, Rm and Rn, into Eqs. (1)

and (3), we can reduce the above four equations to the fol-

lowing pair of differential equations:

_Vm ¼ "Vm þw=ð1þ e"VnÞ " 5

_Vn ¼ "Vn þw=ð1þ e"VmÞ " p

(

(5)

In the following subsections, we will focus on finding

out under what conditions the motor command can be

initiated or terminated. The conditions will be described

in terms of the two parameters of the system (synaptic

weight w and PC inhibition p), and the initial values of

membrane potentials of MC and CN (Vm and Vn).

2.2. Bifurcation Analysis

2.2.1. Fixed Points

We seek to understand how the fixed points and their sta-

bility change as the two parameters w and p change. First,

we need to determine the fixed points of the system. A ge-

ometrical approach is used to find the fixed points. The

basic idea is that the intersections between the two null-

clines derived from Eq. (5) occur at the fixed points of the

system [14]. For a differential equation _x ¼ f ðxÞ, its null-

cline is the curve defined by function _x ¼ 0. The two null-

clines of the system, in terms of Vm vs. Vn, are

Vm ¼ w=ð1þ e"Vn Þ " 5

Vm ¼ " logðw=ðVn þ pÞ " 1Þ

(

As we have two parameters w and p, we will think of w

as fixed, and see what will happen when p changes.1 Fig-

ure 3 shows that when w < wc (where wc is to be deter-

mined), the two nullclines have exactly one intersection.

But when w > wc , the two nullclines can have one, two,

or three intersections, depending on the value of p. In this

case, if p > pb or p < pa (where pa and pb are to be deter-

mined), there is only one intersection; if p is between

pa and pb, there are three intersections; and if p 5 pa or

p 5 pb, there are two intersections.

2.2.2. Bifurcations

Next we determine the above critical values: wc, pa, and

pb. These critical values are bifurcation points since at

those points the dynamics of the system changes qualita-

tively. It turns out that for our model the bifurcation

points can be obtained in the following parametric form

(w(Vm),p(Vm)), where Vm runs through all possible values.

wðVmÞ ¼ Vm þ 5þ ð1þ e"VmÞ2

ðVm þ 5Þe"Vm

pðVmÞ ¼ Vm þ Vm þ 5

1þ e"Vm
þ 1þ eVm

Vm þ 5
" 2 log

Vm þ 5

1þ e"Vm

8
>>><

>>>:
(6)

From the above parametric form, we can plot a stability

diagram for the system, as shown in Figure 4. The diagram

shows that there are two bifurcation curves that meet tan-

gentially at a cusp point (w, p) 5 (5.27, 0.27). The diagram

not only shows how the number of fixed points changes

1This treatment is better than the other way around, that is,

fixing p and see what will happen when w changes.

FIGURE 2

A minimal model of a CB module. The output p from the PC regu-
lates positive feedback between a CN neuron and an MC neuron.
Rn is the firing rate of the CN neuron and Rm is the firing rate of
the MC neuron. Note that Rm also specifies the intensity of the
motor command (see Figure 1). Both connections have a synaptic
weight w.

4 C O M P L E X I T Y Q 2008 Wiley Periodicals, Inc.
DOI 10.1002/cplx



as parameters w and p change, but also the stability of the

fixed points. When (w, p) is in the bistable region, the sys-

tem has three fixed points, among which one is unstable

and two are stable.

To develop a better understanding of the above stability

diagram, Figure 5 illustrates the cusp catastrophe surface

of V&
m vs. w and p, where V&

m is the equilibrium value of

Vm for a given pair (w, p). Note that there are some folds

in the surface, and the projection of these folds onto the

(w, p) plane gives rise to the bifurcation curves plotted in

Figure 4. The cusp catastrophe surface shows that as pa-

rameters change, the equilibrium state of the system can

jump down (or up) suddenly to the lower (or upper) sur-

face. This is important because the dynamics of the sys-

tem undergoes a qualitative change at these bifurcation

points. Figure 6 shows a cross-section of the cusp surface

at w 5 10, which is above the threshold wc 5 5.27. At w 5

10, two thresholds for PC can be observed: the lower

threshold pa 5 1.8 and the upper threshold pb 5 8.2.

When p < pa or p > pb, there is only one stable fixed

point; when pa < p < pb, there are three fixed points,

among which one is unstable (see the dashed line) and

two are stable.

2.2.3. Remark 1

Biological studies have shown at least two conditions that

influence how motor commands are initiated: (1) the sen-

sory input to MC must be strong enough to initiate posi-

tive feedback between MC and CN, which we speak of as

the loop’s threshold; (2) the PC can not initiate motor

commands by itself unless the external stimulus inputs to

MC are strong enough, but it can terminate commands by

itself.

The first biological condition indicates that the synaptic

weight w must be greater than some threshold so that

positive feedback can be initiated and sustained. The

FIGURE 3

The intersections between the nullclines occur at the fixed points of the system. The red curve is the nullcline for _Vm ¼ 0. The green dashed curves
are the nullclines for _Vn ¼ 0 for different values of p.

FIGURE 4

Stability diagram. The system has one fixed point when w ' wc,
two fixed points when w > wc and p 5 pa(w) or p 5 pb(w), or
three fixed points when w > wc and pa(w) < p < pb(w). The
region with three fixed points has two stable and one unstable
fixed points. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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second biological condition implies that (a) w has to

be greater than the cusp point wc 5 5.27 and (b) p has to

be greater than a lower threshold pa. From now on, to be

consistent with the biological evidence, we will suppose

that w > wc and p > pa. Specifically, in the following illus-

trations, w will take the value of w 5 10, and as a result,

pa will take the value of pa 5 1.8.

2.2.4. Remark 2

A limitation of the model is that the intensity range of a

motor command could be too narrow to effectively control

the velocity of movement. To see the limitation, first we

need to make it clear what we mean by the range of inten-

sity. Recall that the intensity of a motor command is the

output of MC (i.e. Rm 5 f(Vm)). However, this only makes

sense when the motor command gets initiated, which in

turn means (1) the PC is in the bistable range p [ (pa, pb),

and (2) the membrane potential of MC, Vm, is in the active

state. Denote by R&
m(p) the intensity of a command when

PC is in the range p [ (pa, pb). Then the range of intensity

can be defined as the difference between the maximal and

minimal values that R&
m(p) can take.

Now we explain the limitation using Figure 6. The fig-

ure shows the bistable range for p is (1.8, 8.2). For this

range, the maximal equilibrium value that Vm can take is

V &
m

!!
p¼1:8

( 5, and the minimal equilibrium is V &
m

!!
p¼8:2

( 3.

The range of intensity then is f(5) 2 f(3) ( 0.04. It is possi-

ble that the range of intensity can get widened by increas-

ing the synaptic weight w between MC and CN. However,

because oscillatory activity can occur at high gains, there

is an upper limit to w. Therefore, in our current model,

the range of command intensity is not biologically plausi-

ble. In future work we will revise the model (especially the

activation function) to overcome this limitation.

2.2.5. Phase Portrait

Recall that our task is to find under what conditions motor

commands will be initiated or terminated. Through the

above bifurcation analysis, we have found that the synap-

tic weight w has to be larger than a threshold (w > wc)

and the inhibition from PC has to be larger than a lower

threshold (p > pa). We also know that when p is in the

range pa < p < pb, the system is bistable: it can stay in the

FIGURE 5

Cusp catastrophe surface.

FIGURE 6

Cross-section of the cusp surface at w 5 10.
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quiescent state, or be driven into an active state, depend-

ing on the initial system state (i.e., the initial values of Vm

and Vn).

Now we want to know how the initial state of the sys-

tem decides the eventual state of the system. To answer

this question, we plot a phase portrait for the case of PC

being in disinhibition state, as shown in Figure 7. In the

figure, the separatrix line L (dashed line) divides all possi-

ble initial states of the system into two classes: above line

L, the system will converge to the active state; below line

L, the system will converge to the quiescent state.

2.3. Time Course of Individual Movement Commands
Voluntary motor commands are driven by a well-studied

sequence of changes in the activity of neurons that com-

prise the CB module. In this section, we demonstrate how

the minimal model of the CB module can simulate the

most salient properties of neural dynamics associated with

the programming and execution of motor commands. In

what follows we present a step-by-step account of the

simulated changes in modeled neural activity along with

an explanation of the relevant physiological counterparts.

In a further analysis, the results from a number of simula-

tions show that the model can emulate cerebellar control

over the duration of motor commands in a manner con-

sistent with physiological data. The model, however, fails

to properly control the intensity of motor commands. Rea-

sons for this shortcoming are discussed.

Prior to the programming of a motor command, the CB

module is found in a resting state, shown from 0 to 100

ms (see Figure 8). During this time PC neurons are found

in a spontaneous state of high discharge rate, inhibiting

the buildup of positive feedback in the CB module. MC

and CN membrane potentials are at equilibrium in a qui-

escent state (Vm 5 25 and Vn 5 28.9), and there is no

external sensory input.

The programming period of the motor command is

simulated from 100 to 400 ms, including the initiation,

execution, and termination of the motor command (see

Figure 8). During the programming period the firing rate

of the PC drops and remains low until it is the time to ter-

minate the movement. Note how the reduction in PC

activity causes a change in CN membrane potential (Vm)

from 28.9 to 25, while the MC membrane potential (Vm)

shows nearly no change. The physiological significance of

this stage is to prepare the network for generating a motor

command. The reduction in PC inhibition, allows the mi-

croscopic loop between MC and CN to achieve the high

firing rates necessary for driving a motor command, pend-

ing the requisite sensory input.

The system is now prepared to initiate the motor com-

mand. The initiation stage is simulated from 125 to 200

ms. During this time the MC neuron will receive external

sensory inputs allowing for sensory-motor integration. The

sensory inputs to MC are shown as spikes in the second

plot of Figure 8. There are two external inputs at 125 and

150 ms. Since these two inputs are not sufficiently intense,

the neurons MC and CN go quickly back to the previous

(quiescent) equilibrium state (Vm 5 25 and Vn 5 25),

and no motor command is initiated. A third sensory input

is simulated at 200 ms. This input is sufficiently strong to

establish positive feedback in the microscopic loop re-

sponsible for driving the motor command. In Figure 7,

this transition is equivalent to a shift in the state of the

system to above the separatrix line L, which results in a

fast convergence onto the active fixed point. The effect is

that MC and CN begin to rapidly increase their discharge

rates, and consequently transit from the quiescent state to

the active state (Vm 5 5 and Vn 5 5). This marks the be-

ginning of the execution phase of the motor command.

Finally, the motor command must end at the desired

point in time. The termination of the motor command is

modeled at 400 ms. This is marked by the quick return of

the PC neuron to a high rate of inhibition to the loop. As a

consequence, MC and CN return to the resting state (Vm

5 25 and Vn 5 28.9), and thus the motor command is

terminated. The inhibition from the PC is sufficiently

intense to prevent a re-initiation of the motor command

even in the presence of a strong external input. This is

shown at 500 ms, where a fourth sensory stimulus is simu-

lated. This final sensory input only effects a temporary

change in activity of the module, demonstrating the im-

portance of programming for initiating and terminating

motor commands.

The simulation graphed in Figure 8 represents the time

course of a single motor command with a fixed duration.

FIGURE 7

Phase portrait when PC firing is low (p 5 5). [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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Studies have shown that the neurons here modeled are re-

sponsible for modulating both the velocity and duration of

movements [11, 13, 15]. The duration and intensity of motor

commands in the red nucleus have been correlated with the

duration and velocity of movements [13]. It is also well

known that the activity of red nucleus cells is in turn modu-

lated by inhibitory input to CN from PCs [7]. Therefore, the

duration of pauses in PC firing should be well correlated

with the timing of the movements. To analyze how well the

model captures these characteristic firing patterns, we per-

formed a series of simulations where the duration and the

magnitude of PC disinhibition to the loop were varied sepa-

rately. The graph on the left in Figure 9, shows a linear rela-

tionship between PC pause duration and the duration of the

motor command. This is consistent with physiological find-

ings [11]. However, the relationship between the magnitude

of PC disinhibition and the resulting intensity of the motor

command is approximated by a step function (Figure 9, right

panel). Instead, as discussed in the previous section, we

should expect the PC to control a wide range of command

intensities, which would correspond to a large range of dif-

ferent possible movement velocities.

3. SIMULATING ONE-DIMENSIONAL MOVEMENTS
The neuromuscular (NM) system is responsible for trans-

lating motor commands into the muscle forces that allow

limbs to interact with the world. To facilitate interfacing

with the above model of motor command generation, we

will assume that each muscle in combination with its sen-

sory feedback (stretch reflex) comprises an individual NM

module. One dimensional movements typically involve the

coordinated activity of a pair of muscles that act as antag-

onists. It is convenient to consider this pair of muscles as

producing forces related to their own lengths, in a muscle-

based coordinate system (ls and fs in Figure 10). These

muscle forces then move the mass of the limb in relation

to an external coordinate system.

3.1. Translation of Motor Commands into Movement
by NM Modules
While the intensity of motor commands recorded from the

brain correlates well with the velocity of movement ([6, 12,

13] and Section 2), the relationship is highly nonlinear.

This is expected since the NM system has prominent non-

linearities that have a strong influence on movement con-

trol [16]. Before considering these complexities, let us first

consider the simple elastic, or spring-like, behavior of the

NM system.

Muscles have spring-like properties and the sensory

feedback that regulates their activation tends to linearize

the stiffnesses K of the elastic behaviors [17]. Muscle

forces are thus approximately equal to

FIGURE 8

Time course for one CB module. Considering that the abstractness of the model, the numbers shown in the graphs mainly convey the information about
how the activities of the neurons change over time. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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f ¼ K ðl " kÞ

where the ks represent the thresholds of the stretch

reflexes. As muscles cannot push, f cannot be less than

zero. Spring-like properties are the essence of the equilib-

rium point hypothesis of motor control [18–20].

Within the framework of the equilibrium point hypoth-

esis there exists a threshold length k for force production

under static conditions. Under dynamic conditions, one

must also include a velocity-dependent viscous compo-

nent of force that dampens movements so as to minimize

oscillations. Most NM models assume that damping is lin-

early related to velocity, in spite of the fact that length and

velocity feedback are highly nonlinear in NM systems.

Houk et al. [21] synthesized experimental findings from

animal and human studies to formulate a highly nonlinear

model of the NM system. The present model, expressed in

the equation below, amounts to a simplified version of the

Houk–Fagg–Barto model.

f ¼ K ðl " kÞ þ Bð _lÞ1=5

The second term on the right is a nonlinear damping

force called fractional power damping (FPD). FPD is par-

ticularly effective in the control of rapid movements. Barto

et al. used the FPD model in a computational study of the

predictive control of movement by the CB [22].

The mechanism of motor command generation for

two CB modules, controlling an agonist-antagonist pair

of NM modules (see Figure 10), is very similar to that

of one CB module. Let Vmi
and Vni

(i 5 1, 2) denote

the membrane potentials of the MC and CN neurons

in the CB modules. The model of two CB modules is

given by

_Vmi ¼ "Vmi þw=ð1þ e"Vni Þ " 5

_Vni ¼ "Vni þw=ð1þ e"Vmi Þ " pi

(

ði ¼ 1; 2Þ

where pi is the PC value of the ith module. In this model

of two CB modules, there is no interaction between the

two modules; however, in our model for planar move-

ments to be presented in the next section, the modules

will interact with each other. Now supposing that the goal

FIGURE 9

Motor command characteristics of a CB module. (A) Command duration vs. PC pause duration (programming period), where PC value p is fixed to 5. (B)
Command intensity vs. PC value p, where PC pause duration is fixed to 300 ms. PC value p is set to range from 2 to 10 in that p has to be greater
than the lower threshold pa which is 1.8 (see Remark 1 in Section 2.2). [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

FIGURE 10

A simple limb model consisting of a pair of agonist–antagonist neu-
romuscular (NM) modules. Each module has a fixed anchor (bar)
and is attached to a limb mass (hexagon). [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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is for the limb to move leftward; then module 1 will be the

agonist and module 2 the antagonist. To this end, we sup-

pose that during the programming period, the PC values

of the two modules change according to

p1 ¼ p̂" a

p2 ¼ p̂þ a

(

where p̂ gives the high spontaneous discharge of PC

before and after the programming period, and a is a posi-

tive parameter.

As to the external stimulus, we suppose that only the

agonist module (i.e., module 1) is stimulated; that is, the

membrane potential Vm of module 1 will get a pulse-like

jump (see Figure 11).

Initiating and controlling movement requires a change

in the threshold k, which is in turn determined by the

motor command. Therefore, we need some mechanism to

convert the motor command to the threshold k. From the

above force equation, we know that a large force requires

a small k, and we also know that a large force requires a

strong motor command. To account for this we make the

conversion as follows:

k ¼ b" Rm (7)

where b is a positive parameter. When the modules pull

the limb of mass M horizontally, the dynamics of the limb

movement can be described by

M€x ¼ f2 " f1

where M is the mass of the limb, x the position of

the limb, and fi represents the pulling force from the ith

module.

Let ai be the anchor position of the ith module, and

suppose that a2 > x > a1, then the muscle lengths are

l1 ¼ x " a1

l2 ¼ a2 " x;

and the pulling forces of the modules become

f1 ¼ K ðx " a1 " k1Þ þ Bð _xÞ1=5

f2 ¼ K ða2 " x " k2Þ " Bð _xÞ1=5
:

Notice that, as mentioned earlier in Section 3.1, we

require that both force fi and one of its terms, the elastic

force K(li 2 ki), are always nonnegative.

3.2. Simulation of Movements
Figure 11 shows the time course of the simulated limb

movement generated by an agonist-antagonist pair of CB-

NM modules. In the figure, the agonist module is denoted

by 1, and the antagonist by 2. The figure includes seven

panels, which can be divided into three groups: CB group

(PC, Vm, Vn, and Rm), NM group (k and ‘‘force’’), and

movement group (‘‘velocity’’ and ‘‘position’’).

The CB group shows that the behavior of the agonist

CB module 1 is the same as in the simulation of the previ-

ous section. After the initiation (the jump of Vm1
), CB

module 1 can generate a motor command. The antagonist

CB module 2 receives high inhibition from PC2 during the

programming period and no external stimuli to the MC

neuron. As a result, it is kept from generating an antago-

nist motor command.

The NM group shows the thresholds (k1 and k2) and

forces of the two NM modules. When receiving motor

commands from CB modules, NM modules need to first

translate the commands Rm into k according to the

inverse relation between k and Rm [see Eq. (7)]. In our

simulation, we apply a second-order low-pass filter to k
in order to accomplish a smoother transition. We sup-

pose that at rest (i.e., at the beginning of the simulation)

the muscle lengths of both NM modules are equal to

their corresponding ks, resulting in no forces. When the

agonist NM module 1 receives an active motor command

from its corresponding CB agonist module, its threshold

(k1) starts to decrease. The decreased threshold then

enables the agonist NM module to generate a force that

pulls the limb. While the limb is being pulled towards

the anchor position of the agonist module, the length of

the module, l1, becomes shorter. At the same time, the

length of the antagonist module 2, l2, becomes longer. As

a result, when l2 becomes larger than k2, the antagonist

module will also be able to generate a pull force, regard-

less of the fact that there is no active command from its

corresponding CB module. As long as the agonist force f1
is larger than the antagonist force f2, the velocity of the

limb will increase. When the two forces cancel out, as

illustrated by the intersection between the two force

curves, the movement velocity will reach its maximum.

After that, the velocity starts to decrease until the limb

comes to rest.

3.3. Movement Characteristics of a Pair
of CB-NM Modules
At the end of Section 2 (see Figure 9), we demonstrated

that the CB module command duration increases with an

increase in pause duration of PC inhibition (i.e., program-

ming duration), and that the command intensity remains

relatively constant as long as the PC value is below some

threshold. Here we are interested in investigating how this

result translates into movement. For a pair of CB-NM

modules we explore two relationships: (1) the relationship

between movement amplitude and PC programming dura-
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tion, and (2) the relationship between movement velocity

and the PC value of the agonist module.

To answer the first question, we fix the PC values of

the two CB modules to the same as in Figure 11 (i.e., 5

for the agonist module and 13 for the antagonist), but let

the PC pause duration vary from 100 to 400 ms. The

result is given in panel A of Figure 12. It shows that the

movement amplitude is well controlled by the PC pro-

gramming duration. The explanation of this result is that

the longer the PC programming duration, the longer the

FIGURE 11

Simulation of one-dimensional limb movement generated by a pair of agonist–antagonist CB-NM modules. The limb movement group includes two pan-
els: the time courses of the movement velocity and position. The bell-shaped profile of movement velocity shows the salient characteristics of rapid
movements [23]. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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command duration of the agonist CB module, and so the

longer the effective force duration of the agonist NM

module.

To answer the second question, we fix the PC pause

duration to 300 ms, but let the PC value of the agonist CB

module, p, change from 2 to 10. The result is given in

panel B of Figure 12. It shows that the movement velocity

is poorly controlled by the PC value of the agonist module:

when the PC value is below some threshold, the move-

ment velocity only increases a little bit as the PC value

decreases. The explanation is that the response intensity,

as illustrated in the right panel of Figure 9, remains nearly

constant when the PC value is under the threshold. In

summary, CB modules are able to control the amplitude

of a movement well, but they control movement velocity

poorly.

4. SIMULATING PLANAR MOVEMENTS
In this section, we build a toy limb plant model, controlled

by an array of CB modules, to simulate the center-out

task, a classic task used to study planar movements in dif-

ferent directions [24]. The task requires a subject (e.g., a

rhesus monkey) to move rapidly from a starting point in

the center of a workspace to one of eight radially symmet-

ric targets [Figure 13(A)].

Our limb NM model has eight NM modules, labeled

from 1 to 8 in Figure 13(B). As illustrated, each NM mod-

ule has a fixed anchor at the one end, and is attached to a

shared, movable limb mass at the other end. Using the

center starting point as reference, for each module we can

define a direction that points to its anchor from the cen-

ter; such a direction will be referred to as module direc-

tion. When receiving motor commands from CB modules,

the NM modules will generate forces that act in the mod-

ule direction on the limb mass to produce movement

[Figure 13(C)].

Unlike what we did in the previous section on sim-

ulating one-dimensional movements using Matlab, here

we use NetLogo [25] to simulate planar movements.

NetLogo is a free, cross-platform multi-agent modeling

tool that enables users to easily and quickly build their

models. It is particularly well suited for modeling com-

plex systems consisting of hundreds or thousands of

agents, thus making it possible to explore the connec-

tion between the micro-level behavior of individuals

and the macro-level patterns that emerge from the

interaction of many individuals. When CB-NM modules

are modeled as agents that can adapt their behavior

through feedbacks such as whether a desired target is

reached or not, we may model very complicated move-

ments while keeping the underlying CB-NM modules

as simple as possible.

The interface of our NetLogo implementation is given

in Figure 14 (see [26] for software). The interface

includes three panels: view (left-top), control (middle-

top), and plots (right and bottom). The view panel shows

how the limb object moves under the forces of the NM

modules; the control panel enables a user to set up vari-

ous parameters; and the plot panel gives various time

course plots.

FIGURE 12

Movement characteristics of a pair of CB-NM modules. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.
com.]
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We will explain in the next two subsections the mecha-

nisms of planar motor commands generation and how the

commands are transformed into planar movements.

4.1. Planar Motor Commands
The mechanism of motor command generation for eight

CB modules is similar to the case of one or two CB mod-

ules: they are programmed by an array of PCs and initi-

ated by a sensory stimulus. However, for multiple modules

such as eight CB modules, we need to specify: (1) how the

modules interact with each other; (2) how the PCs change

their values during the programming period; and (3) how

the motor command is initiated by a sensory stimulus.2 In

this article, the specification is based on the conceptual

schema described by Houk and Mugnaini [3].

Firstly, according to the Houk–Mugnaini schema, we sup-

pose that each CB module is reciprocally connected with its

adjacent modules. Let Vmi
and Vni

(i 5 1, 2, . . ., 8) denote

the membrane potentials of the eight MC and eight CN neu-

rons, respectively. Let w be the synaptic weight between an

MC and a CN in the same CB module (referred to as self-

weight), and v the weight between an MC (or CN) and the

CN (or MC) of adjacent modules (referred to as neighbor-

weight). The model of eight CB modules is given by3

_Vmi ¼"Vmi þwf ðVni Þþvf ðVniþ1 Þþvf ðVni"1 Þ"5

_Vni
¼"Vni

þwf ðVmi
Þþvf ðVmiþ1

Þþvf ðVmi"1
Þ"pi

(

ði¼1;2;...;8Þ

Secondly, we suppose that during the programming

period, the PC value of the ith module, pi, changes

according to

pi ¼ p̂ða" b cosðuiÞÞ:

In the equation, p̂ gives the high spontaneous discharge

of a PC before and after the programming period; it is the

same for all modules. The number yi is the angle between

the ith module direction (which is assumed to be the

same as the ith NM module direction defined above), and

the target direction which points from the starting center

to the target. For example, if the target is located at the

right-most position, then the angle between the target

direction and the module 1 (upward) is p/2. The two pa-

rameters a > 0 and b > 0 specify the range of PC values.

In our simulation, they are a 5 1.2, and b 5 0.9. The idea

behind the PC value specification is obvious: the more

aligned the target direction to a module direction, the

lower the PC value, resulting in less inhibition, the more

likely the motor command is initiated.

Thirdly, when motor commands are initiated by an

external sensory stimulus such as a visual cue of a target,

we suppose that only the CB module that is the most

aligned to the target direction is able to get stimulated;

that is, the membrane potential Vm of the module will get

a pulse-like jump. When two or more modules are equally

aligned, then a random one gets stimulated.

The top three plots on the right panel of Figure 14

show the time course of the activities of PC, MC (Vm), and

the motor command Rm in a simulation. The self-weight

w and neighbor-weight v are set to w 5 10 and v 5 5. In

the simulation, the target is the top-most one, module 1 is

best aligned with the target direction, followed by modules

FIGURE 13

(A) Illustration of the center-out task that requires a subject to move from the center (red dot) to one of the eight targets (squares). (B) A toy limb plant
model that involves eight NM modules attached to the limb mass in the center (blue hexagon). (C) In a simulation of the center-out task, the limb mass
moves to the right-most target under the forces of the eight modules.

2For two CB modules, because of its simplicity, we can spec-

ify them by hand.
3In the equations, Vm9 (or Vm0,Vn9 ,Vn0 ) is the same as Vm1

(or Vm8,Vn1 ,Vn8 ).
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2 and 8, and so on. From the figure, we can see that the

value of PC1 drops the most during the programming pe-

riod. When an external stimulus input arrives at 150 ms,

the membrane potential of module 1, Vmi , gets a pulse-

like jump, causing the membrane potentials of its neigh-

boring modules (modules 2 and 8) to increase. After

around another 50 ms, only the three most aligned mod-

ules (modules 1, 2, and 8) can reach the maximum of their

motor command intensity.

4.2. Transformation of Motor Commands into
Planar Movements
Our simulation involves eight modules, each being able to

generate a muscle force to pull the limb. When they pull

the limb of mass M in the planar space, the dynamics of

the limb movement can be described by

M€x ¼
X8

i¼1

" @li
@x

fi

In the equation, x 5 (x1, x2) is the position of the limb,

fi the pulling force from the ith module, and li the length

of the muscle of the ith module (see Figure 15).

Let ai 5 (ai1,ai2) be the anchor position of the ith mod-

ule, then the muscle length, li, is just the distance between

the limb object position, x, and the anchor position of the

ith module, ai. That is,

liðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 " ai1Þ2 þ ðx2 " ai2Þ2

q

Given the muscle length of the ith module, li, and the

threshold length, ki, the pulling force from the ith module

is then given by fi ¼ K ðli " kiÞ þ Bð_liÞ1=5 along the direction

of

" @li
@x

¼
ðai1 " x1Þ=li
ðai2 " x2Þ=li

 !

:

To be realistic, we require that both the force fi and

one of its terms, the elastic force K(li 2 ki), are always

nonnegative.

The module velocity, _li, can be converted, in terms of

(x1, x2), to

_liðxÞ ¼
@li
@x1

_x1 þ
@li
@x2

_x2 ¼
ðx1 " ai1Þ _x1 þ ðx2 " ai2Þ _x2

li
:

FIGURE 14

Interface of the center-out task simulation model. In the plots on the right, because of the symmetry along the direction of module 1 (or module 5),
there are three pairs of overlapped time courses: modules 2 and 8, modules 3 and 7, and modules 4 and 6.
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Thus, using the above limb movement dynamics

description, the transformation of the motor commands to

movements is completed.

4.3. Simulation of Planar Movements
The main purpose of our simulation is to investigate

whether movement directions are well controlled or not.

Figure 16 shows movement trajectories of reaching

each of the eight targets. The starting point for each

movement is at the center, and the target positions are

at the centers of the open squares. The position of the

limb mass at every 10 ms is shown as a dot. The result

shows that the movement directions are nicely con-

trolled by the motor commands from the eight CB

modules. It also shows that trajectories are straight-line

paths. This is expected because all targets and all

module directions are symmetric.

5. DISCUSSION AND FUTURE DIRECTIONS
The model of a microscopic loop between the MC and the

CN illustrated in Figure 2 has unique dynamics that mimic

those of the biological system for motor command genera-

tion. Three features of motor command generation that

have been challenging to comprehend from a neurophys-

iological perspective are matched by the nonlinear dynam-

ics of microscopic modules: (1) motor commands can be

programmed well in advance of the actual initiation of the

command; (2) commands that may continue for variable

durations can be initiated by a brief sensory input; and (3)

the durations of commands are controlled in an independ-

ent manner by inhibitory input from PCs in the cerebellar

cortex. Furthermore, the direction of planar movements

was well controlled by an array of eight modules.

5.1. Limitations of the Present Model
One primary feature of motor commands that the present

model does not capture is the large range of intensities of

discharge rate that has been observed biologically to con-

trol movement velocity [13]. We concluded in Sections 2

and 3 that this limited range of Rm results from our use of

the conventional neural network activation function, the

sigmoid function. That function not only limits the

expressed range of MC membrane potential Vm, but it fur-

ther flattens the resultant range of firing rates Rm. In [27],

Kim and Wu have shown that other simple activation

functions can overcome some of the limitations of the sig-

moid function. In the future, we plan to incorporate the

unique nonlinear properties of synapses mediated by

NMDA receptors [9]. These nonlinearities are expected to

have major useful influences on the nonlinear dynamics of

microscopic modules.

The loop between the MC and the basal ganglia (see

Section 1) was ignored in the present model. This loop is

particularly important in the embodiment of a particular

motor command [28]. By embodiment we mean the selec-

tion and/or the initiation of a particular command either

in response to a particular external stimulus (sensory

event) or in response to an internal contingency (a desire

to move). In this article, we assume that the loop through

the basal ganglia has already selected the sensory inputs

we simulated in Figures 8 and 11, thus allowing them to

initiate the command.

Another limitation of the present work is that in the

simulation some parameters that should be adjustable

FIGURE 15

Illustration of the eight muscles pulling the limb mass. [Color figure
can be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

FIGURE 16

Trajectories of reaching the eight targets in the center-out task.
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through experience were set to fixed values by hand. For

example, the durations of PC activity were set manually in

order for different targets to be reached which can be seen

from the movement trajectories shown in Figure 16. In

future work we plan to enhance the model with the ability

to learn to adjust the parameters so that the targets can be

reached with improvement by motor learning.

5.2. Modularity and Agent-Based Modeling
Understanding the mind as a modular system dates back

to the very beginnings of modern psychology and neuro-

science and is still the predominant theoretical approach

[4, 29, 30]. If modularity is the driving organizational

principle of the brain, then we can specify a research

question: given a particular computational goal of the

brain, what are the sizes, structures, purposes and forms

(anatomical or functional) of the modules involved? In

this study we approached this question in a bottom-up

fashion by modeling the dynamic processes that give rise

to voluntary motor commands using the DPM framework

espoused in [2]; this approach can lead to modular mod-

els that enable a deeper understanding of the neural

computations underlying thinking (see Section 1 and

[28]). Voluntary motor commands are achieved through

the aggregate behavior of a large number of microscopic

modules; each of these modules generates the individual

limb motor commands that are sent from brain cells, in

the MC and red nucleus, to the spinal cord. This array of

microscopic modules forms a macroscopic module that

is capable of directing complex movements of the arm.

Macroscopic modules like this are the basic ingredients

of DPMs [2].

Each of these microscopic modules can be thought

of as an agent with its own properties and actions.

This is useful because the system as a whole can then

be considered to be a multi-agent system. A multi-

agent system is a set of autonomous agents each act-

ing individually based on local information. In combi-

nation, these agents are capable of achieving global

goals. Moreover, each macroscopic module can be

regarded as an individual agent which is comprised of

multitudes of microscopic agents. In other words, the

macroscopic modules are multi-agent systems of mi-

croscopic agents, and these macroscopic modules are

themselves part of a larger multi-agent system. Multi-

agent systems have proven useful in examining a wide

variety of natural phenomena from the behavior of ant

colonies to collections of gas molecules to the organi-

zation of financial markets [31]. Our current under-

standing of the emergent behavior (behavior which

emerges from the interactions within multi-agent sys-

tems) of decentralized systems is in large part made

possible by agent-based modeling. Agent-based models

have not been previously used in neuroscience to

understand the concerted activity of brain modules in

the generation of motor commands. By taking advant-

age of the modularity of the neural system, we can

leverage agent-based modeling to create powerful

descriptions of the complex neural system. Such an

approach provides an exciting and promising avenue

for testing hypotheses about the modular organization

and functioning of the motor system. Using a prelimi-

nary agent-based model, we have presented evidence

that CB modules acting together provide an appropri-

ate computational framework for generating essential

properties of motor behavior.

6. CONCLUSION
We have presented a computational model that is

inspired by converging evidence regarding the anatomy

and functioning of the neural substrate for generating

voluntary limb movements. This evidence points to the

existence of a modular neural system composed of cort-

ical and subcortical brain regions that act in a con-

certed fashion to produce motor commands. However,

because of the current limitations of experimental neu-

roscience, little is understood about how these highly

nonlinear modules actually function. Here we have

taken a theoretical approach based on nonlinear dy-

namics for testing extant hypotheses about how such a

system controls voluntary movements. Our model of a

single CB module generates simulated neural dynamics

that are consistent with salient physiological evidence.

Further, we have demonstrated using an agent-based

modeling approach that a collection of CB modules is

capable of reproducing motor behavior that is often

studied in movement psychophysics. Taken together,

these results provide a promising theoretical framework

for understanding the fundamental neurobiological

mechanisms that underlie the control of voluntary limb

movements.
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