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Abstract

To gain a deeper understanding of the impact of spatial embedding on the
dynamics of complex systems we employ a measure of interaction complex-
ity developed within neuroscience using the tools of statistical information
theory. We apply this measure to a set of simple network models embedded
within Euclidean spaces of varying dimensionality in order to characterise the
way in which the constraints imposed by low-dimensional spatial embedding
contribute to the dynamics (rather than the structure) of complex systems.
We demonstrate that strong spatial constraints encourage high intrinsic com-
plexity, and discuss the implications for complex systems in general.
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1. Introduction

From its outset, complexity science has concentrated on how simple prop-
erties can give rise to complex organisation and behaviour. The interplay
between, inter alia, non-linear, local interactions, physical constraints, noise,
and processes of copying or competitive exclusion have been shown to give
rise to self-organisation, auto-catalysis, path dependence, and emergent be-
haviour in many different ways [20, 19]. Most real-world complex systems
are spatially extended systems. For example, nervous systems, ecologies,
economies, cities, etc., all exhibit multiple scales of spatial organisation. The
impact that this spatial embedding has on the behaviour of these systems
is not well-understood. In particular, the role of spatial constraints in influ-
encing the ability of these systems to exhibit organised behaviour is an open
question.
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It is clear that projecting a system of interacting elements into a low di-
mensional space such that interactions tend to occur only between elements
that are near to one another must restrict the possible ways in which the
system elements can be “connected”. This restriction might be viewed as
a frustrating constraint that prevents, or at least mitigates against, useful
kinds of organisation that rely upon “long-range” connections. However,
embedding a system’s interactions within a space also imposes potentially
useful local correlations and symmetries on its organisation “for free”. In
fact, studies show that spatial embedding of this kind can predispose sys-
tems to exhibit behaviour that would otherwise be unstable [8, 14]. Might
the constraints imposed by low-dimensional spatial embeddings actually be
critical to enabling complex systems to arise and persist? This notion casts
spatial constraints as potentially “enabling” rather than frustrating, in that
they might naturally steer or bias a system’s organisation in a potentially
useful fashion [11].

Here we are interested in the relationship between spatial constraints,
network topology, and interaction complexity, an information-theoretic mea-
sure developed in order to characterise the way in which both vertebrate
and invertebrate nervous organisation might influence nervous function [34].
Before we introduce this measure, we first briefly describe some examples
of the way in which space can influence network dynamics. By applying
an approximation of the interaction complexity measure to a simple spa-
tially embedded network and varying the dimensionality of the space, we
characterise and explain the relationship between the structural properties
conferred by spatial embedding and any attendant influence on interaction
complexity. We conclude with a discussion of the implications for complex
systems in general.

2. Networks in Space

The recent explosion of interest in the “new science of networks” [22, 7, 21]
has focused attention on the application of graph-theoretic approaches to the
characterisation of natural and engineered systems. While the influence of
space was at least implicit in certain of the first graph structures discussed
and employed in this literature, its contribution has only started to be sys-
tematically explored relatively recently [23, 4].

For instance, Stanley Milgram’s now infamous demonstration of the “six
degrees of separation” that apparently link members of society to each other
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through mutual acquaintance relies upon space [37]. The instruction to each
of Milgram’s experimental subject was to deliver a package to a person identi-
fied only by name and place of residence. Subjects were thus clearly required
to combine their social and geographical knowledge to meet this challenge.
The role of spatial knowledge and the spatial structure of social networks is
not often recognised in discussion of the surprisingly short routes that the
successfully delivered packages took.

Here we wish to explicitly explore the relationship between spatial em-
bedding and the properties that it confers on both the network topology of
complex systems and their consequent behaviour. Several modelling studies
suggest that this relationship may be significant. We describe two below.

Boerlijst and Hogeweg [8] demonstrate the power of spatial embedding
in their model of molecular self-organisation in “hypercycles” [15]. A hy-
percycle comprises a set of molecular species, where each species supports
the persistence of some of the others and, in total, they achieve the persis-
tence of the entire set. While such organisations appear to offer a route by
which persistent co-operative collaboration might arise spontaneously, Such
organisations can be parasitised by free-riding molecular species that benefit
from interacting with some member(s) of the hypercycle, but do not support
the hypercycle’s persistence in return. In Boerlijst and Hogeweg’s model
parasitisation of this kind destroyed hypercycles when the population was
well-mixed (i.e., non-spatial). When the same system of molecular species
was embedded within a lattice such that individual molecules could only in-
teract with their close spatial neighbours, the hypercycles that arose were
spatially organised as rotating spirals and were also able to resist parasites.

Di Paolo [14] shows the importance of spatial embedding for complex
organisation in a somewhat different context. He shows that an altruis-
tic behaviour is unstable in a well-mixed non-spatial model: exploitation
quickly undermines any tendency towards co-operation. However, the same
altruistic behaviour is prevalent in the same model when individuals are dis-
tributed across a two-dimensional continuous plane. When their interactions
are spatially constrained, individuals spontaneously organise into clusters of
altruistic individuals, each surrounded by an annulus of non-altruists.

In both of these studies, systems were able to achieve a sophisticated
mode of functional organisation only when they were embedded within a
low-dimensional space. No such organisation could persist when the sys-
tem’s components were entirely well mixed and its interactions were, as a
consequence, unconstrained. What of systems that lie between these two
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extremes? The notion of exploring systems that lie between order (e.g., a
lattice) and disorder (e.g., a random graph) is familiar within complexity
science since complexity measures typically seek to capture the nature of
systems that are neither completely random nor completely regular. A fa-
miliar rhetorical device is taken from the statistical mechanics of gases and
crystals. While the low-level organisation of a gas can be idealised as random
and that of a crystal can be idealised as regular, the aggregate behaviour of
each is readily derivable. For intermediate systems at the phase transition
between solid and fluid, however, this relationship is less clear. Complexity,
it is claimed, exists in this middle ground between order and disorder [19].

Here, we explore the behaviour of systems that lie between the two ex-
tremes reported by Di Paolo and Boerlijst and Hogeweg by relaxing the con-
straints imposed by spatial embedding through increasing the dimensionality
of the metric space within which the network nodes are located. As the di-
mensionality increases (while the density of connections is held constant) the
spatially imposed correlations amongst the system’s interactions diminish,
until, in the limit of an infinite dimensional space, a random, uncorrelated
graph is achieved, equivalent to a well-mixed system.

Since we are interested in the complexity of the interactions between
the elements described by such a network, rather than the structure of the
network itself, we employ of measure of interaction complexity developed
within neuroscience and described in the following section.

3. Interaction Complexity

Central to cognitive processing within the nervous system is the ability
of the brain to integrate distributed information in order to produce coher-
ent cognitive behaviour. For example, information from audio, visual and
olfactory input must be successfully integrated and used to inform subse-
quent motor output [34]. In contrast, a great deal of experimental work
demonstrates that separate neural regions are specialised and hence quasi-
independent. For instance, in the mammalian brain different neural areas
are functionally specialised for detection of visual attributes such as shape,
motion and colour.1 Neural systems must balance this functional segregation

1It is interesting to note that neuroscientists have been convinced that spatial organ-
isation of this kind is implicated in the complexity of neural behaviour since the first
staining technologies began to reveal the structure of animal brains [40, 27] and that spa-
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at the level of neural modules with the requirement for functional integration

at the level of the organism. Tononi, Sporns and Edelman [34] proposed
an interaction complexity measure that captures this tension within a single
metric.

In this paper we will refer to this measure as TSE complexity. We describe
it as a measure of interaction complexity since it is principally concerned
with capturing the nature of the interactions amongst parts of a system
rather than the static structure of the system, per se. Despite being con-
ceived within a specific neuroscience context, TSE complexity has received
widespread attention across the behavioural and brain sciences, from fields
as diverse as autonomous robotics [26], neural imaging [16, 30], local dy-
namics of the mammalian brain [28] and the exploration of theories of sleep,
consciousness and schizophrenia [32].

TSE complexity is derived (see [34, 35, 36, 29]) by considering an isolated
set of n“neural components” (nodes for brevity) and a stationary multivariate
stochastic process X(t) ≡ {Xi(t)| i = 1, . . . , n} running on the system, where
Xi(t) is to represent the activation state at time t of the ith node. Firstly the
integration associated with the system is introduced:

I ≡
n

∑

i=1

Hi − H (1)

where H denotes the entropy H(X(t)) of the full process X(t) and Hi the
entropy H(Xi(t)) of the individual activation Xi(t). Note that by stationarity
these quantities and hence I itself do not depend on time t. I may be
interpreted as a measure of the deviation from independence of the individual
components of the system. TSE complexity is then defined to be:

C ≡
n−1
∑

k=1

(

k

n
I − 〈I〉k

)

(2)

=

n−1
∑

k=1

(

〈H〉k −
k

n
H

)

(3)

where 〈·〉k denotes an average over all subsystems of size k. In the special case

tial constraints have recently been invoked to account for the circuit complexity of cortical
structures [12].
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where the X(t) are multivariate Gaussian, the entropy H may be expressed

simply in terms of the n × n covariance matrix Ω ≡ X(t)⊺
X(t), where the

over-bar represents an average over the statistical ensemble [13]. Again, by
stationarity Ω does not depend on time t. We then have H = 1

2
ln ([2πe]n |Ω|)

so that:

C =
1

2

n−1
∑

k=1

(

〈ln |Ω|〉k −
k

n
ln |Ω|

)

(4)

Like other notions of complexity, this measure is low when either all
elements are independent and hence completely segregated, or the system is
completely integrated. Complexity is maximal in a system that is globally
integrated at the level of large subsystems, but simultaneously exhibits a
high degree of segregation between smaller subsystems.

Tononi et al. [34] consider an n × n connectivity matrix, C, where Cij

is to be interpreted as the weight on the connection from (efferent) node i
to (afferent) node j, and a linear regressive neural process X(t) driven by
uncorrelated Gaussian noise. However, there is an error in their calculation
of the covariance matrix. In [2] this error is corrected via introduction of the
continuous time multivariate Ornstein-Uhlenbeck process [38]:

dX(t) = −X(t) · (I − C) dt + dW(t) (5)

where I is the identity matrix and W(t) a multivariate Wiener process
with identity covariance matrix2. Eq. (5) may be viewed as a linearised, noisy
Continuous Time Recurrent Neural Network (CTRNN) with I corresponding
to a leak current term [5, 6, 17]. X(t) will then be multivariate Gaussian so
that (4) applies. The condition for stationarity of (5) is shown to be:

Re(λ) < 1 for every eigenvalue λ of C (6)

and the covariance matrix Ω is shown to satisfy:

2Ω = I + C⊺Ω + ΩC (7)

Several subsequent statistical measures derived from information theory
have attempted to quantify properties analogous to complexity. These in-

2Note that the noise input to different nodes is uncorrelated. If we allow noise levels

to differ per node, then we may recover an equivalent equation to (5) by a simple linear
transformation of the connectivity matrix and a rescaling of activation levels.
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clude information integration and causal density. Information integration,
φ, is defined as the effective information across the bipartition of a network
that exhibits the least mutual information [33] and has been extended re-
cently [31]. Here a balance between integration and segregation is captured
as the lower bound of the potential for a system to integrate information.
In contrast, while causal density [24] also has its foundations in information
theory, it is developed from the notion of Granger causality [18] rather than
mutual information. Granger causality is a statistical measure of causality
in which a causes b if knowledge of the history of a helps predict the future
of b more than knowledge of the past of b alone. Causal density is calculated
as the fraction of interactions among elements that are Granger casually sig-
nificant. Again, like TSE complexity, it is argued that high causal density
indicates the presence of globally integrated but dynamically independent
elements [25].

Despite their wide application, a comprehensive understanding of the
behaviour of these measures and how they relate to one another has yet to
be established. Initial work in this vein considering the relationship between
network structure, dynamics and complexity is reported in [10, 2, 1].

4. A Simple Model

Here, we explore ensembles of spatially constrained networks each con-
structed over 128 nodes distributed uniformly in hypercubes of various di-
mensionality, varying the length scale of the interaction between the nodes.
Note: in order to control for the average distance between nodes varying with
the dimensionality, d, of the hypercube within which they are embedded, we
preserve the average magnitude of spatial relationships between pairs of nodes
by scaling all distances by 1/

√
d. We employ continuous-valued connection

matrices to represent weighted connections between pairs of nodes given by
ωij = exp(−|rj − ri|/σ). Where, |rj −ri| is the distance between nodes i and
j. Connection weights between pairs of nodes thus fall off exponentially with
distance at a rate which is defined by the interaction length, σ.

Fig. 1 shows how complexity, C, varies with the log of the interaction
length, log10 (σ). The first point to note is that for low-dimensional spaces,
complexity rises and falls with interaction length.3. As the dimensionality

3Since the covariance matrix of a 1-d lattice is of Gaussian Toeplitz form, this agrees
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Figure 1: Plots of complexity versus the log of the interaction length, log10(σ), for networks
embedded within 1-d, 2-d, 3-d, and 128-d hypercubes. All networks comprise N = 128
nodes, with 30 networks being generated for each data point. Solid curves represent
the mean complexity, C, of spatially embedded systems with continuous weights varying
inversely with distance. Dotted and dashed lines indicates the complexity of networks
derived from two null models in which aspects of spatial organisation are extinguished
(see text). Grey vertical lines mark the peaks of complexity for discretised networks
with the same interaction length, which agree well with the peak in complexity for the
associated continuous system. The scaled number of discretised network components is
also presented (circles), falling from N (a totally disconnected system) to unity (a super
cluster).

of the space increases, and the strength of spatial constraints weaken, peak
complexity is reduced, until the contribution of space disappears.

Consider first the case of nodes embedded in a low-dimensional space.
Where σ is very small, even the closest nodes are far enough apart that the
weighted connection between them is of negligible strength. Consequently the
network comprises a number of effectively isolated units with low interaction
complexity due to the lack of network integration. As the interaction length

with previous results demonstrating that scaling in such matrices is associated with a rise
and fall in complexity [34].
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increases, connection weights between nearby nodes begin to increase, and
islands of strongly connected nodes are obtained. As a consequence, inter-
action complexity increases. Eventually, interaction length increases to the
extent that all network nodes are close enough to each other to be strongly
connected. Although the dynamics on such a network are strongly integrated
at the level of the whole, interaction complexity is low since there is little or
no functional segregation at the level of the parts.

Each plot in fig. 1 also presents values of complexity for two null models
in which some aspect of the spatial structure inherent in the original spatially
embedded networks is extinguished. In this way we are able to decompose
the contribution of spatial embedding to a network’s interaction complexity.
First, dotted lines represent the complexity of networks in which each node
retains the same distribution of afferent connection strengths as in the orig-
inal network, but these weighted connections are randomly assigned rather
than determined by spatial proximity. To achieve this, the entries of each
row in the original weight matrix are shuffled, preserving the values of a
node’s afferent weights (and their sum) but assigning them at random to
the population of nodes. Dashed lines represent the complexity of networks
generated by a second null model in which the connection strengths of the
original spatial networks are shuffled as before, but in a manner that pre-
serves reciprocity (i.e., ωij = ωji). Should a shuffle swap matrix element ωij

with ωi′j, we must also swap elements ωji and ωji′. Note: in this case the
sum of the magnitude of the afferent weights may not be preserved.

To a significant degree, the effect of spatial organisation on complexity
is clearly accounted for by the reciprocal nature of spatial interactions (and
to a larger degree than the mere distribution of afferent weights). However,
particularly in low dimensions, the impact of spatial constraints exceeds that
of mere reciprocity, suggesting that higher-order structures are significant
(see [2] for a complete account).

Why do we see a peak in complexity at a particular length scale for each
value of d? In fact, this peak coincides with a particular degree of network
“connectance”. To demonstrate this, we discretise each weighted, spatially
embedded network, by reinterpreting each entry in the weight matrix as the
probability that a pair of nodes will be connected with a weight equal to
unity. In this way, each continuous matrix can be mapped to an ensemble
of binary networks from which a random sample can be drawn and their
properties calculated. For each binary network, we enumerate the number
of disconnected network components (isolated fragments of network). As
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this value falls to unity with increasing σ, the graph is becoming completely
connected, indicating the onset of a single giant component or super-cluster
[9, 39]. Fig. 1 shows that maximal complexity coincides with the onset of
this giant component in the binary ensembles. The grey vertical line also
indicates that maximal complexity of the binary networks themselves agree
with that of the continuous weighted networks from which they are derived.
These results suggest that complexity is associated with the achievement of
a single strongly coupled component in a continuous network. Furthermore
the interaction length required for onset of the strong component (and thus
high complexity) increases with increasing spatial dimensionality.

5. Discussion

Results here demonstrate that spatial constraints on connectivity con-
tribute directly to interaction complexity. A network comprising a uniform
random distribution of locally connected nodes enjoys increased complexity
as a result of the strong spatial constraints imposed by a low-dimensional em-
bedding. As these constraints are relaxed (by increasing the dimensionality
of the space) or eroded (by shuffling the connection strengths), complexity
falls. The pairwise reciprocity of spatial network connectivity (itself stem-
ming from the fact that the distance from node i to node j must be equivalent
to the distance in the reverse direction) is strongly implicated in the elevated
complexity of spatially embedded networks, but does not entirely account for
it. Rather, the property stems from spatial embedding imposing correlations
at several topological scales4.

Interestingly, our results also suggest that high network complexity is as-
sociated with the onset of a strongly coupled super-cluster. The fact that the
coupling strength required for its onset is much smaller in networks embedded
within low-dimensional spaces suggests that stronger spatial constraints may
make high complexity achievable with fewer/weaker network connections.

Open questions that could be addressed in further work include the fol-
lowing. Which graph-theoretic properties of the supercluster are associated
with high complexity, e.g., it’s size, clustering coefficient, modularity, etc?
To what extent do the results presented here carry over to networks where,

4In [3] we are able to show, using a graph-theoretic analysis, that the TSE complexity
measure is directly dependent on the frequency of loop motifs within the network.
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in general, ωij 6= ωji, but there remains an influence of spatial separation on
node connectance.

6. Conclusion

Here we have demonstrated that spatially constrained network topologies
exhibit complexity that differs from equivalent random non-spatial graphs.
We have shown how spatial structure can impact on interaction complexity
via its influence on topological structure. In summary, the inherent con-
straints imposed on a system by projecting it into a low-dimensional space
can be enabling for complexity in that these constraints predispose systems
to exhibit elevated levels of complex interactivity for free.
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