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Abstract

Quantifying the complexity of systems consisting of many interacting parts has been an impor-

tant challenge in the field of complex systems in both abstract and applied contexts. One approach,

the complexity profile, is a measure of the information to describe a system as a function of the

scale at which it is observed. We present a new formulation of the complexity profile, which ex-

pands its possible application to high-dimensional real-world and mathematically defined systems.

The new method is constructed from the pairwise dependencies between components of the system.

The pairwise approach may serve as both a formulation in its own right and a computationally

feasible approximation to the original complexity profile. We compare it to the original complexity

profile by giving cases where they are equivalent, proving properties common to both methods,

and demonstrating where they differ. Both formulations satisfy linear superposition for unrelated

systems and conservation of total degrees of freedom (sum rule). The new pairwise formulation is

also a monotonically non-increasing function of scale. Furthermore, we show that the new formu-

lation defines a class of related complexity profile functions for a given system, demonstrating the

generality of the formalism.
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There have been various approaches to quantify the complexity of systems in a way

that is both rigorous and intuitive. The origins of these efforts are rooted in Shannon’s

entropy [1] and Kolmogorov’s algorithmic complexity [2]. These two measures have been

modified and applied in diverse contexts [3–5]. However, a disadvantage of these measures

is that, being decreasing functions of order, they characterize high entropy systems—usually

systems at equilibrium—as highly complex systems. On the other hand, reversing this result

by defining complexity as an increasing function of order, as suggested in other work [6],

identifies ordered systems as highly complex. Neither equilibrium nor ordered systems match

our intuitive notion of high complexity [7–10].

The literature responding to this dilemma has typically redefined complexity as a convex

function of order, so that the extremes of order and randomness are both low complexity

[9–14]. One approach has not sought a single number to quantify complexity and instead

argues that complexity is inherently a function of the scale of observation of the system

[15, 16]. Because the complexity of systems lies in the emergence of behaviors from fine

scale to large scale, this body of work argues that the meaningful measure of complexity

represents the degree of independence among the subdivisions of the system (the disorder)

as a function of the size of the subdivisions whose interdependence is considered (scale of

aggregation of the observation). Because the presence of actions at one scale depends on

order (coordination) on smaller scales, this measure represents the needed balance between

order and disorder in a specific and meaningful way.

The dependency of complexity on scale has been termed the “complexity profile.” It has

been applied to a variety of real world situations [16–19]. An expression for the profile in

terms of system state probabilities has been provided and justified [15], and it has been

evaluated for a number of specific models [15, 20–22]. Progress is also being made in embed-

ding the complexity profile in a theory of structure [23]. For the general case, however, this

expression has the computational disadvantage of requiring factorial time to compute. In

this work, we present an alternative formulation of the complexity profile, which (a) requires

only polynomial time to compute, (b) satisfies key properties of the previous formulation,

(c) gives the same result as the original formulation for many cases, (d) provides an approx-

imation of the original formulation where it differs, (e) is always positive and non-increasing

with increasing scale, which matches intuitive (though not necessarily valid) notions of com-

plexity, and (f) captures some, but not all, of the high-order dependencies captured by the
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original formulation.

Our “pairwise complexity profile” is computed from only the mutual information values

of each pair of components, while the original formulation requires the mutual information

of all possible subsets of components. Thus, we capture those dependencies in the system

that are manifest in the pairwise couplings. Such dependencies are representative of weak

(and of null) emergence, but not strong emergence, while the original complexity profile

also captures strong emergent dependencies [24]. The use of pairwise couplings is concep-

tually similar to the use of a network model or of pairwise interaction models in statistical

physics. However, systems modeled by such methods may still exhibit higher-order mutual

information not necessarily derivable from the pairwise couplings. The utility of this new

formulation depends on the specifics of the problem, as we explore in examples.

Our formulation of the pairwise complexity profile defines a class of different measures

with common properties. Distinct complexity profiles result from different functions used to

measure the coupling between variables—mutual information being our primary example.

In important ways the pairwise complexity profile exhibits the same behavior across a broad

set of coupling functions, manifesting the general power of the framework.

The paper is organized as follows. In Section I, we construct the formula for the pairwise

complexity profile. In Section II, we show that it provides the same result as the original

complexity profile for the limiting cases of a totally atomized system, and a totally coher-

ent system. In Section III we prove that the pairwise formulation in general satisfies two

theoretical properties of the original complexity profile—superposition of independent sub-

systems, and conservation of total degrees of freedom—as well as one property not shared

by the original complexity profile—monotonicity. In Section IV, we discuss the robustness

of those properties to changing the definition of coupling strength. In Section V, we discuss

phenomena not represented in the pairwise formulation, which do appear in the original com-

plexity profile. In Section VI, we bound the computational cost of calculating the pairwise

complexity profile.

I. DERIVATION

We consider a system comprising a set of m components, each of which may assume a

number of states. The state of one component depends to some extent on the states of the
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other components. In particular, the likelihood of observing a system state is not equal to

the product of the probabilities of the relevant component states. Different system structures

are therefore reflected in distinct probability distributions of the states of the whole system.

In some contexts, for example, one may infer the probability distribution from a collection of

systems as a proxy for the ensemble of possible states of a single structure, e.g. a population

of biological cells. In other contexts, one may employ the ergodic hypothesis to infer the

probability distribution from states of a system sampled over time, e.g. financial market

data.

We can calculate the mutal information between any two components, to obtain a measure

of their “coupling”, a value between 0 and 1. All of the couplings make up a symmetric

m × m matrix, A. For simplicity, in this paper we assume that each variable has the

same probability distribution of states when considered independently from the others. In

the examples we provide below, they are random binary variables, equally likely to be 0

or 1. These assumptions were also used in the mathematical development of the original

complexity profile [15].

We construct the pairwise complexity profile from a “variable’s eye view” of the system,

in order to explain its structure. First, we establish what scale and complexity mean for

an individual variable or component of the system. Intuitively, for a given variable, the

scale of its action is the number of variables it coordinates with to perform the action. The

complexity, or the amount of information shared by that group of variables, is given by the

mutual information between those variables, which is by definition their coupling. Thus, the

size of the coordinated group depends on the degree of coordination required. Motivated

by this intuition, we define the “scale of action”, ki(p), of the ith variable as a function of

the coupling threshold p—the amount of coordination necessary for that action. Explicitly,

ki(p) is the number of variables coupled with the ith variable with coupling strength p or

greater:

ki(p) =
∣∣{j ∈ [1,m] | Aij ≥ p}

∣∣ (1)

where
∣∣S∣∣ indicates the number of elements in set S. For p a real number between 0 and

1, ki is an integer between 1 and m. ki cannot be less than 1 because even for p = 1, the

highest threshold of coupling, each variable correlates with at least one variable—itself. For

p > 1, ki(p) = 0. Note also that ki(p) is a non-increasing function of p, because if a pair of

variables has a coupling of at least p1 then it certainly also has a coupling of at least p2 < p1.
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The scale of action, ki(p), is the functional inverse of our notion of the complexity profile—

we are seeking complexity as a function of scale, and ki(p) is a measure of scale as a function

of complexity. Since the coordination p is a measure of the shared information, it is a

measure of the complexity of the task. Below, we describe the details of taking the inverse,

to account for discontinuities, which follows an intuitive mirroring over the k = p diagonal.

Thus we let

C̃i(k) = p(ki) (2)

which is non-increasing in all cases, and zero for k > m. This gives us a profile function for

each variable. Our first, non-normalized ansatz for the complexity profile for the system is

to sum the functions for all of the variables:

C̃(k) =
m∑
i=1

C̃i(k) (3)

However, this must be corrected for multiple counting due to adding together the variables

that share information. To illustrate the multiple counting, consider a system in which there

are clusters of highly coupled variables, Eq. (3) counts the information of each cluster once

for each variable in it, so larger (scale) clusters will also appear to have higher complexity.

To normalize appropriately, each change (decrease) in the curve defined in Eq. (3) should be

divided by the scale at which that change is found. Thus, we define the pairwise complexity

profile as:

C(k) =
m∑

k′=k

1

k′

[
C̃(k′)− C̃(k′ + 1)

]
(4)

where k is a positive integer. C(k = 1) is the Shannon entropy of the system, and for k > m

we know that C(k) = C̃(k) = 0.

For completeness, we now describe the inversion process from ki(p) to p(ki) = C̃i(k) (see

Figure 1). Our definition for each ki(p) in Eq. (1) is a mapping from the set of non-negative

real numbers to a set of positive integers. We would like to represent the natural inverse

function, which should be a mapping from the set of positive integers into the set of real

numbers. Two issues must be resolved: more than one p may map to the same ki, and there

are values of p not mapped from any integer ki. We redefine the function ki(p) as a relation

described as a set of ordered pairs {(p, k)}i. First, we fill in gaps in the k axis direction with

straight lines between the adjacent points. Explicitly, given a jump discontinuity at p0 such
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that  limp→p0+ k(p) = k′

limp→p0− k(p) = k′′
(5)

we augment the relation {(p, k)}i by including the pairs with p0 associated to each of the

integer scales between k′ and k′′, i.e. the relation now includes {(p0, k) | k ∈ {k′, . . . , k′′}}.

Because k is a discrete variable, any change in k involves a jump discontinuity, but we are

actually only adding points to fill in the gap when the difference is more than 1. We also

include the points {(1, k) | k ∈ {0, . . . , ki(1)}}, which fill in the gap to the p-axis, as well as

the points {(0, k) | k ∈ {m+ 1, . . . }}, which extend the curve along the k axis, past k = m.

The inverse relation, {(k, p)}i (Figure 1b) is then transformed into a function by selecting

the maximum value of p for each k, in the cases where there is more than one p for a given

k. The resulting functions (Figure 1c) are used as C̃i(k) in Eq. (2).

II. LIMITING CASES

We evaluate the pairwise complexity profile for a number of limiting cases as examples.

A. Ideal Gas (independent variables)

First, we consider the case of m completely independent variables, with no mutual infor-

mation. The coupling matrix A is the identity matrix: Aij = δij, with each variable having

complete coupling with itself (Aii = 1) and no coupling with any other variable (Aij 6=i = 0).

Thus, for each variable, the only scale of action possible is one variable, which applies for

any threshold up to and including complete coupling (p=1), i.e.

ki(p) =

 1 p ≤ 1

0 p > 1
,∀i ∈ [1,m] (6)

Taking the inverse yields

C̃i(k) =

 1 k ≤ 1

0 k > 1
,∀i ∈ [1,m] (7)

and summing over the m variables gives

C̃(k) =

m k ≤ 1

0 k > 1
(8)
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FIG. 1: Illustration of the inversion process of ki(p), as described in Section I: a. An

example plot of a function ki(p). b. The inverse relation {(k, p)} for the example function,

augmented with additional points to fill in gaps (squares). c. The resulting function

C̃i(k) = p(k).

In this case, there is no multiple counting because any potential “group” of variables has

only one member, so Eq. (8) is in fact the complexity profile. If we explicitly apply the

correction for multiple counting (Eq. 4), this is confirmed:

C(k = 1) =
1

1
[m− 0] +

m∑
k′=2

1

k′
[0− 0] = m (9)

and

C(k 6= 1) =
m∑

k′=k

1

k′
[0− 0] = 0 (10)
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FIG. 2: Complexity profiles for two systems of three variables: a. Three independent

variables, the “ideal gas”, as given by both the original and the pairwise formulations

(Section II A). As discussed in Section V, this is also the pairwise complexity profile for

three bits including one parity bit. b. Three coherent variables, the “crystal”, as given by

both the original and the pairwise formulations (Section II B).

so

C(k) =

m k = 1

0 k > 1
(11)

This result is intuitive. With complete independence, at the scale of one variable, the system

information is equal to the number of variables in the system. With no redundancy, the

system information is zero at any higher scale. The graph of the ideal gas case for m = 3 is

shown in Figure 2a.

B. Crystal (coupled variables)

Next, we consider the case of m completely coupled variables. The coupling matrix A

comprises only ones: Aij = 1, ∀ i, j ∈ [1,m]. Thus the scale of action available to each

variable is the size of the entire system, even up to and including a threshold of complete

coupling (p=1), i.e.

ki(p) =

m p ≤ 1

0 p > 1
,∀i ∈ [1,m] (12)
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Thus, the inverse functions are

C̃i(k) =

 1 k ≤ m

0 k > m
,∀i ∈ [1,m] (13)

and summing these over the m variables yields

C̃(k) =

m k ≤ m

0 k > m
(14)

Each variable is counting all of the other variables in its group of coordination for all scales.

When we sum them, we are actually counting the same information for each of them. There

is therefore no need to sum them, or, if we do, we divide the result by the size of the system.

We explicitly use Eq. 4, to get this result:

C(1 ≤ k ≤ m− 1) =
m−1∑
k′=k

1

k′
[m−m] +

1

m
[m− 0] = 1 (15)

and

C(k = m) =
1

m
[m− 0] = 1 (16)

and

C(k > m) = 0 (17)

so

C(k) =

 1 k ≤ m

0 k > m
(18)

With all of the variables coordinated, there is only one bit of information at any scale.

Because they are all coordinated, this information is represented at all scales up to the size

of the system. The graph of the crystal case for m = 3 is shown in Figure 2b.

III. PROPERTIES

We prove that the pairwise complexity profile satisfies three properties: superposition

of uncoupled subsystems, conservation of total degrees of freedom, and monotonicity. The

first two properties have been shown to hold for the original formulation, and appear to be

fundamental to the idea of the complexity profile [15, 16, 25, 26]. Monotonicity, on the other

hand, does not hold in general for the original formulation [15, 21, 24].
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A. Superposition

Given two uncoupled systems, S1 and S2, with pairwise complexity profiles C1(k) and

C2(k), respectively, the complexity profile of the combined system S = S1 ∪ S2 is given by

C = C1 + C2. The superposition principle is a generalization of the extensivity of entropy

[15].

Proof: The coupling matrix of the combined system S, with elements indexed to corre-

spond to those of S1 and S2 in the natural way, is the block matrix A1 0

0 A2


where A1 and A2 are the m1×m1 and m2×m2 coupling matrices of S1 and S2, respectively,

as individual systems. Zeros are appropriately dimensioned null blocks. The scales of action

of each variable in the combined system are its scales of action in its own subsystem, i.e.

ki(p) =

 k1i (p) 0 < p; i ∈ {1, . . . ,m1}

k2i−m1
(p) 0 < p; i ∈ {m1 + 1, . . . ,m1 +m2}

(19)

because it has no coordination with any of the variables in the other subsystem. From the

definition (Eq. 1), each of the k1i (p)’s are bounded by 0 ≤ k1i (p) ≤ m1 and the k2i (p)’s are

bounded by 0 ≤ k2i (p) ≤ m2 and both are non-increasing. Thus, the inverse functions are

C̃i(k) =

 C̃1
i (k) i ∈ {1, . . . ,m1}

C̃2
i−m1

(k) i ∈ {m1 + 1, . . . ,m1 +m2}
(20)

where we know that C̃1
i (k) = 0 for k > m1 and C̃2

i (k) = 0 for k > m2. Their sum is therefore

decomposable into the two subsystems:

C̃(k) =

m1+m2∑
i=1

C̃i(k) =

m1∑
i=1

C̃1
i (k) +

m1+m2∑
i=m1+1

C̃2
i−m1

(k) = C̃1(k) + C̃2(k) (21)

where C̃1(k) = 0 for k > m1 and C̃2(k) = 0 for k > m2 and therefore C̃(k) = 0 for

k > max(m1,m2). When we correct for multiple counting, the decomposition into the two

subsystems is maintained:

C(k) =

m1+m2∑
k′=k

1

k′

[
C̃1(k′) + C̃2(k′)−

(
C̃1(k′ + 1) + C̃2(k′ + 1)

)]

=

m1+m2∑
k′=k

1

k′

[
C̃1(k′)− C̃1(k′ + 1)

]
+

m1+m2∑
k′=k

1

k′

[
C̃2(k′)− C̃2(k′ + 1)

] (22)
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and because C̃1(k) = 0 for k > m1 and C̃2(k) = 0 for k > m2, this is

C(k) =

m1∑
k′=k

[
C̃1(k′)− C̃1(k + 1)

]
+

m2∑
k′=k

[
C̃2(k′)− C̃2(k′ + 1)

]
= C1(k) + C2(k) (23)

which demonstrates superposition.

B. Sum Rule

The area under the complexity profile curve of a system depends only on the number of

variables in the system, not on the dependencies between them. Therefore, given a number

of variables, choosing a structure of dependencies involves a tradeoff between information

at a large scale (redundancy) and information at a smaller scale (variability) [26].

Proof: The total area under the complexity profile curve is given by∑
k

C(k) =
m∑
k=1

m∑
k′=k

1

k′

[
C̃(k′)− C̃(k′ + 1)

]

=
m∑
k=1

k · 1

k

[
C̃(k)− C̃(k + 1)

]

=
m∑
k=1

[
C̃(k)− C̃(k + 1)

]
= C̃(1)− C̃(m+ 1)

= C̃(1) = m

(24)

where the last equality holds because we know that at a coupling threshold of one (the

maximum threshold), there will be at least one variable meeting the threshold condition

for each variable (namely, itself), so C̃i(1) = 1. If there are other variables identical to

the ith variable, it may be that ki(1) > 1, but because of the way we defined the inverse

function—in particular, filling in the gap to the p-axis—it is still the case that C̃i(1) = 1.

Therefore, from Eq. (3),

C̃(1) =
m∑
i=1

1 = m (25)

The notion that the organization of dependencies, which define the structure of a system,

is equivalent to a prioritization of complexity at different scales has been particularly useful

in applications of the complexity profile [15, 16, 25].

11



C. Monotonicity

The pairwise complexity profile is a monotonically non-increasing function of scale. This

is not the case for the original complexity profile [15, 21, 24]. A complexity profile formal-

ism that as a rule does not increase has the advantage of a certain intuitiveness. As one

“coarse grains”, i.e. increases the scale of observation, one expects a loss of information. On

the other hand, the full complexity profile demonstrates that interesting phenomena such

as “frustration”—e.g. the anticorellation of three binary variables with each other—are

captured by oscillatory complexity profiles. Section V gives a simple example where this

difference is manifest: the parity bit. We now prove that the pairwise complexity profile is

monotonically non-increasing.

Proof: The way we have defined complexity as a measure of information is such that if

there is certain information present at a given scale, then that information is necessarily

present at all smaller scales. From Eq. (1), any couplings that satisfy some threshold p1 will

also satisfy any lesser threshold p2 < p1, which means that p2 < p1 ⇒ ki(p2) ≤ ki(p1), i.e.

ki(p) is a non-increasing function. Its inverse C̃i(k) therefore is non-increasing as well, as is

the sum of those non-increasing functions, C̃(k). From Eq. (4),

C(k) = C(k + 1) +
1

k′

[
C̃(k′)− C̃(k′ + 1)

]
≥ C(k + 1) (26)

because C̃(k′) ≥ C̃(k′ + 1). This proves that C(k) is non-increasing.

IV. GENERALITY OF THE COMPLEXITY PROFILE

The analysis thus far has been based on using the mutual information as the pairwise

coupling. However, the properties derived are largely independent of the particular coupling

function used, i.e. how the coupling strength is determined from the system state proba-

bilities. This means that the properties derived in Section III arise from the conceptual

and mathematical underpinnings of the complexity profile, rather than from the specific

representation of the system.

The constraints on the definition of the coupling function are minimal. In general, the

coupling function must be normalized to vary between zero and one. For superposition to

hold, “unrelated subsystems” must still be defined as having a coupling strength of zero

for any pairs of components split between the two subsystems. For the sum rule to hold,
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each variable must couple to itself with a strength of one (to be precise, it is sufficient that

each variable couple to some variable with a strength of one). The mutual information has a

logarithmic dependence on state probabilities, and its use in the pairwise formulation should

lead to a good approximation of the original complexity profile. Another possible coupling

strength function is the absolute value of correlation between variables, which has linear

dependence on state probabilities.

The generality of the complexity profile formulation is particularly meaningful for the

sum rule property. In that context, it is helpful to consider the freedom of variation in the

definition of C̃, rather than the coupling function. We can interpret C̃(k)/m as the average

threshold of the coupling strength to imply a group of size k. The independence of the

sum rule to different forms of this function means that the tradeoff between complexity at

different scales is a valid feature of the complexity profile, regardless of how one identifies

sets of elements as groups based on coupling strength thresholds.

Physically, one might interpret this in the following way. An external force of a certain

magnitude will destroy the weaker internal couplings between components of a system.

Stronger couplings are less susceptible to being broken than weaker ones. As the strength

of the force increases more couplings are progressively broken. However, different particular

dependencies between the strength of the external force and the strength of the couplings

broken are possible; it may for example be linear or logarithmic. What we have shown is that

the sum rule is agnostic to the particular functional form of that dependence. Groupings

that disappear at one scale due to increased sensitivity to the external force always reappear

at another scale, maintaining the same sum over all scales.

V. DIFFERENCES BETWEEN THE ORIGINAL AND THE PAIRWISE COM-

PLEXITY PROFILES

The pairwise complexity profile (using mutual information as coupling) and the original

complexity profile differ for cases in which there are large-scale constraints on the states of

the system that are not derivable from the pairwise interactions of the components of the

system. Such cases have been termed “type 2 strong emergence” [24].

A simple example of such a system is that of the parity bit [24]. We have three binary

variables, S = {x1, x2, x3}, in which one of the variables is a parity bit for the other two,
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being 0 if the sum of the other two is even, and 1 otherwise. Mathematically, x3 = x1 ⊕ x2,

where ⊕ is addition modulo two, the exclusive or (XOR) gate. This system is symmetric—

any one of the three bits serves as a parity bit for the other two. In this case, the possible

states of the system are

state probability

000 .25

001 0

010 0

011 .25

100 0

101 .25

110 .25

111 0

(T1)

The probabilities of the states of each pair of variables are therefore

state probability state probability state probability

00 .25 0 0 .25 00 .25

01 .25 0 1 .25 01 .25

10 .25 1 0 .25 10 .25

11 .25 1 1 .25 11 .25

(T2)

where, for example, the probability of 00 is P (00 ) = P (001) + P (000). The probability

distributions of the states of the individual bits are

state probability state probability state probability

0 .5 0 .5 0 .5

1 .5 1 .5 1 .5

(T3)

These distributions gives the complexity profile shown in Figure 3.

However, note that the probability distributions of the individual bits and of the pairs of

bits (T2 and T3) are identical to the distributions which would be derived from the case of

three completely independent bits, giving the same pairwise correlation matrix,

A =


1 0 0

0 1 0

0 0 1

 (27)
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FIG. 3: Original complexity profile for three bits including one parity bit (Section V).

Compare to pairwise complexity profile shown in Figure 2a.

which gives the approximated complexity profile shown in Figure 2a.

The pairwise complexity profile thus has limited applicability as an approximation to

the original complexity profile in cases where large scale constraints dominate the fine-scale

behavior of the system. However, when the dominant flow of information is the emergence

of large scale structure from the fine-scale behavior, this approximation should be useful.

We note that just as higher order correlations can result from pairwise dependencies (as

in network dynamics), pairwise correlations can capture some higher-order dependencies,

though not all.

VI. COMPUTATION TIME

One of the major motivations behind developing the pairwise formulation of the complex-

ity profile is that the existing mathematical formulation is prohibitively expensive to compute

for an arbitrary high-dimensional system. The original formulation requires a calculation

that involves the mutual information of every subset of components, so the computation
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time would grow combinatorially with the size of the system. No algorithm is known to

perform the computation in time less than Ω(N !).

The pairwise complexity profile of a system of N variables can be computed by an algo-

rithm whose most time-expensive step is ordering the N couplings of each of the N variables.

Because efficient algorithms can sort lists of N elements in O(N log(N)) time, the pairwise

complexity profile scales as O(N2 log(N)).

VII. CONCLUSION

We present a method of calculating a measure of complexity as a function of scale. The

method is based on the concept of the complexity profile, which has proven to be useful

for mathematically capturing the structure of a system of interdependent parts. The previ-

ous mathematical formulation of the complexity profile, while powerful, is too demanding

computationally for many real-world systems. By offering a set of related alternative formu-

lations, we both provide an approximation tool and demonstrate that the principles of the

complexity profile, including superposition and sum conservation, are more general than a

particular formulation.
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