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Complex social-ecological systems (SES) are not amenable to simple mathematical modeling. However, to address

critical issues in SES (e.g., understanding ecological resilience/amelioration of poverty) it is necessary to describe

such systems in their entirety. Based on empirical knowledge of local stakeholders and experts, we mapped their

conceptions of one SES. Modelers codified what actors told us into two models: a local-level model and an overarch-

ing multiple-entity description of the system. Looking at these two representations together helps us understand

links between the locally specific and other levels of decision taking and vice-versa. This ‘‘bimodeling’’ approach is

investigated in one SES in coastal Kenya. VC 2014 Wiley Periodicals, Inc. Complexity 19: 73–82, 2014
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INTRODUCTION

A
gent-based models (ABMs) often used to simulate

aspects of the natural environment can appear

incredibly accurate; yet using ABMs to support

important policy decisions amongst people appears to

face multiple obstacles in terms of the modeler’s ability to

generate a similar level of accurate representation. One

key reason for this apparent performance differential is

that natural science modelers model a minimum number

of aspects, while social modelers typically include many

factors. Thus, while ecological systems are complex, social

systems are complex and ‘‘messy’’[1,2]. Modeling social-

ecological systems (SES) involves attempting to represent

complexity and this ‘‘messiness.’’

This problem can also be found encapsulated in the

KISS (keep it simple, stupid) or KIDS (keep it descriptive)

debate [3]. While those modeling ‘‘simple’’ complex sys-

tems (i.e., ones which exist largely within one disciplinary

domain) often argue for KISS, the KIDS approach has a

major part to play in making better informed, more

policy-relevant models of human action; the descriptive
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representation of aspects is important. There may also be

a fundamental difference in what each is trying to do: in

general, it is defensible to say that ‘‘simple’’ complex sys-

tems modelers are trying to simulate (i.e., mimic) the

behavior of their subjects so as to understand its patterns;

while modeling done to inform policy has a more compli-

cated purpose, which involves and includes concerns of

the modelers and those of the end users, often the policy

makers, policy advisors, or other decision takers. That

said, the latter is also to do with the way the models

themselves (or scenarios produced with them) are used:

this article is primarily concerned with how the modeling

itself is conceived to best represent SES.

The article is a contextualized discussion of what we did

to model one particular SES. Coastal Kenya supports the

livelihoods of millions, putting vital natural resources under

increasing strain. Artisanal fishery supports a large and var-

ied set of livelihoods; thus, fisheries provide an ‘‘ecosystem

service.’’ Fishing grounds, including public beach and fish

landing sites, are under the authority of Beach Management

Units (BMU), which are made up of representatives from

the local fishing and fish and shell trading communities.

While the environmental impact of fishing is widely

acknowledged, there are differing views among the BMUs

and other actors as to what measures are appropriate to

sustain the fishery and protect reefs. Solutions lie in under-

standing how and why people’s actions contribute to

impact. We needed a structured robust way of cocreating

and communicating data about actions, causes, and out-

comes across geographic distance and across levels of deci-

sion taking (i.e., up to higher level policy makers and from

scientific advisors to policy makers and end users). Our

case study (partly funded by the ESPA programme: see

http://www.espa.ac.uk/) was to develop conceptual repre-

sentative tools and models built on existing knowledge in

the region, working with local teams, and connecting with

policy makers, practitioners, and the poorer people who

depend directly on the ecosystem service.

This article, thus, describes our work on modeling the

link between human action and an ecosystem service, in a

project that looked into the wider aspects of (social)

knowledge networks and (institutional) decision-making

structures. We identify modeling challenges in relation to

dealing with different epistemological backgrounds, the

integration of different stakeholder worldviews and knowl-

edge(s), and other bottlenecks in the formalization pro-

cess. The process is described and discussed in relation to

the example case from which initial ideas and understand-

ings were derived.

Our project used the philosophy of ‘‘structured subjec-

tivity’’ [4] to help describe aspects of SES networks regard-

ing decision taking surrounding coastal production systems

in Kenya. Structured subjective methods are designed to

provide formal outputs that we found can be more readily

included in models but still reflect actors’ conceptions of

the system. Outputs of such approaches can include statis-

tically valid understanding of actor beliefs (using Q-meth-

odology), network maps of actors (using social network

mapping), codification of their ‘‘tacit’’ behavioral rules and

decision logic (e.g., using tools for knowledge elicitation

[5]), and cocreation of formal ‘‘cartoon’’ models (e.g., using

unified modeling language [UML]).

The empirical approach we will discuss is twofold:

using rigorous ‘‘bottom-up’’ (participatory) methods to

inform an ABM but doing this within an overarching

framework provided by the highly structured UML ‘‘car-

toon’’ model. This overarching construction allows a

locally specific KIDS approach to be applied in the

detailed modeling and simulation stages, while allowing

the conceptual models to remain more generally

described. Thus, while it probably remains impossible to

model the full range of human behavior, we could suc-

cessfully simulation model the behaviors of fishers that

change the environment (i.e., their boat and gear). This

can then be understood, and communicated, on a wider

scale within the series of UML diagrams.

BACKGROUND, INCLUDING THE SETTING OF THE PROBLEM
For more than 10 years, colleagues have been identify-

ing ‘‘a need for a systems approach’’ which ‘‘can identify

interlinkages and flow of information and decision making

processes’’ [6] with respect to SES. In natural sciences, as

in economics, it is common to use models inspired by sys-

tems thinking and it is commonplace to, by virtue of their

formality, attribute these models more scientific merit

than their descriptive counterparts that are usually used

to represent social elements. Social studies which would

look at information and decision processes are usually

carried out without the use of formalized or mathematical

models, where researchers plump instead for a social con-

ceptualisation or else by the use of quasi-economic prox-

ies [7]. The ‘‘problem’’ with these approaches is that, as

Coulthard et al. also point out, ‘‘the quality of life or sub-

jective wellbeing element of the framework is only one

dimension of what needs to be understood.’’

The process of modeling social elements has been

described very simply by deVries and Petersen as first

‘‘analyze people’s value orientations and the way in which

they interpret sustainability problems i.e. their beliefs’’;

then ‘‘translate the resulting worldviews into model-based

narratives, i.e. scenarios’’; and then ‘‘investigate outputs in

terms of associated risks and opportunities and robustness

of policy options’’ [8]. In terms of formal modeling then,

the translation step is one in which actors’ worldviews are

codified and, in doing so, many assumptions are made

explicit. This presents an opportunity to clarify stakehold-

ers’ perceptions within a coconstruction process with the
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stakeholders themselves. Scenario building offers another

point of integration of modeling effort with stakeholder

priorities. Recent research has also shown the value of the

design of ‘‘what-if’’ scenarios in collaboration with

resource managers, when used in the exploration of more

context-specific models [9].

Nonetheless, scenario-building introduces a potential

problem; the question of whether the assumptions inform-

ing scenarios may be shared or not. From a modeling point

of view, a shared understanding may be preferred because

it has the advantage of simplifying a model, thus, reducing

the number of needed model variations. However, it is not

clear whether any apparent consensual agreement is valid.

Most importantly, to represent social ‘‘messiness’’ we need

to avoid dominant worldviews controlling outputs when

there are other equally relevant insights. Agent-based mod-

eling permits significant diversity through disaggregation

of populations into actor subtypes and attributes of indi-

viduals. Conversely, many of the model assumptions are

also global. One approach is the use of modular construc-

tion, which makes it feasible that certain aspects of the

model could be activated or deactivated, or substituted, to

account for differing interpretations. Seen in this light,

there is also the need to avoid that idea that researchers

are presenting a given simulation model as a ‘‘solution’’ to

understand an issue: the participatory nature of the cocon-

struction of ABMs and scenario-building activities encour-

ages us to introduce several different shades of any

simulation model to show different possibilities.

The companion modeling approach (ComMod––see

also http://www.commod.org) has, in the past 15 years,

developed a range of activities to support the use of mod-

els in natural resource management and in addressing

social-ecological interactions in particular [10,11]. Others

have developed the methodology for the coconstruction of

conceptual models [12,13]. Such models visually represent

multiple viewpoints and can be used as mediating and

discursive objects that promote collective learning proc-

esses. Further, they can be used to formulate ABMs. Their

design depends on the research question identified––and

if it is stakeholder-driven research it often depends on the

‘‘overarching negotiated development question’’ [14]. This

‘‘ComMod’’ approach provides one solution to our ‘‘shared

understanding’’ issue.

Notwithstanding, any model that looks only at the

behavior of actors in one sector (be it economic, political,

or resource-use spheres) will miss critical dynamic proc-

esses in other sectors. Kemp-Benedict et al. note that ‘‘The

range of possible behaviors is not infinite��human agency

is bounded by physical constraints, social norms, family

behaviors, and physiological endowments. However, the

range can be large and the interactions of these elements,

complex’’ [15]. Thus, while the task is not impossible it is

difficult and time consuming. However, in our ESPA pro-

ject (see http://www.espa.ac.uk/projects/ne-i00288x-1 and

http://weadapt.org/search?q=WD-NACE), we were not

only trying to link ‘‘sectors’’ and introduce a dynamic eco-

logical aspect into social models but also link across levels

of decision making. Thus, we needed an overarching

approach which would allow us not only to link sectors

but also ‘‘scale up.’’

Taking our inspiration from the complex systems model-

ing and simulation (CoSMoS) [16,17] experience in success-

fully linking complex systems modelers and software

engineers with research scientists in biomedicine and

robotics, we separated out the processes of representing the

whole system (the ‘‘domain’’) from the simulation process.

For the simulation, we used ABMs; and we used UML [18–

20] to represent the ‘‘domain’’ or ‘‘conceptual’’ model [21].

However, we did not use the ‘‘full’’ CoSMoS approach as

outlined in Figure 1 as our simulation models (ABMs) were

created using the Modelling4All (www.modelling4all.org/

about/) approach as described later and not derived directly

from the UML process, as might be expected. The implica-

tion of this bilevel, bimodeling approach was that we

needed to work on transdisciplinary understandings of the

whole system: in particular, we needed conceptual mod-

eler/simulation modeler counderstanding of the approach,

and modeler/social science counderstanding.

The CoSMoS approach encourages us not to move

directly from the ‘‘domain’’ (i.e., real world) to simulation

but to create a ‘‘domain model’’ first, that is, agreed on

between the modeler and the domain experts. Figure 1

shows all the stages of the CoSMoS approach and how

they are linked. Superimposed on the original diagram are

three ellipses showing where in particular a transdiscipli-

nary understanding is required. The domain may remain

largely the preserve of those who know about the reality

of ecosystem services and society. The simulation model-

ing can be chiefly the preserve of the computer science

modelers. In the middle (dotted ellipse), however, is an

area of explicit transdisciplinarity where domain expert(s)

and programmer must engage. This includes the creation

of the domain model and the analysis of simulations.

Modelers and domain experts are readily able to use

the above approach, where the domain model follows the

KISS principle. In fact, there are practical reasons as well

as scientific reasons for doing so such as to improve the

model’s generality as well as tractability. However, other

colleagues [3] argue for a ‘‘messy’’ approach even in the

domain model, as the importance of understanding and

representing the social correctly remains important

because people’s cognitive maps guide them in transform-

ing their norms and values into actions. However, our aim

was a structured KIDS approach, recognizing that KISS

can be one important type of entry point and interface for

engagement between modelers and domain experts but

trying to retain social detail.
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When we used the CoSMoS approach it had not yet been

tested with cases embodying a structured KIDS approach:

our experience was that, at the level of the direct resource

users, the conceptual model (CoSMoS ‘‘domain model’’)

became quite complicated, and it became a difficult docu-

mentation task to describe the links and interactions in any

detail in the UML, although the level of ABM simulation

worked well. However, producing a broad-brush-stroke,

overarching model of the combined SES was at least possi-

ble using UML.

But within the overarching framework provided by the

UML, researchers, end users, and policy decision takers

could start to understand the relationship between the ABMs

of social/ecological consequences and other models of the

ecological system (e.g., using equational modeling packages).

This article does not deal with the ecological models explic-

itly, but we have reason to believe that linking ecological and

relatively complex social issues at one spatial scale has

already been done [22] and is, thus, considered less problem-

atic. What remains to be described is the issue of creating

and then understanding how to link, layer, or nest the dis-

crete simulation models of the bits of the system within the

conceptual overarching model of the whole system.

ON THE EXPERIENCE OF ‘‘BOTTOM-UP’’ MODELING (USING
ABMS)

We were unequivocal from the start that our ABMs

would be informed by the knowledge held by local actors.

Thus, at the local, social level, we looked at what people

think, what they know (and what they think they know),

rather than just ‘‘hard’’ facts. However, we had to recognize

that there is a level of complexity in the thought processes

of real actors: the ‘‘explicit recognition of the cognitive

nature of complexity fits well with the use of the word

‘‘complex’’ in common parlance’’ [23] Some of the problem

of trying to represent people’s complex thoughts about SES

is that the actors have cognition above that of simple pro-

grammable characteristics. Thus, we start ‘‘from observing

. . . the way decision-makers represent problems in their

mind’’ [23] These representations need to be simplified.

One way to do this is to only model the behaviors of fishers

that change the environment, such as gear and boat

choices. We did discuss how their choices might be influ-

enced by their social norms but inclusion of suitable models

of these cognitive processes was not a priority for us.

The ABM was, thus, to represent, in some detail, a

small part of the whole system which contains multiple

ecosystems; multiple types of stakeholders; multiple natu-

ral resources; and multiple socio-cultural connections. A

first step in model development was to abstract the real-

world system to the key ecosystems and livelihoods of

interest for the study. In the case of Kenya, we concen-

trated on the artisanal fishers and the shallow coastal

water environment which contains coral reef in addition

to the inshore farmlands as these are two of the most

important resources for poor people.

FIGURE 1

How the CoSMoS approach should be implemented in theory��with thanks to Prof. Susan Stepney, York Centre for Complex Systems Analysis (YCCSA),
University of York.
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As noted in the section Background, Including the Set-

ting of the Problem, we based our data gathering method-

ology on the companion modeling approach. We adapted

it to understand how actors access different types of

resources; how this influences their decision making; what

are the important decision points now and in the past;

and what are the power relations that shape control over

access to and use of coastal resources. We tailored addi-

tional methods such as social network mapping (see

http://netmap.wordpress.com/about/) to elicit informa-

tion about actors as observed by the participants them-

selves. Rather than collecting detailed qualitative

information, the activities allows different homogeneous

‘‘focus groups’’ of stakeholders to broadly characterize

their networks, the types of interaction they perceive, and

the actors they consider to be influential.

Our approach, using ‘‘structured subjectivity’’ data gath-

ering methods (see Introduction) produced data in a for-

mat more readily utilized within the ABM. Thus, it was

possible to generate agent-based modeled scenarios based

on actors’ own hypotheses. Further, at a workshop held in

Ukunda, on the south Kenya coast––and using the Univer-

sity of Oxford’s Behaviour Composer (see http://resources.

modelling4all.org/Home/behaviour-composer-direct-to-ne

tlogo-guide)––BMU members and other representatives of

coastal communities were able to run the model to

explore impacts of different gear usage on the fish stock,

generate a number of possible scenarios, articulate feed-

back loops, and came up with discussion points that could

be incorporated into the model to make it better suited

for use in real situations.

Thus, the agents (actors) within our ABM are informed

by real actors in the field and, as a result, have character-

istics that reflect actors’ reality and are more recognizable

to end users. The scenarios generated by our ABM (using

NetLogo) typically look like Figure 2.

The model is a dynamic process and end users can,

and have, engaged with the model, running brief simula-

tions using different inputs to test scenarios generated. To

date, there is no detailed publication available of our

ABMs but these are under construction. The workshop

(mentioned) is reported at http://weadapt.org/knowledge-

base/adaptation-decision-making/wd-nace-scenarios-

kenya and describes the interaction with domain experts.

At the workshop, we first explained the main ideas cap-

tured in the model, and then, demonstrated how the soft-

ware and simulation works (using laptops).

Links to model codes are available: NetLogo model codes

are at: http://modelingcommons.org/browse/one_model/

3435; Modelling4all model codes: http://m.modelling4all.

FIGURE 2

A screen shot of a model for fisheries.
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org/m/?frozen5tB3AfKKQQMU_z2Uxm2E14f &MforAllMod

el51. At a deeper level, ABMs allow people to think ‘‘scien-

tifically’’ without the mathematics. The highly visual Net-

Logo interface allows people to ‘‘do the maths’’ by

manipulating symbols moving through space time. They

know their real world and, because the interface looks

(something) like their world, they can spot any deviation

from [their perception of] ‘‘reality’’ within the model.

ON EXPERIENCE OF ‘‘TOP-DOWN’’ MODELING (USING UML)
Our conceptual model (CoSMoS ‘‘domain model’’) can

be considered similar to the ‘‘archetypical cognitive maps

[that] usually are approximate and simplified versions of

scientific insights––and are called metamodels, ‘‘stylized

facts,’’ or simply correlations’’ [8] and, like our metamo-

dels (cf. initial project ‘‘metamodel’’ and its corresponding

UML diagram, Figures 3 and 4), it is probably best to

assume that they are incomplete and imperfect. Notwith-

standing, the combining ‘‘of value orientations and cogni-

tive maps which make up worldviews . . . provides the

basis for the construction of . . . model-based narratives’’

which can be used to ‘‘support strategic decision-making,

as well as heuristic exploration in complex sustainability

related macro-problems’’ [8].

Thus, our UML model is of the whole system––or as

close to the whole system as we can get from the actors

we have involved (often overlapping with the same actors

who informed the ABM). We did not need to use UML but

using a formalized, structured language we constrained

individual’s conceptual maps so that they were compara-

ble and collatable across actors. The first task was to

achieve a sufficient understanding of the way the locally

based researchers and experts perceive the discrete

‘‘classes’’ and linkages in their minds. This allowed a

rationalized understanding of the system which could be

compared with what the day-to-day decision taker knows.

We must accept that the framing of our questions

FIGURE 3

The original project ‘‘metamodel.’’

FIGURE 4

The computer systems unpacking of the initial ‘‘meta model’’ aka the UML Class Diagram.
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influenced what our informants told us, but this reinforces

our perceived need for structured subjectivity rather than

using methods which allow subjects to determine their

own framework.

The UML descriptions are models of how people think

the system is: they are the structured subjective views of

the domain experts (in our case, the three primary domain

experts were a Kenyan social scientist and ecologist who

were intimately knowledgeable about the subject matter

and a political economist). The role of the computer sci-

entist was to ask questions of these domain experts, ques-

tions which the domain experts often innately knew but

which needed to be made explicit in the model, such as

‘‘why does the fisher fish?’’ By accessing their understand-

ings, we can access a window onto their cognitive (or

mental) maps of how the world works. Once made explicit

(in the diagram) this conceptual map can then be tested

more rigorously (i.e., validated) with the actual social

actors involved. The UML diagrams (a single class dia-

gram, see Figure 4; a series of state diagrams for each of

the classes of concern, not reproduced here; and a series

of activity diagrams for important processes––see Figure 5

for an example) were, thus, iteratively coproduced.

The purpose of the UML diagram set is twofold: first, it

provides a formal but real-world-based notation of the

system which is a useful heuristic device. It has proved

useful to communicate the system to stakeholders from

different disciplinary backgrounds, but it is also useful to

describe the system, and its processes, to modelers who

are not themselves domain experts. It does so in a nota-

tion which, thus, introduces a structure which would oth-

erwise be lacking in these descriptions. Second, it starts to

provide a framework within which we may start to think

about how to link different models and models of different

parts of the system and to do so in a structured, systemic

way rather than using ad-hoc soft linkages.

The output of this part of our concept-testing project,

NB we set out only to take the first step in the CoSMoS

process (Figure 1) and test the domain modeling approach

with a SES, are the series of UML diagrams. The modeler

was initially given a schematic or cartoon model which

had been prepared at the outset of the project and asked

‘‘to populate it’’––that is to unpack the twin boxes of ‘‘eco-

system services’’ and ‘‘actors choices’’ and relevant inter-

linkages and feedbacks shown in Figure 3.

Several iterations of work by the computer programmer/

modeler, in communication with various domain experts,

resulted in an expansion and a formalization of Figure 3 to

become a UML class diagram as shown in Figure 4.

This class diagram is supplemented by a series of state

diagrams for each class. These are not reproduced here.

Examples of multiple UML diagrams including detailed

FIGURE 5

Activity diagram for fishing.
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state diagrams can be found in Greaves et al. [21]. The class

diagram is also complemented by an activity diagram for

significant activities that have an impact on the ecosystem.

One of these activity diagrams is reproduced here.

We have now ‘‘truth grounded’’ these diagrams and what

they represent with the stakeholders who have informed the

research through which they were created, and generally

they hold valid. However, they have also been a useful heu-

ristic tool within the project itself to allow cross-disciplinary

communication both of deeper cross-disciplinary under-

standing of the bigger system but also communication of

purpose. ‘‘[M]odeling ecological or environmental problems

is a challenge when humans are involved’’ and any unifying

modeling approach must bring together the knowledge of

many different experts from different disciplines, to be able

to compare their perceptions [24]. We believe that our UML

diagram set starts to do this.

DISCUSSION
Our initial plan within the project was to use a single

ABM of the system as ‘‘an alternative approach that mod-

els social life as interactions among adaptive agents who

influence each other in response to the influence they

receive’’ [25]. We successfully recorded relevant primary

data from our case study areas; we produced (social) net-

work maps and associated data; and then started to pro-

duce an ABM based on these social data and also physical

data about the natural ecosystem. Our model, based on

actors’ different understandings of the system, of course

require a ‘‘qualitative validation’’ to provide a ‘‘reality

check’’ [24] with the actors who have informed our model

and other significant stakeholders within the system.

In the process of qualitative validation/reality checking,

we quickly recognized the problem of ‘‘bolting together’’

data and inputs from different epistemic backgrounds

within a single ABM. We, therefore, modified our plan, try-

ing to understand a framework within which we could con-

ceive of coupling or ‘‘nesting’’ separate, localized ABM

within some ‘‘meta’’ framework. By separating out two mod-

eling processes, while at the simulation stage there is still

some need to couple social and biophysical aspects, we

found that there is no formal requirement to couple the

ABM and the framework (provided in UML). They operate

independently at different scales, describing the same

social-ecological reality but in different ways. Thus, rather

than attempting to produce one all encompassing, highly

complex simulation model as might be suggested by Figure

1, we opted to create the separate models of the whole sys-

tem’s framework using UML within the CoSMoS approach,

while using ABM (NetLogo founded in the Modelling4All

philosophy) to simulate local-level ‘‘realities.’’

ABMs prove excellent at the local level but the approach

did not scale up particularly well. Thus, we explored the use

of UML diagrams to describe this whole system and this

allows us to start to think about how to link up to higher

scales of governance. We were persuaded by €Ozemi and
€Ozemi that ‘‘Formal validation of these cognitive maps is

not possible because the maps operate on different under-

standings of the system’’ [24]. Thus, we accepted that the

model created in UML is really such a cognitive map––or

rather an aggregation of several actors’ cognitive maps. This

means that what we are modeling in UML is really rather

different from the ABM. We also recognize that our concep-

tual model (CoSMoS ‘‘domain model’’) is more of an explor-

atory tool rather than a formal ‘‘reproduction’’ of the SES (as

might be suggested in Figure 1). However, as the UML dia-

gram set represents the influences which actors receive

both from other actors within the system and from other

(ecological) elements within the system, it is, therefore,

directly testable against what people tell us, and also indi-

rectly testable against observed data. Thus, while we do not

need to validate the UML social-ecological model in the

same way as the ABM, we can cross-validate between the

ABM and the UML. Social simulation also introduces the

idea of ‘‘cross-validation’’ [3] with both a qualitative and a

quantitative component to comparison at different scales.

By bringing structured-subjective data written into

UML together with similar data coded into an ABM it

become possible to generate agent-based modeled scenar-

ios based on actors’ own hypotheses and validate/critique

the simulations the ABMs produce separately from the

conceptual model written in UML. Naturally, the formal

modeling process (assumptions, coding, etc.) all still needs

to be checked so that the modeler has confidence in the

model, but for SES social science application we believe

that we can be content with generating useful and poten-

tially truthful scenarios. Because our modeling processes

at both levels have been conceptually ‘‘truth grounded’’

with a relatively disparate group of stakeholders, we have

a reasonably high level of confidence in the whole model-

ing approach. End user and stakeholders have engaged

with the embryonic ABM, running brief simulations using

different inputs to test scenarios generated and they have

also qualitatively agreed with the cartoon model (unimple-

mented in code) as presented by in UML. Thus and here

is an argument for multiple models, validation can come

in the comparison between very different models (e.g.,

UML and ABM) and empirically between any one of those

models (in our case the ABM) and observed ‘‘reality.’’

We also needed a clear framework within which we can

understand how models of different parts of the system

can be interlinked. But the overarching model written in

UML is, we would argue, not a simulation of the system

or a half-way-house toward a simulation but rather a map

of how the system is conceived. It is a conceptual model.

This model models how people think about the system:

thus, it must contain the detailed information (and all the
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classes) that people use to conceive of the system. It

needs a KIDS approach. If we wanted to simulate this

conceptual model (CoSMoS domain model: a stage we

had never planned within the project) the modeler might

well naturally apply a KISS approach, but this would need

to be carried out iteratively with the domain experts so as

to maintain cross-disciplinary trust.

This multiple model approach also allows us to deal with

emergent properties in a novel way. For example, power

relationships between actors obviously influence how actors

behave: thus, such relationships are built in to an ABM as

actor characteristics. But power relations can also be emer-

gent properties of how actors have exploited resources. In

the UML representation then, as it is a model of the whole

system, it does not have power relationships built in

because here they are an emergent property of the social

relationships (i.e., the right-hand feedback loop in Figure 3).

This makes our ABM apparently more detailed and makes

it, by comparison, look more like the type of ABM we started

with, the natural science simulation model. But it also

emphases that the UML and the ABM are different ways of

representing the same reality: while there is not such a big

difference notable between the UML and the ABM in our

case (we were not explicitly modeling heterogeneity), they

can be used in very different ways.

Finally, our experience is that modelers need to quickly

learn when to use simulation models and when to use

conceptual models as alternative ways to communicate,

and social scientists need to understand the protocol and

methods by which modelers can simulate.

CONCLUSIONS
There is no current methodology agreed on for how to

represent such SES. Complex simulation modeling is

required to provide decision takers and policy advisors

with multiscale, multisector models to support decisions

with respect to poverty alleviation, and ecosystem services

decisions: but this modeling should be as simple as possi-

ble for the task in hand and readily interpretable to users.

Engaging model end users in cocreation is one way to

achieve this.

The conceptual model provided by the UML process

provides a general landscape within which the structurally

realistic model (ABM) can exist and be understood. This

approach, we argue, helps us develop tools to capture and

conceptualize whole ecosystem dynamics and processes.

We further argue that it can be used successfully when

there is a need to understand the system from both top-

down and bottom-up: that is as ‘‘a system’’ and also as the

constituent stakeholders understand it.
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