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Abstract

Many natural and technological systems are complex, with organ-

isational structures that exhibit characteristic patterns, but defy con-

cise description. One effective approach to analysing such systems is

in terms of repeated topological motifs. Here, we extend the motif

concept to characterise the dynamic behaviour of complex systems

by introducing developmental motifs, which capture patterns of sys-

tem growth. As a proof of concept, we use developmental motifs to

analyse the developmental cell lineage of the nematode Caenorhabditis

elegans, revealing a new perspective on its complex structure. We use

a family of computational models to explore how biases arising from

the dynamics of the developmental gene network, as well as spatial

and temporal constraints acting on development, contribute to this

complex organisation.

Keywords: cell lineages, development, gene regulatory networks,generative

bias, motifs
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1 Introduction

Many natural and technological systems—cellular networks, human language

and societies, communication networks—exhibit structures and behaviours

that are, in some fashion, organised [1–8]. While the precise details of each

system’s structure differ, certain topological features, such as feedback loops

and hierarchies, appear in a variety of contexts [9]. Despite the presence of

these recurring patterns, the organisation of these systems is not simple and

their global structures resist concise description [10]. Evidence suggests that

the structure of complex systems has implications for their functional proper-

ties, such as robustness and flexibility [11]. An important goal is therefore to

untangle the relationship between a system’s structure, dynamics and func-

tional behaviour. A first step towards this goal involves characterising the

complex structures that systems exhibit and identifying their origins.

Complex systems are typically not spontaneous assemblies of disjoint

components; rather, they grow and unfold according to the dynamics of

some generative process, operating in the context of the system’s local envi-

ronment. For example, an organism’s morphology is a result of chemical and

genetic processes taking place within cells, direct interactions between neigh-

bouring cells, and chemical signalling between distant cells [12]; language

competence arises as a product of learning mechanisms operating within a

language community [13]; and the structure of the internet has evolved via

a set of socio-technological growth mechanisms [1, 14]. The generative pro-
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cesses responsible for producing complex systems can bias the range and type

of structures that are observed [15–18].

Efforts to analyse the growth of complex systems are complicated by the

fact that more recent structures tend to overwrite older structures, leaving

little record of growth patterns. One class of complex biological system for

which we do have rich data sets is nematode development. The develop-

mental trajectories of several nematodes, such as Caenorhabditis elegans, are

invariant and have been mapped in considerable detail in the form of cell lin-

eages [19–22]. A cell lineage is a schematic representation of a developmental

process that describes the ancestry of all cells generated during an organism’s

development in terms of patterns of division and differentiation events. Cells

are positioned in a lineage according to their division orientation; by conven-

tion, cells dividing in the anterior, left or dorsal directions are positioned to

the left of cells dividing in the posterior, right or ventral directions. Thus,

while cell lineages omit precise details of developmental morphology, they

retain a clear record of the genealogical relationship between cells.

A notable feature of the C. elegans cell lineages is its complex topology:

cells of a particular type are distributed throughout the various sublineages,

while any one sublineage can contain multiple cell types. Upon mapping the

cell lineage, Sulston concluded that “the assignment of cell function follows

certain broad rules to which there are numerous exceptions” [22]. The extent

to which nematode cell lineages can be accounted for by a surprisingly small

set of rules has since been revealed [23]. However, a clear understanding
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of how to describe and account for the organisation of cell lineages remains

elusive. Some features will surely be the result of selective pressures; however,

others may emerge from the intersection of biases and constraints operating

on the developmental system.

In this paper we introduce an analytic tool, developmental motifs, that

provide a novel perspective on the relationship between generative processes

and cell lineage topology. We build upon the concept of network motifs: the

“recurring, significant, patterns of interconnections” observed in a variety of

complex networks [9, 24]. Network motifs were introduced to reveal patterns

of meso-level structure in complex networks. By analogy, developmental

motifs are the repeated topological patterns that occur in lineages. In the

context of cell lineages, motifs represent patterns of growth, rather than

patterns of structure, and enable us to quantify the extent to which a lineage

is regular or random across multiple organisational scales.

Developmental motifs, together with their application to cell lineages, are

described in the following section. As a proof of concept, we use develop-

mental motifs to analyse the cell lineages of C. elegans and related species,

revealing the presence of a broad distribution of motif frequencies. We then

use a suite of computational models to explore the role that generative biases

and contextual constraints play in shaping the topology of cell lineages.
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2 Developmental motifs

A cell lineage represents a developmental trajectory in the form of a binary

tree. The root node of the tree represents the fertilized egg cell, the non-

terminal nodes represent the transient states that cells pass through while

differentiating, and the terminal nodes represent the final differentiated cells.

The topology of the tree describes the genealogical relationship between all

of the cells that existed at some point during development. We propose

developmental motifs as a tool for describing this topology.

A developmental motif is a rooted binary tree of depth d, where d is typ-

ically small with respect to the depth of the entire cell lineage. Each leaf

node of the motif is labelled as either terminal or non-terminal, correspond-

ing to its status in the original lineage. The set of d-motifs consists of all

possible motifs of depth d. For example, the set of 1-motifs contains only two

members—a terminal node and a non-terminal node—while there are four

possible 2-motifs and twenty-four possible 3-motifs (Figure 1). Each cell in

a lineage that is at least d − 1 cell divisions away from a terminal cell can

be associated with a d-motif. The d-motif profile of a lineage is a frequency

distribution over d-motifs appearing in that lineage (Figure 2). By extension,

the d-motif profile of an ensemble of lineages is the frequency distribution

of d-motifs appearing in all lineages in that ensemble. Taken as a whole,

the distribution of profile sizes over motif depth (d) provides a signature of

topological regularity of a lineage (or ensemble of lineages) across multiple

6



scales. For example, the profiles of very regular lineages would be expected

to contain few distinct motifs, even at greater depths, while those of less

regular lineages would display greater diversity.

While focusing here on cell lineages, we also recognise the presence of tree-

like organisation in other complex systems, such as phylogenetic trees [25]

and linguistic structure [26]. In other domains it may be appropriate to

consider motifs that are n-ary, rather then binary, trees; however, the general

principles of the approach remain valid.

3 Motif profile of C. elegans and other nema-

todes

What does the developmental motif profile of a real organism look like?

The C. elegans hermaphrodite consists of 671 cells at hatching, and has a

complex topology. Critical events during the first few cell divisions establish

well-characterised sublineages that display modular and recursive patterns:

cells of any one type are distributed throughout the various sublineages, while

any one sublineage can contain cells of multiple types. [22, 23].

We computed the 3-motif profile of the C. elegans lineage, revealing a

heavy-tailed distribution (Figure 3). Of the 24 possible motifs, 21 are present,

but most occur infrequently, with the four most frequent 3-motifs account-

ing for 77.6% of the lineage. The qualitative features of this distribution—its

breadth and long tail—are robust to several variations of the experimental
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conditions, and are common to the lineages of related species. We computed

additional profiles using deeper motifs (Figure 4A), motifs distinguished on

the basis of cell type (i.e., typological as well as topological patterns, Fig-

ure 4B – triangles), and motifs that ignore the orientation of cell division

(such that isomorphic motifs were merged, Figure 4B – crosses). We also

computed the motif profiles of two other nematode lineages, Pellioditis ma-

rina [19] and Halicephalobus gingivalis [20] (Figure 4C). In all cases, while

minor differences were observed, the general shape of the motif profile is

preserved.

4 Generative models of cell lineage develop-

ment

4.1 A stochastic model of development

In what way are the motif profiles observed in the lineages of C. elegans

and related species distinctive? Consider that any ensemble of randomly

chosen 671-cell lineages will exhibit a motif profile with some characteristic

distribution (a “null profile”). This null profile will not be uniform, as the

occurrence of motifs is not independent, and some bias will arise from the

constraint on cell number. For example, the proliferating 3-motif (labelled

A in Figure 3) will be overrepresented in most large lineages. Furthermore,

as motif depth increases, the number of possible motifs scales as a double
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exponential (see Appendix A), making it increasingly unlikely that every

possible motif will be represented.

The approach that we take to identifying a suitable null profile is to

consider the profile resulting from a minimal generative process: a stochas-

tic model in which each cell division is an independent random event [27].

The model is described fully in Appendix B and Figure 5 shows an exam-

ple stochastic lineage. We used this model to create an ensemble of 1,000

lineages, each containing 671 terminal cells.

Lineages generated by the stochastic model contained a greater diversity

of topological patterns than the C. elegans lineage: for motif depths greater

than three (d > 3), each stochastic lineage required significantly more motifs

to describe than the C. elegans lineage (Figure 6A). Given the rapid in-

crease in number of possible motifs as motif depth increases, the probability

of observing repeated motifs by chance decreases. The appearance of such

repeated motifs in the C. elegans lineage therefore suggests a greater level of

topological regularity compared to stochastic lineages of an equal size.

4.2 A dynamic regulatory network model of develop-

ment

What is the source of this regularity in the C. elegans lineage? Research into

morphogenetic pattern formation has shown that complex but regular pat-

terns can result from relatively simple developmental mechanisms [12, 28, 29].
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One important developmental control mechanism is the gene regulatory net-

work in each cell [30]. To investigate the extent to which such developmental

mechanisms can account for lineage regularity, we created a second ensem-

ble of lineages using a generative model in which patterns of division were

governed by the behaviour of a dynamic regulatory network.

The model gene network used to create developmental lineages was based

on a dynamic recurrent network architecture [31, 32] that has been widely

used to simulate the dynamics of gene expression [33–35] and the creation

of artificial cell lineages [16, 36–38]. The dynamic regulatory network and

developmental model are described fully in Appendix B and Figure 5 shows

an example developmental lineage. An ensemble of 1,000 lineages was created

using the developmental model with N = 32;K = 8;λ = 0.225. These

parameters were chosen on the basis of initial trials to increase the likelihood

of obtaining lineages containing approximately 671 cells.

The lineages produced by the developmental model were more regular

than both the C. elegans lineage and those generated by the stochastic model:

while 20 out of the 24 possible 3-motifs were represented across the entire

ensemble of developmental lineages, each individual lineage contained only

a small subset of these (five or six on average; Figure 6B). The C. elegans

lineage therefore appears to share structural characteristics with both devel-

opmental and stochastic lineages: like a developmental lineage, much of it

can be accounted for by a small number of motifs; like a stochastic lineage,

it requires a much larger number of motifs to describe fully (Figure 7).
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5 The influence of contextual constraints

Neither the stochastic nor the developmental model recover the broad distri-

bution of motifs observed in the C. elegans lineage, nor the same multiscale

regularity signature. What is missing? One likely explanation for this ob-

servation is that the gene network of C. elegans, with approximately 20,000

genes, is much more complex than the networks used in our simulations, and

that different subnetworks might operate in different sublineages. Another

possible explanation is that the gene network is not the only force shaping

the cell lineage topology. Consider that the development of C. elegans is sub-

ject to specific spatial and temporal requirements, both globally—embryonic

development must be completed inside the boundaries of the egg, before it

hatches—and locally—all gut cells must be co-located within the embryo, for

example [22]. In this section, we explore the possibility that some of the

ways in which the C. elegans lineage departs from the stochastic and devel-

opmental models systematically reflect the influence of these spatio-temporal

constraints.

5.1 A temporal constraint on the duration of develop-

ment

A notable feature of nematodes is the speed of their embryonic development,

possibly selected to reduce the duration of this vulnerable period, or to allow

rapid colonisation of ecological niches [19]. The two most frequently observed
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motifs in the C. elegans profile are the proliferating motif, in which none of the

four terminal cells differentiate, and the terminating motif, in which all four

terminal cells differentiate (motifs A and B in Figure 3). The high frequency

of these particular motifs is a consequence of the inherently proliferative

nature of early C. elegans development [22]. We therefore investigated the

effect of a temporal constraint on the duration of development, as reflected

by cell lineage depth.

We added a temporal constraint to the stochastic and developmental

models described above by scaling the probability of cell division events to

be inversely proportional to the depth of the cell (described in Appendix B;

Figure 5 shows example scaled lineages). Again, two ensembles of 1,000 lin-

eages, each containing 671 terminal cells were created (parameters for scaled

developmental model: N = 32;K = 8;λ = 0.425). The resulting lineages

proliferated earlier and were correspondingly less deep; model parameters

were chosen to achieve a distribution of cell depths approximating that of

the C. elegans lineage (Figure 8). In the case of the stochastic model, the

temporal constraint reduced motif diversity, as the reduction in depth re-

duced the number of deep motifs contained in each lineage. However, the

scaled stochastic profiles remained consistently more diverse than those of

C. elegans for all motif depths (Figure 6A). In contrast, the temporal con-

straint increased motif diversity in the developmental model, as the deep but

regular lineages produced by the standard variant were no longer possible,

and the resulting lineages contained a wider variety of topological patterns
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(Figure 6B).

5.2 A spatial constraint arising from the dimensional-

ity of development

As noted above, cell divisions in C. elegans can be classified as occurring

on either the anterior-posterior, dorsal-ventral or left-right axis [22], a dis-

tinction that has not thus far been incorporated in our analysis. The three-

dimensional orientation of cell division plays an important role in C. elegans

development by facilitating signalling events that establish and maintain the

bilateral symmetry of an initially asymmetric embryo [19, 21, 22], as reflected

in the complementary motifs exhibited by its lineage (e.g., motifs C and D

in Figure 3). By contrast, divisions in the lineages produced by the develop-

mental and stochastic models are one-dimensional. In fact, examination of

the developmental lineages revealed that all proliferation events were oriented

identically (i.e., individual developmental lineages were observed to contain

either motif C or motif D in Figure 3, but not both), substantially reducing

the number of potential motifs that each lineage could contain (Figure 9).

To investigate the effect of a spatial constraint arising from the dimension-

ality of development, we modified lineages created by the scaled stochastic

and developmental models by reorienting a subset of cell divisions, such as

may occur in a three-dimensional environment. Reversing the orientation of

randomly chosen divisions left the scaled stochastic profiles unchanged, as

13



complementary motifs were already present (Figure 6A). However, for the

scaled developmental profiles, reversing the orientation of as few as one in

twenty divisions (a proportion comparable to the frequency of non anterior-

posterior divisions in C. elegans) introduced complementary motifs at each

depth that resulted in a profile signature comparable to that of C. elegans

(Figure 6B). While the generated lineages are not identical to the C. elegans

lineage, they share a common distribution of topological regularity across

multiple scales.

6 Discussion

In this paper, we have demonstrated how the concept of motifs, originally

used to analyse system structure, can also be applied to patterns of dy-

namic behaviour; here, the cell lineages arising from biological development.

Analysing structures in terms of developmental motifs enables us to charac-

terise the extent to which an system’s organisation is regular or random. The

motif profiles of C. elegans and related species are heavy tailed: Much of their

structure follows a regular pattern; however, the exceptions to this pattern

are not random and independent, but exhibit regularities of their own. We

suggest that the distribution of motif profile sizes across motif depth (Fig-

ure 6) constitutes a signature of the topological regularity of a lineage across

multiple scales. Comparing the C. elegans signature with those of artificial

cell lineages generated by stochastic and dynamic regulatory network models
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highlights those features that are distinctive to C. elegans.

For very shallow motifs (d = 1, 2), the regularity signatures converge

because there are very few distinct motifs possible at this depth, and all

of these tend to be represented in a single lineage. For very deep motifs

(d = 9, 10), motif depth approaches the depth of the entire lineage, and the

signatures converge as the total number of motifs (each of which tends to

occur only once in a lineage) decreases. (The exception to this similarity is

the unscaled stochastic lineages, which are much deeper than those produced

by the other models.) In between these extremes (3≤d≤8), there is a larger

disparity in profile size. As the number of possible motifs grows, stochastic

lineages become increasingly diverse, with few instances of repeated motifs.

In contrast, developmental lineages (those generated by the dynamic net-

work models) exhibit only a small increase in motif diversity, reflecting the

inherent regularity of a deterministic production system. The C. elegans lin-

eage has greater topological diversity than the developmental lineages, but

retains more repeated structure than the stochastic lineages, across a range

of organisational scales.

We further demonstrated how relatively straightforward modifications to

our basic models, reflecting the influence of spatial and temporal constraints,

could lead to lineages sharing a similar topological signature to that of C. el-

egans. This similarity suggests that while some features of the C. elegans

lineage are almost certainly the result of selection for adaptive morphologies

or behaviours, others may be explicable in terms of the intersection between
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generative bias and contextual constraints. Understanding the range of lin-

eage topologies that occur in the absence of selection is important because it

provides us with a sense of the raw material available for evolution to act on.

Strong conclusions cannot be drawn on the basis of three samples, but they

do provide a proof in principle of the approach and support our prediction

that generative factors play a role in lineage topologies. Validating the sig-

nificance of these regularity signatures will require comparison across the cell

lineages of a wider range of species. Unfortunately, data for such a compar-

ison is not currently available, although the development of new techniques

for lineage mapping promises to extend the range of species for which it is

possible to obtain cell lineage data [39–41]. In addition, recent technological

advances in assaying patterns of gene expression in the C. elegans lineage

raise the possibility of developing predictive gene network models that will

further enhance our understanding of the relationship between developmental

gene networks and lineage topology [42].

As mentioned above, the evolutionary relationship among species and

grammatical structure in linguistics are also commonly represented as trees.

Furthermore, phylogenies and languages are also systems whose structure is

likely to have been shaped both by intrinsic dynamics and external forces.

It is intriguing to consider what types of regularity may be revealed by the

application of developmental motifs to other complex systems.
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A Calculating the number of possible motifs

The number of possible binary motifs of depth d, for standard (oriented) and

non-oriented motifs can be calculated as follows:

Standard (oriented) motifs The number of trees of height at most d,

a(d), is given by: a(1) = 1 (a single leaf node) and a(d) = a(d− 1)2+1. The

number of motifs of depth d, n(d), is then given by a(d+1)−a(d−1), resulting

in a series that scales as a double-exponential [43] (Table 1). The reasoning

for this is as follows: The number of unlabelled motifs of depth d+1 is given

by a(d + 1). If all nodes of depth d + 1 in these motifs are removed, and

their parents labelled as being non-terminal, we have the number of labelled

motifs of depth d. We then remove all motifs of depth d − 1 or less, giving

a(d+ 1)− a(d− 1).

Non-oriented motifs The number of non-oriented motifs of depth d (for

d ≥ 3), n′(d) is given by
(n′(d− 1) + 2)!

2(n′(d− 1) + 1)!
− 1, where n′(1) = 2 and n′(2) = 3

(Table 1). The reasoning for the non-oriented case is somewhat different from

the standard case. A motif of depth d comprises a binary tree in which the

left and right branches contain two motifs of depth d−1, with the possibility

that at most one of those branches may be a terminal cell. Therefore we can

calculate the number of possible motifs of depth d in terms of combinations

with repetition, given by
(n+ k − 1)!

k!(n− 1)!
, where n = n′(d−1)+1 and k = 2. We

then subtract one to account for the case where both branches are terminal
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cells, as this would result in a motif of depth less than d.

B Lineage models

B.1 Stochastic lineage models

A stochastic lineage with C terminal cells is created as follows:

1. Begin with a single cell c0.

2. Choose a terminal cell c uniformly at random; with probability pδ,

append two child cells to c:

pδ =















1.0, in the standard stochastic model

0.5δ, in the scaled stochastic model

where δ is the distance between c and c0.

3. Repeat step 2 until the lineage contains C terminal cells.

B.2 Developmental lineage models

A network consists of two input nodes (providing contextual information to

a cell), N regulatory nodes (each with K connections to other regulatory

nodes), and one output node (used to control cell division). The activation
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of node i at time t, ai(t) is given by

ai(t) = σ
(

2
∑

j=1

wijaj(t− 1) +
N
∑

k=1

wikak(t− 1)− θi

)

where wij is the level of the interaction between input node j and regula-

tory node i, wik is the level of the interaction between regulatory nodes i

and k, θi is the activation threshold of node i, and σ(x) is the sigmoid func-

tion σ(x) = (1 + e−x)−1. Weight values were initialised randomly from the

Normal distribution N(0.0, 2.0).

A developmental lineage is created as follows:

1. Initialise a single instance of the network, representing the initial cell

c0, by setting the activation of all of its nodes to 0.0.

2. For the current terminal cell c, update the activation of its network as

described above.

3. A cell c divides if the activation of its division node is below pδ:

pδ =















1− λ, in the standard developmental model

1− 0.01eλδ, in the scaled developmental model

where δ was the depth of the cell, and λ is a model parameter. If

division is to occur, append two child cells to c, each containing a copy

of the c’s network with identical weights and node activations. Set the
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activation of the two input nodes to (0, 1) in the left child and (1, 0) in

the right child.

4. Otherwise, if the activation of the division output node is above pδ,

label c as being differentiated.

5. Repeat steps 2 to 4 until either all cells are labelled as differentiated,

or some predefined limit on division depth had been reached.
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Figure Legends

Figure 1: All twenty-four possible 3-motifs. A circle indicates a ter-

minal node; an arrowhead indicates a non-terminal node.

Figure 2: Computing a 3-motif profile for a cell lineage. A: The

C. elegans sublineage AB.praa, where n=neural cell, e=epithelial cell and

x=apoptosed cell). B: The corresponding 3-motif profile, showing the seven

different motifs present (see Figure 1), and the number of times they each

occur. C: The non-oriented 3-motif profile, containing five different motifs.

Note that the fifth and sixth motifs in panel B are isomorphic to the third

and fourth motifs, and have therefore been merged. In the typological 3-

motif profile (not shown) all motifs except the first are unique, resulting in

a profile of size eight.

Figure 3: The 3-motif profile for the embryonic cell lineage of C. el-

egans hermaphrodite. Motifs are ranked in order of decreasing frequency.

The first four motifs, which account for 77.6% of the lineage, are shown. The

inset shows the motif profile on a log-log scale, together with the fit to a

power law (α = 1.73). Note that the fit is illustrative only, as the sample

size is too small to allow us to rule out other distributions [44].

Figure 4: Varying profile depth, motif definition and species. A:
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d-motif profile comparison for C. elegans for d = 3, 4, 5. The slope of the dis-

tributions decrease as motif depth increases—a result of a decrease the total

number of motifs observed and an increase the proportion of motifs that are

represented by only one or two instances—however, the general shape of the

distribution is maintained. B: Motif profile comparison for C. elegans for the

original motif definition (d = 3), the typological motif variant (d = 2), and

the non-oriented motif variant (d = 4). Values of d were chosen such that

the size of the set of possible motifs for each variant was of the same order

of magnitude (24 normal motifs, 81 typological motifs and 54 non-oriented

motifs). For the typological motif profiles, cells in the C. elegans lineage were

classified into nine categories according to their structure and function [45]:

39 blast, 113 deaths, 78 epithelial, 2 germ, 10 gland, 20 intestinal, 108 mus-

cle, 79 neural structural and 222 neurons. C: 3-motif profiles for C. elegans

(671 terminal cells), P. marina (638 terminal cells) [19] and H. gingivalis

(536 terminal cells) [20]. The range and general shape of the distributions

are similar; however, the terminal cells of the P. marina and H. gingivalis

lineages have not yet been fully characterised, leading to an increased repre-

sentation of the terminating 3-motif (i.e., containing four terminal cells) in

the second rank position.

Figure 5: Example model lineages. Example lineages created by the

standard and scaled versions of the stochastic and developmental models.
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Figure 6: Comparison of motif profile sizes between C. elegans, and

lineages produced by stochastic (A) and developmental (B) mod-

els across a range of motif depths. C. elegans motif profiles sizes (bold

line) are shown on both plots. Stochastic and developmental lineages were

produced according to standard (circles; N = 32;K = 8;λ = 0.225) and

scaled (squares; N = 32;K = 8;λ = 0.425) variants of each model, as well as

a scaled variant in which 5% of lineage branches were reversed (diamonds).

Error bars show standard deviation of the profile size over each ensemble

of 1,000 lineages, when larger than symbol. The stochastic models consis-

tently overestimate motif diversity (Note: branch reversal has minimal effect

on the diversity of stochastic profiles, therefore some data points in plot A

overlap). The standard developmental model underestimates motif diversity

(B–circles); however, the recognition of temporal and spatial factors influ-

encing development (represented by scaled division probabilities and branch

reversal) results in lineages that share a similar level of motif diversity with

C. elegans across multiple scales (B–diamonds).

Figure 7: Mean fraction of a lineage described by the first M 3-

motifs. Data shown for the C. elegans lineage and each of the stochastic

and developmental models (standard: N = 32;K = 8;λ = 0.225; scaled:

N = 32;K = 8;λ = 0.425). Error bars show standard deviation of lineage

fraction over each ensemble of 1,000 lineages, when larger than symbol. Only

9 motifs are required to capture even the least regular developmental lineage.
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By comparison, whereas 9 motifs capture 92.2% of the C. elegans lineage, a

further 12 motifs are required to capture the remaining 7.8%. The stochas-

tic lineages are closest to the hypothetical uniform case in which all motifs

are represented equally; however some bias exists due to the nature of the

stochastic process.

Figure 8: Cell depth distributions for C. elegans and the stochastic

and developmental models (standard: N = 32;K = 8;λ = 0.225; scaled:

N = 32;K = 8;λ = 0.425). Plot shows mean number of terminal cells oc-

curring at a given depth for each model. Note the horizontal axis has been

truncated at depth 25; however, the full range of cell depths for the lineages

created by the standard developmental model was much greater, reflecting

the presence of deep lineages in which a large majority of cells were gener-

ated via a stem-cell mode of division (i.e., where either the left or right child

consistently continued to divide, while the other child differentiated).

Figure 9: Comparison between standard and non-oriented profile

sizes for C. elegans and developmental lineages. Motif diversity in

developmental lineages is restricted by an absence of isomorphic, or comple-

mentary, motifs (see Figure 5). This plot shows the reduction in profile size of

non-oriented motif profiles compared to standard motif profiles for C. elegans

and the two developmental models (standard: N = 32;K = 8;λ = 0.225;

scaled: N = 32;K = 8;λ = 0.425). The size of the C. elegans profile
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decreases by over 50% for motif depths 3 and 4, indicating that many iso-

morphic motifs have been ‘collapsed’ into their non-oriented equivalents. By

contrast, the size of the developmental profiles remains relatively constant,

indicating a very low incidence of isomorphic motifs in the standard motif

profiles—any individual lineage tends to contain motifs oriented to (i.e., di-

viding towards) either the left or the right, but not both.
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