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Abstract

Gutman and Wagner proposed the concept of matching energy
(ME) and pointed out that the chemical applications of ME go back
to the 1970s. Let G be a simple graph of order n and µ1, µ2, . . . , µn

be the roots of its matching polynomial. The matching energy of G is
defined to be the sum of the absolute values of µi (i = 1, 2, . . . , n). In
this paper, we characterize the graphs with minimal matching energy
among all unicyclic and bicyclic graphs with a given diameter d.
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1 Introduction

In this paper, all graphs under our consideration are finite, connected, undi-
rected and simple. For more notations and terminology that will be used in
the sequel, we refer to [2]. Let G be a simple undirected graph with order n
and A(G) be the adjacency matrix of G. The characteristic polynomial of
G, denoted by φ(G), is defined as

φ(G) = det(xI −A(G)) =
n∑

i=0

ai(G)xn−i,

where I is the identity matrix of order n. The roots of the equation φ(G) =
0, denoted by λ1, λ2, . . . , λn, are the eigenvalues of A(G). The energy of

1The corresponding author.
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G, denoted by E(G), is defined as the sum of the absolute values of the
eigenvalues of A(G), that is,

E(G) =
n∑

i=1

|λi|.

The concept of the energy of simple undirected graphs was introduced by
Gutman in [15] and now is well-studied. For more results about graph
energy, we refer the readers to recent papers [8, 9, 12, 32, 34], two surveys
[16, 17] and the book [31]. There are various generalizations of graph energy,
such as Randić energy [3, 10], Laplacian energy [7], distance energy [36],
incidence energy [4, 5], energy of matrices [14] and energy of a polynomial
[33], etc.

Let G be a simple graph with n vertices and m edges. Denote by mk(G)
the number of k-matchings(= the number of selections of k independent
edges = the number of k-element independent edge sets) of G. Specifically,
m1(G) = m and mk(G) = 0 for k > ⌊n2 ⌋ or k < 0. It is both consistent and
convenient to define m0(G) = 1. The matching polynomial of the graph G
is defined as

α(G) = α(G,µ) =
∑

k≥0

(−1)kmk(G)µn−2k. (1)

Recently, Gutman and Wagner [23] defined the matching energy of a
graph G based on the zeros of its matching polynomial [13, 21].

Definition 1.1 Let G be a simple graph with order n, and µ1, µ2, . . . , µn be
the zeros of its matching polynomial. Then,

ME(G) =

n∑

i=1

|µi|. (2)

Moreover, Gutman and Wagner [23] pointed out that the matching energy
is a quantity of relevance for chemical applications. They arrived at the
simple relation:

TRE(G) = E(G) −ME(G),

where TRE(G) is the so-called “topological resonance energy” of G. About
the chemical applications of matching energy, for more details see [18, 1, 20].

For the coefficients ai(G) of φ(G), let bi(G) = |ai(G)|, i = 0, 1, . . . , n.
Note that b0(G) = 1, b1(G) = 0, and b2(G) is the number of edges of G. For
convenience, let bi(G) = 0 if i < 0. In [19, 24], we have

E(G) =
1

2π

∫ ∞

−∞

dx

x2
ln
[( ⌊n

2
⌋

∑

j=0

b2j(G)x2j
)2

+
( ⌊n

2
⌋

∑

j=0

b2j+1(G)x2j+1
)2]

. (3)

Thus E(G) is a monotonically increasing function of bi(G), i = 0, 1, . . . , n.
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Being similar to Eq.(3), the matching energy also has a beautiful formula
as follows[23]. Eq.(4) could be considered as the definition of matching
energy, in which case Eq.(2) would become a theorem.

Theorem 1.1 Let G be a simple graph of order n, and mk(G) be the number
of its k-matchings, k = 0, 1, 2, . . . , ⌊n2 ⌋. The matching energy of G is given
by

ME = ME(G) =
2

π

∫ ∞

0

1

x2
ln

[∑

k≥0

mk(G)x2k
]

dx. (4)

By Eq.(4) and the monotony of the function logarithm, we can define a
quasi-order “�” as follows: If two graphs G1 and G2 have the same order
and size, then

G1 � G2 ⇐⇒ mk(G1) ≥ mk(G2) for all k.

If G1 � G2 and there exists some k such that mk(G1) > mk(G2), then we
write G1 ≻ G2. Clearly, G1 ≻ G2 =⇒ ME(G1) > ME(G2).

Notice that when ME(G1) > ME(G2), we may not deduce that G1 ≻
G2. However, if G is any simple connected graph with n vertices other than
Sn, where Sn is a star of order n, then not only ME(G) > ME(Sn) [23]
but also G ≻ Sn. Based on the quasi-order, there are some more extremal
results on matching energy of graphs [6, 26, 27, 30].

In this paper, we characterize the graphs with minimal matching energy
among all unicyclic and bicyclic graphs with a given diameter d.

2 Preliminaries

The following result gives two fundamental identities for the number of k-
matchings of a graph (see [13, 21]).

Lemma 2.1 Let G be a simple graph, e = uv be an edge of G, and N(u) =
{v1(= v), v2, . . . , vj} be the set of all neighbors of u in G. Then we have

mk(G) = mk(G− uv) +mk−1(G− u− v), (5)

mk(G) = mk(G− u) +

j
∑

i=1

mk−1(G− u− vi). (6)

From Lemma 2.1, we know that mk(P1 ∪G) = mk(G). And we can also
obtain that

Lemma 2.2 Let G be a simple graph and H be a subgraph(resp. proper
subgraph) of G. Then G � H(resp. ≻ H).
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A connected graph with n vertices and n edges is called a unicyclic graph.
Obviously, a unicyclic graph has exactly one cycle. A connected graph with
n vertices and n+1 edges is called a bicyclic graph. Let U(n) be the class of
connected unicyclic graphs with n vertices, U(n, d) be the class of unicyclic
graphs with n vertices and diameter d, where 1 ≤ d ≤ n−2. Let B(n) be the
class of bicyclic graphs with n vertices and B(n, d) be the class of bicyclic
graphs in B(n) with diameter d, where 2 ≤ d ≤ n − 2. Let Pn be the path
with n vertices and Kn be the complete graph with n vertices.

When d = 1, n = 3, K3 is the unique graph in U(3, 1). When d = 1,
n ≥ 4, U(n, 1) contains no graphs. When d = 2, n = 4, U(4, 2) has two
graphs G1

4,2 and G2
4,2 (see Figure 1). Clearly, ME(G2

4,2) > ME(G1
4,2), i.e.,

G1
4,2 is the unique graph with minimal matching energy in U(4, 2). When

d = 2, n ≥ 5, the graph obtained by attaching n − 3 pendant vertices to a
vertex of a triangle is the unique graph in U(n, 2). Thus, we just consider
the case in which 3 ≤ d ≤ n − 2. In section 3 of our paper, we will prove
that for 3 ≤ d ≤ n − 2, the graph Un,d is the unique graph in U(n, d) with
minimal matching energy, where the graph Un,d is shown in Figure 2.

G
1
4,2 G2

4,2

Figure 1: The two graphs in U(4, 2).

· · ·

︷
︸
︸

︷

Bn,d with 3 ≤ d ≤ n− 3

·
·
·

n− d− 2
︸ ︷︷ ︸

d−3

Un,d with 3 ≤ d ≤ n− 2

· · ·

︷
︸
︸

︷

·
·
·

n− d− 1
︸ ︷︷ ︸

d−3

Figure 2: The graphs Un,d and Bn,d.
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When d = 2, n ≥ 6, B(n, 2) has two graphs G1
n,2 and G2

n,2(see Figure 3).

By Lemma 2.1 and simple calculation, we can get G1
n,2 ≻ G2

n,2, hence G2
n,2

is the unique graph in B(n, 2) with minimal matching energy. Therefore, we
only consider the case in which 3 ≤ d ≤ n−2. In section 4, we will show that
Bn,d is the unique graph with minimal matching energy for 3 ≤ d ≤ n − 3,
where the graph Bn,d is shown in Figure 2. Furthermore, we also pay our
attention to the case d = n− 2.

· · ·
︸ ︷︷ ︸

n− 5

G
1
n,2

·

·
·

︸
︷
︷

︸

n− 4

G
2
n,2

Figure 3: The two graphs in B(n, 2).

Let T (n, d) be the class of trees with n ≥ 2 vertices and diameter d,
where 1 ≤ d ≤ n − 1. If T ∈ T (n, 1), then T = P2. For 1 ≤ d ≤ n − 1, let
Tn,d denote the graph obtained by attaching n − d pendent vertices to an
end vertex of Pd. Specially, Tn,1 = Tn,2 = Sn. Obviously, Tn,2 is the unique
tree in T (n, 2) and Tn,n−1 = Pn is the unique tree in T (n, n− 1).

Let G1, G2 be two graphs with n vertices. Now we introduce a quasi-
order �1 defined in [31]: If bi(G1) ≥ bi(G2) for all i ≥ 0, then we write
G1 �1 G2. If G1 �1 G2 and there exists an i0 such that bi0(G1) > bi0(G2),
then we write G1 ≻1 G2. The following lemmas are relevant results on this
quasi-order.

Lemma 2.3 ([22, 40]) For 2 ≤ i ≤ ⌊n2 ⌋ and n ≥ 4,

Pn ≻1 Pi ∪ Pn−i ≻1 P1 ∪ Pn−1.

Lemma 2.4 ([19]) For 3 ≤ d ≤ n− 2, Pn �1 Tn,d �1 Sn.

Lemma 2.5 ([37]) Let T ∈ T (n, d) and T 6= Tn,d. Then T ≻1 Tn,d.

Lemma 2.6 ([29]) If d > d0 ≥ 3, then Tn,d ≻1 Tn,d0 .

Lemma 2.7 ([39]) For 2 ≤ d1 ≤ n1−2, we have Tn1,d1∪T �1 Tn1+n2−1,d1+d2,
where T = Tn2,d2 if 2 ≤ d2 ≤ n2 − 2, and P2 if n2 = 2 and d2 = 1.

If G is an acyclic graph, then [22] b2k(G) = mk(G) and b2k+1(G) = 0
for all k. Thus, the quasi-order ≻1 (resp. �1) in Lemmas 2.3–2.7 can be
replaced by ≻ (resp. �), and the results also work.
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By Lemma 2.1 and the definition of the quasi-order �, it is easy to see
that the following lemma holds.

Lemma 2.8 Let G, G′ ∈ U(n) and uv(resp. u′v′) be a pendant edge with
the pendant vertex u(resp. u′) of the graph G(resp. G′). If G− u � G′ − u′

and G−u−v ≻ G′−u′−v′, or G−u ≻ G′−u′ and G−u−v � G′−u′−v′,
then G ≻ G′.

The following lemmas will be needed in our paper, which are obtained
based on the previous results.

Lemma 2.9 For 3 ≤ d ≤ n− 2, Bn,d ≻ Un,d ≻ Tn,d.

Proof. Since Un,d is a proper subgraph of Bn,d, then by Lemma 2.2, we can
get Bn,d ≻ Un,d. Similarly, we also have Un,d ≻ Tn,d.

Lemma 2.10 For 3 ≤ d0 < d ≤ n− 2, Un,d ≻ Un,d0 .

Proof. By Lemmas 2.1, 2.2 and 2.6,

mk(Un,d) ≥ mk(Un−1,d−1) +mk−1(Tn−2,d−2)

≥ mk(Un−1,d−1) +mk−1(Td−1,d−3)

= mk(Un,d−1).

Furthermore, m2(Un,d) > m2(Un,d−1). It follows that Un,d ≻ Un,d−1. There-
fore, Un,d ≻ Un,d−1 ≻ · · · ≻ Un,d0 .

Similarly, we have

Lemma 2.11 For 3 ≤ d0 < d ≤ n− 2, Bn,d ≻ Bn,d0 .

3 Unicyclic graphs with a given diameter

Now we consider the minimal matching energy of graphs in U(n, d) with
3 ≤ d ≤ n− 2. We first discuss the case d = n− 2.

Lemma 3.1 Let G ∈ U(n, n − 2) with n ≥ 8 and G 6= Un,n−2. Then
G ≻ Un,n−2.

Proof. We will prove the lemma by induction on n.
If n = 8, then G is isomorphic to one of the following graphs (see Figure

4).
It is easy to get

α(U1
8,6) = µ8−8µ6+19µ4−13µ2+1; α(U2

8,6) = µ8−8µ6+18µ4−11µ2+1;

α(U3
8,6) = µ8−8µ6+18µ4−12µ2+1; α(U4

8,6) = µ8−8µ6+19µ4−14µ2+2;
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U 1
8,6 U 2

8,6

U 3
8,6

U 5
8,6

U 4
8,6

Figure 4: The graphs in U(8, 6) except for U8,6.

α(U5
8,6) = µ8−8µ6+18µ4−12µ2+2; α(U8,6) = µ8−8µ6+18µ4−11µ2.

And then it is obvious that U i
8,6 ≻ U8,6 for i = 1, 2, 3, 4, 5, i.e., U8,6 is the

unique graph in U(8, 6) with minimal matching energy.
If n = 9, then G is isomorphic to one of the following graphs (see Figure

5).

U
1
9,7 U

2
9,7

U
4
9,7U 3

9,7

U 5
9,7 U 6

9,7

Figure 5: The graphs in U(9, 7) except for U9,7.

We can obtain that

α(U1
9,7) = µ9−9µ7+26µ5−26µ3+6µ; α(U2

9,7) = µ9−9µ7+25µ5−23µ3+5µ;

α(U3
9,7) = µ9−9µ7+25µ5−24µ3+6µ; α(U4

9,7) = µ9−9µ7+25µ5−24µ3+5µ;

α(U5
9,7) = µ9−9µ7+26µ5−27µ3+8µ; α(U6

9,7) = µ9−9µ7+25µ5−24µ3+6µ;
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along with
α(U9,7) = µ9 − 9µ7 + 25µ5 − 23µ3 + 4µ.

It now immediately follows that U i
9,7 ≻ U9,7 for i = 1, 2, 3, 4, 5, 6, i.e.,

U9,7 is the unique graph in U(9, 7) with minimal matching energy.
Now suppose that the result holds for graphs in U(n − 1, n − 3) and

U(n− 2, n− 4). Let G ∈ U(n, n− 2) and G 6= Un,n−2, where n ≥ 10.
Let u(resp. u′) be a pendant vertex, adjacent to v(resp. v′), which has

the largest distance to a vertex on the unique cycle of G(resp. Un,n−2). Then
the degree of v is 2. So is v′. Hence G − u ∈ U(n − 1, n − 3), G − u − v ∈
U(n− 2, n− 4) and Un,n−2 − u′ = Un−1,n−3, Un,n−2 − u′ − v′ = Un−2,n−4.

Since G 6= Un,n−2, we have either G − u 6= Un−1,n−3 or G − u − v 6=
Un−2,n−4. By the induction hypothesis, we have G − u ≻ Un−1,n−3 and
G− u− v � Un−2,n−4, or G− u � Un−1,n−3 and G− u− v ≻ Un−2,n−4. By
Lemma 2.8, G ≻ Un,n−2.

Theorem 3.2 Let G ∈ U(n, d) with n ≥ 8, 3 ≤ d ≤ n − 2 and G 6= Un,d.
Then ME(G) > ME(Un,d).

Proof. We prove the result by induction on n− d.
When n − d = 2, by Lemma 3.1, we have G ≻ Un,d. Let t ≥ 3 and

suppose that the result holds for n − d < t. Now suppose that n − d = t.
Let u′ be the vertex of degree 3 in Un,d and v′ be a vertex on the quadrangle
that is adjacent to u′. By Lemma 2.1,

mk(Un,d) = mk(Un,d − u′v′) +mk−1(Un,d − u′ − v′)

= mk(Tn,d) +mk−1(Pd−3 ∪ Sn−d+1).

For Cn, mk(Cn) = mk(Pn) + mk−1(Pn−2). By Lemma 2.4, Pn ≻ Tn,d.
And by Lemmas 2.3 and 2.4, Pn−2 � Pd−3∪Pn−d+1 ≻ Pd−3 ∪Sn−d+1. Thus
Cn ≻ Un,d. Therefore, we may suppose that the unique cycle of G is Cr with
r < n. Let P (G) = v0v1 . . . vd be a diametrical path of G. Then one of v0
and vd must be a pendant vertex.

Case 1 All pendant vertices are on P (G).
Since t = n− d ≥ 3, then |V (P (G))| = d+ 1 ≤ n− 2. Thus there are at

least two adjacency vertices, say u and v, on Cr which lie outside P (G) such
that G− uv ∈ T (n, d1), and G− u− v ∈ T (n− 2, d2), where d1, d2 ≥ d. By
Lemmas 2.5 and 2.6, G− uv � Tn,d1 � Tn,d, G− u− v � Tn−2,d2 � Tn−2,d.
We also have Tn−2,d ≻ Pd−3∪Tn−d+1,3 ≻ Pd−3∪Sn−d+1 by Lemmas 2.2 and
2.4. Hence, G− u− v ≻ Pd−3 ∪ Sn−d+1.

Note that mk(G) = mk(G−uv)+mk−1(G−u−v), so mk(G) ≥ mk(Un,d)
for all k. Moreover, since Tn−2,d ≻ Pd−3 ∪Sn−d+1, there exists some k0 such
that mk0−1(G− u− v) > mk0−1(Pd−3 ∪ Sn−d+1), i.e., mk0(G) > mk0(Un,d).
Thus G ≻ Un,d.

Case 2 There is at least one pendant vertex outside P (G).
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Let u′ be a pendant vertex of Un,d adjacent to the vertex v′ of degree
n−d+1. Then Un,d−u′ = Un−1,d, and Un,d−u′−v′ = (n−d−2)P1∪Td,d−2.

Subcase 2.1 There is a pendant vertex u outside P (G) such that its
neighbor v lies on Cr.

Since u outside P (G), then G − u ∈ U(n − 1, d). Consequently, by the
induction hypothesis, G− u � Un−1,d.

If v lies outside P (G), then G−u− v ⊇ Pd+1. Thus G−u− v � Pd+1 ≻
Td,d−2.

Suppose that v lies on P (G), then P (G) and Cr have common vertices,
say vi, . . . , vi+j with j ≥ 0.

If j = 0, i.e., v = vi is the unique common vertex of P (G) and Cr, then
G− u− v ⊇ Pi ∪ Pd−i ∪ P2. Since

mk(Pi ∪ Pd−i ∪ P2) ≥ mk(Pd) ≥ mk(Td,d−2)

andm2(Pi∪Pd−i∪P2) > m2(Td,d−2), then Pi∪Pd−i∪P2 ≻ Td,d−2. Therefore,
G− u− v � Pi ∪ Pd−i ∪ P2 ≻ Td,d−2.

If j > 0. For v 6= vi, vi+j , G−u−v ⊇ Pd+1. So G−u−v � Pd+1 ≻ Td,d−2.
Otherwise, for v = vi or vi+j, say v = vi. Then G− u− v ⊇ Pi ∪ T1, where
T1 ∈ T (d − i + 1, d − i − 1) is obtained by attaching a pendant vertex to
vertex vi+j of the path P = vi+1 · · · vd. For k ≥ 0,

mk(Pi ∪ T1) ≥ mk(Pi ∪ Td−i+1,d−i−1) ≥ mk(Td,d−2).

If (i, j) 6= (1, 2), then m2(Pi ∪ T1) > m2(Td,d−2), hence G − u − v � Pi ∪
T1 ≻ Td,d−2. Otherwise, Pi ∪ T1 is a proper subgraph of G − u − v, then
G − u − v ≻ Pi ∪ T1 � Td,d−2. Thus we always have G − u − v ≻ Td,d−2.
Therefore, G− u− v ≻ Un,d − u′ − v′.

We have proved that G − u � Un−1,d. Then by Lemma 2.8, we obtain
G ≻ Un,d.

Subcase 2.2 The neighbor of any pendant vertex outside P (G) also lies
outside Cr.

If there is a pendant vertex u such that its neighbor v lies outside P (G),
then G − u − v ⊇ Cr ∪ Pd+1 ⊇ Cr ∪ Pj ∪ Pd−j or G − u − v ⊇ G′, where
G′ ∈ U(s, d) with d+ 2 ≤ s ≤ n− 2.

If every pendant vertex outside P (G) is adjacent to a vertex on P (G),
then we choose a pendant vertex u, adjacent to v = vj such that G−u−v ⊇
Cr∪Pj∪Pd−j or G−u−v ⊇ Pj∪G

′′, where G′′ ∈ U(s′, d′) with d′ ≥ d−j−1,
s′ ≥ d′ + 2 and s′ + j ≤ n− 2.

Hence there are three possibilities: G−u−v ⊇ Cr∪Pj∪Pd−j , G−u−v ⊇
G′ or G− u− v ⊇ Pj ∪G′′.

First, suppose that G− u− v ⊇ Cr ∪ Pj ∪ Pd−j , then

mk(Cr ∪ Pj ∪ Pd−j) ≥ mk(P3 ∪ Pj ∪ Pd−j) ≥ mk(Td,d−2).
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In particular, m1(Cr ∪ Pj ∪ Pd−j) > m1(Td,d−2). Thus, G − u − v � Cr ∪
Pj ∪ Pd−j ≻ Td,d−2.

Next, suppose that G − u − v ⊇ G′, then G − u − v � Us,d � Ud+2,d ≻
Td+2,d.

Finally, suppose that G − u − v ⊇ Pj ∪ G′′. For G′′ ∈ U(s′, d′) with
s′ − d′ ≤ n− 2− j − (d− j − 1) = n − d− 1. By the induction hypothesis,
G′′ � Us′,d′ � Ud−j+1,d−j−1. Thus

G− u− v � Pj ∪G′′ � Pj ∪ Us′,d′ � Pj ∪ Ud−j+1,d−j−1.

For k ≥ 0,

mk(Pj ∪ Ud−j+1,d−j−1) ≥ mk(Pj ∪ Td−j+1,d−j−1) ≥ mk(Td,d−2).

Furthermore,m1(Pj∪Ud−j+1,d−j−1) > m1(Td+2,d). It follows thatG−u−v �
Pj ∪ Ud−j+1,d−j−1 ≻ Td,d−2.

According to the arguments above, we have proved that G − u − v ≻
Un,d − u′ − v′. On the other hand, G − u � Un−1,d. Thus by Lemma 2.8,
G ≻ Un,d.

Combining Cases 1 and 2, we conclude that G ≻ Un,d also holds for
G ∈ U(n, d) with 3 ≤ d ≤ n− 3 and G 6= Un,d, which yields the result.

4 Bicyclic graphs with a given diameter

In what follows we state some new definitions and notations. For a graph
G ∈ B(n), it has either two or three distinct cycles. If G has exactly two
cycles, suppose that the lengths of them are a and b respectively. If G has
three cycles, then any two cycles must have at least one edge in common,
and we may choose two cycles of lengths of a and b with t common edges
such that a − t ≥ t and b − t ≥ t. Then, in any case, we choose two
cycles Ca and Cb in G. For convenience, let Ca = v0v1 · · · va−1v0 and Cb =
u0u1 · · · ub−1u0. If Ca and Cb have no common edges, then Ca and Cb

are connected by a unique path P , say from v0 to u0. Let l(G) be the
length of P . If Ca and Cb have exactly t(≥ 1) common edges, and thus
have exactly t + 1 common vertices, say, v0 = u0, v1 = u1, . . . , vt = ut,
then Cc = u0ub−1 · · · ut+1utvt+1vt+2 · · · va−1v0 is the third cycle of G, where
c = b + a − 2t. If we write w0 = u0, w1 = ub−1, . . . , wc−1 = va−1, then
Cc = w0w1 · · ·wc−1w0. Denote by d(G) the diameter of G.

Now we turn our attention to the minimal matching energy of graphs in
B(n, d) with 3 ≤ d ≤ n− 2. We first deal with the case d = n− 3.

Lemma 4.1 Let G ∈ B(n, n − 3) with n ≥ 7, and G 6= Bn,n−3. Then
G ≻ Bn,n−3.
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Proof. By induction on n to prove this fact.
For n = 7 and n = 8, there are only finitely many graphs we need to

consider. Then by Lemma 2.1 and direct check, we can get G ≻ Bn,n−3.
Suppose that the result holds for all graphs in B(n− 1, n− 4) and B(n−

2, n − 5), where n ≥ 9. Let G ∈ B(n, n− 3) and G 6= Bn,n−3.
Case 1 There is a pendent vertex u in G such that the degree of its

neighbor v is 2.
In this case, G − u ∈ B(n − 1, n − 4) and G − u − v ∈ B(n − 2, n − 5).

Since G 6= Bn,n−3, then G − u 6= Bn−1,n−4 or G − u − v 6= Bn−2,n−5. By
the induction hypothesis, G − u ≻ Bn−1,n−4 and G − u− v � Bn−2,n−5, or
G− u � Bn−1,n−4 and G− u− v ≻ Bn−2,n−5. Hence, G ≻ Bn,n−3.

Case 2 The neighbor of any pendent vertex has degree at least 3 or
there is no pendent vertex.

Then G is isomorphic to some Hj, j = 1, 2(see Figure 6), or G contains
one triangle or one quadrangle which has at most one common vertex with
the other cycle that is a triangle or a quadrangle.

· · · · · ·

H1 H2

u1

v2 u0 u2

u1

v2 u0 u2

Figure 6: The graphs Hi for i = 1, 2.

If G is isomorphic to H1, then by Lemmas 2.1, 2.5, 2.6 and Theorem 3.2,

mk(G) = mk(G− u1v2) +mk−1(G− u1 − v2)

≥ mk(Un,n−3) +mk−1(Tn−2,d−1)

≥ mk(Un,n−3) +mk−1(Pn−6 ∪ S4)

= mk(Bn,n−3).

Moreover, m2(G) > m2(Bn,n−3), thus G ≻ Bn,n−3.
If G is isomorphic to H2, then by Lemmas 2.1, 2.3 and Theorem 3.2,

mk(G) = mk(G− u1u0) +mk−1(G− u1 − u0)

≥ mk(Un,n−3) +mk−1(P2 ∪ Tn−4,n−6)

≥ mk(Un,n−3) +mk−1(P2 ∪ Pn−5) +mk−2(P2 ∪ Pn−7)

≥ mk(Un,n−3) +mk−1(P3 ∪ Pn−6) +mk−2(Pn−6)

= mk(Bn,n−3).

Similarly, m2(G) > m2(Bn,n−3), thus G ≻ Bn,n−3.
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· · ·

G1

· · ·

G2

· · ·

G3

· · ·

G4

· · ·

G5

· · ·

G6

Figure 7: The graphs Gi for i = 1, 2, 3, 4, 5, 6.

Otherwise, G contains one triangle or one quadrangle which has at most
one common vertex with the other cycle that is a triangle or a quadrangle.
Choose Ca and Cb as above. Let b ≥ a.

If a = 3, then G is isomorphic to G1, G2 or G3 in Figure 7, where the
black vertices may not occur. Similarly, we can obtain that G ≻ Bn,n−3.

If a = 4, then G is isomorphic to G4, G5 or G6 in Figure 7. We can show
that G ≻ Bn,n−3 in the same way.

Hence the conclusion follows.

Lemma 4.2 Let G ∈ B(n, d) with n ≥ 8 and 3 ≤ d ≤ n− 4. If G contains
no pendent vertices, then G ≻ Bn,d+1.

Proof. We choose Ca, Cb in G and if there exists the third cycle, then we
choose Cc and t as above. Let b ≥ a. Since d ≤ n− 4, we have b ≥ 5.

Case 1 Ca and Cb have no common edges.
Then d = ⌊a2⌋ + ⌊ b

2⌋ + l(G), d(G − u1u2) = ⌊a2⌋ + l(G) + b− 2 ≥ d + 1,
d(G − u1 − u2) = ⌊a2⌋ + l(G) + b − 3 ≥ d. According to Lemmas 2.1, 2.2,
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2.10 and Theorem 3.2,

mk(G) = mk(G− u1u2) +mk−1(G− u1 − u2)

≥ mk(Un,d+1) +mk−1(Un−2,d)

≥ mk(Un,d+1) +mk−1(Pd−2 ∪ Sn−d)

= mk(Bn,d+1).

Further, we have m2(G) > m2(Bn,d+1), thus G ≻ Bn,d+1.
Case 2 Ca and Cb have at least one common edge.
Notice that a − t ≥ t, b − t ≥ t, where t ≥ 1. It follows that c ≥ b + 1,

d = ⌊ c2⌋ = ⌊ (a+b)
2 ⌋ − t, d(G − w0 − w1) = c− 3 ≥ d and d ≥ 3.

If b > 5 or b = 5 and a is even, then d(G−w0w1) = ⌊a2⌋+b−t−1 ≥ d+1,
by Lemmas 2.1, 2.2, 2.9 and Theorem 3.2,

mk(G) = mk(G −w0w1) +mk−1(G− w0 − w1)

≥ mk(Un,d+1) +mk−1(Un−2,d)

≥ mk(Un,d+1) +mk−1(Tn−2,d)

≥ mk(Un,d+1) +mk−1(Pd−2 ∪ Sn−d)

= mk(Bn,d+1)

together with m2(G) > m2(Bn,d+1), hence G ≻ Bn,d+1.
If b = 5 and a is odd, then G is isomorphic to the two graphs in Figure

8, it is easy to verify that G ≻ Bn,d+1 and the proof is complete.

Figure 8: The graphs isomorphic to G when b = 5 and a is odd.

Lemma 4.3 Let G ∈ B(n, d) with n ≥ 8 and 3 ≤ d ≤ n− 4. If G contains
exactly one pendent vertex u on all diametrical paths of G such that G − u
contains no pendent vertices, then G ≻ Bn,d+1.

Proof. We choose Ca, Cb in G and if there exists the third cycle, then we
choose Cc and t as above. Let b ≥ a. Since d ≤ n− 4, we have b ≥ 5. Let v
be the neighbor of u.

Case 1 Ca and Cb have no common edges.
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Then d = ⌊a2⌋+ ⌊ b
2⌋+ l(G) + 1.

If b ≥ 7, then d(G − u1u2) ≥ ⌊a2⌋+ l(G) + b− 2 ≥ d+ 1.
If v lies on Ca and b = 5 or 6, then d(G−u1u2) = ⌊a2⌋+l(G)+b−1 = d+1.

If v lies on Cb, a = 5 and b = 6, then d(G− v1v2) = ⌊ b
2⌋+ l(G)+ a− 1 =

d+ 1.
In these cases, the proof is the same as Case 1 of Lemma 4.2.
Otherwise, v lies on Cb, a = 3 or 4 and b = 5 or 6.
If l(G) = 0, then G is isomorphic to finitely many graphs. Apply Lemma

2.1 and direct calculation, we can get G ≻ Bn,d+1.
So suppose that l(G) ≥ 1. If a = 3 and b = 5, then G−v0v1 ∈ U(n, d+1).

G − v0 − v1 = P1 ∪ G0, where G0 ∈ U(n − 3, d − 2). Since d(G0) = d − 2,
n(G0) = n − 3, then n − 3 = d − 2 + 3, that is, n − d = 4, meanwhile,
l(G) − 1 = d − 2 − 3 = d − 5, i.e., l(G) = d − 4. Thus G0 − u0u1 ⊇
Pd−2 ∪ S3, G0 − u0 − u1 = Pd−5 ∪ P4. Therefore, by Lemmas 2.1, 2.2, 2.3
and Theorem 3.2,

mk(G) = mk(G− v0v1) +mk−1(G− v0 − v1)

≥ mk(Un,d+1) +mk−1(G0 − u0u1) +mk−2(G0 − u0 − u1)

≥ mk(Un,d+1) +mk−1(Pd−2 ∪ S3) +mk−2(Pd−2)

≥ mk(Un,d+1) +mk−1(Pd−2 ∪ Sn−d)

= mk(Bn,d+1).

In particular, m2(G) > m2(Bn,d+1), thus G ≻ Bn,d+1.
If a = 3 and b = 6, by similar arguments, we can obtain that G ≻ Bn,d+1.
If a = 4 and b = 5, then n = d + 1 + 3 = d + 4, i.e., n − d − 1 = 3,

G−v0v1 ∈ U(n, d+1) and G−v0−v1 = P2∪G0, where G0 ∈ U(n−4, d−3).
Similarly,

mk(G) = mk(G− v0v1) +mk−1(G− v0 − v1)

≥ mk(Un,d+1) +mk−1(P2 ∪G0 − u0u1) +mk−2(P2 ∪G0 − u0 − u1)

≥ mk(Un,d+1) +mk−1(P2 ∪ Pd−2) +mk−2(P2 ∪ Pd−6 ∪ P4)

≥ mk(Un,d+1) +mk−1(P3 ∪ Pd−3) +mk−2(Pd−2)

= mk(Bn,d+1).

Moreover, m2(G) > m2(Bn,d+1), hence G ≻ Bn,d+1.
If a = 4 and b = 6, we can verify that G ≻ Bn,d+1 in the same way.
Case 2 Ca and Cb have at least one common edge.
Then d = ⌊ c2⌋ + 1 = ⌊ (a+b)

2 ⌋ − t + 1. Since b ≥ 5, w0, w1 6= v and
d(G − w0w1) = ⌊a2⌋ + b − t − 1. When b ≥ 6, d(G − w0w1) ≥ d + 1,
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d(G− w0w1) ≥ d− 1. And then

mk(G) = mk(G −w0w1) +mk−1(G− w0 − w1)

≥ mk(Un,d+1) +mk−1(Tn−2,d−1)

≥ mk(Un,d+1) +mk−1(Pd−2 ∪ Sn−d)

= mk(Bn,d+1)

along with m2(G) > m2(Bn,d+1), hence G ≻ Bn,d+1. Now, we are left with
the cases:

(i) b = 5, t = 2, a = 4, uv ∈ Cb;
(ii) b = 5, t = 2, a = 4, uv ∈ Ca;
(iii) b = 5, t = 2, a = 5.
It can be checked directly that G ≻ Bn,d+1 in these cases.
Combining Cases 1 and 2, we arrive at the result.

Theorem 4.4 Let G ∈ B(n, d) with n ≥ 8 and 3 ≤ d ≤ n − 3. If there are
two vertex-disjoint cycles in G, then G ≻ Bn,d.

Proof. The proof proceeds by induction on n− d. By Lemma 4.1, the result
holds for n−d = 3. Let h ≥ 4 and assume that the result holds for n−d < h.
Suppose that G ∈ B(n, d) with n− d = h.

Case 1 There is no pendent vertex in G.
Then by Lemmas 2.11 and 4.2, G ≻ Bn,d+1 ≻ Bn,d.
Case 2 There is a pendent vertex outside some diametrical path P (G) =

x0x1 · · · xd.
Let u, adjacent to v, be a pendent vertex outside P (G) in G. Then

G − u ∈ B(n − 1, d). Since (n − 1) − d < h, by the induction hypothesis,
G− u ≻ Bn−1,d.

By Lemma 2.1,

mk(Bn,d) = mk(Bn−1,d) +mk−1(Td+1,d−2) (∗)

Meanwhile, let H = G− u− v, then

mk(G) = mk(G− u) +mk−1(G− u− v)

= mk(G− u) +mk−1(H)

≥ mk(Bn−1,d) +mk−1(H).

Hence, to complete the proof we shall show that mk(H) ≥ mk(Td+1,d−2).
Select Ca and Cb as above.

Subcase 2.1 v lies on some cycle, say Ca. Then H ⊇ Cb.
First, suppose that P (G) and Cb have no common vertices. Then H ⊇

Pi∪Pd−i∪Cb when v lies on P (G), say v = vi. Otherwise, H ⊇ Pd+1∪Cb ⊇
Pi ∪ Pd−i ∪ Cb. Thus

mk(H) ≥ mk(Pi ∪ Pd−i ∪ Cb) ≥ mk(Pd−1 ∪ Sb) ≥ mk(Pd−1 ∪ P3)

≥ mk(Pd+1) ≥ mk(Td+1,d−2).
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Next, suppose that P (G) and Cb have common vertices xl, . . . , xl+q,
where q ≥ 0.

If v lies outside P (G), then H ⊇ G1, where G1 ∈ U(s1, d) with s1 ≥ d+2.
Hence,

mk(H) ≥ mk(G1) ≥ mk(Us1,d) ≥ mk(Ts1,d) ≥ mk(Pd+1) ≥ mk(Td+1,d−2).

So suppose that v lies on P (G). Then P (G) and Ca have common
vertices, say xi, . . . , xi+p, where p ≥ 0.

When p = 0, then i ≥ 1, thus H ⊇ P2 ∪ Pi ∪ G2, where G2 ∈ U(s2, d2),
d2 ≥ d − i − 1 ≥ 1 and s2 ≥ d2 + 2. If d2 = 1, i = d − 2, then G2 = C3.
Therefore,

mk(H) ≥ mk(P2∪Pd−2∪C3) ≥ mk(Pd−1∪P3) ≥ mk(Pd+1) ≥ mk(Td+1,d−2).

If d2 = 2, then s2 ≥ 4, i ≥ d− 3. Consequently,

mk(H) ≥ mk(P2 ∪ Pi ∪G2) ≥ mk(P2 ∪ Pi ∪ Ss2) ≥ mk(P2 ∪ Pi ∪ T4,2)

≥ mk(Ti+4,i+2) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

If d2 ≥ 3, then s2 ≥ 5. Thus

mk(H) ≥ mk(P2 ∪ Pi ∪G2) ≥ mk(P2 ∪ Pi ∪ Us2,d2) ≥ mk(P2 ∪ Pi ∪ Ts2,d2)

≥ mk(Ts2+i,d2+i) ≥ mk(Td2+i+2,d2+i) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

When p = 1. If v = vi, then i ≥ 1 and H ⊇ Pi ∪ G3, where G3 ∈
U(s3, d3), d3 ≥ d− i ≥ 3, s3 ≥ d3 + 2. Accordingly,

mk(H) ≥ mk(Pi ∪G3) ≥ mk(Pi ∪ Us3,d3) ≥ mk(Pi ∪ Ts3,d3) ≥ mk(Ts3+i−1,d3+i−1)

≥ mk(Td2+i+2,d2+i) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

If v = vi+1, then H ⊇ Pi+2∪G4, where G4 ∈ U(s4, d4), d4 ≥ d− (i+1)−1 =
d− i− 2 ≥ 1, s4 ≥ d4 + 2.
If d4 = 1, then i = d− 3, G4 = C3, we have

mk(H) ≥ mk(Pd−1 ∪C3) ≥ mk(Pd−1 ∪ P3) ≥ mk(Pd+1) ≥ mk(Td+1,d−2).

If d4 = 2, then s4 ≥ 4, i ≥ d− 4. Consequently,

mk(H) ≥ mk(Pi+2 ∪G4) ≥ mk(Pi+2 ∪ Ss4) ≥ mk(Pi+2 ∪ T4,2)

≥ mk(Ti+5,i+3) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

If d4 ≥ 3. Then

mk(H) ≥ mk(Pi+2 ∪G4) ≥ mk(Pi+2 ∪ Us4,d4) ≥ mk(Pi+2 ∪ Ts4,d4)

≥ mk(Ts4+i+1,d4+i+1) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).
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Now suppose that p ≥ 2. If v 6= xi, xi+p, then H ⊇ G5, where G5 ∈
U(s5, d5), d5 ≥ d, s5 ≥ d5 + 2. Hence

mk(H) ≥ mk(G5) ≥ mk(Us5,d5) ≥ mk(Ts5,d5) ≥ mk(Td+1,d−2).

If v = xi, then H ⊇ Pi ∪G6, where G6 ∈ U(s6, d6), d6 ≥ d− i− 1 ≥ 3, s6 ≥
d6 + 3. Therefore,

mk(H) ≥ mk(Pi ∪G6) ≥ mk(Pi ∪ Us6,d6) ≥ mk(Pi ∪ Ts6,d6)

≥ mk(Ts6+i−1,d6+i−1) ≥ mk(Td+1,d−2).

If v = xi+p, then H ⊇ T1 ∪ G7 or Pi+p+1 ∪ G7, where G7 ∈ U(s7, d7), d7 ≥
d− i−p−1 ≥ 1, s7 ≥ d7+2, T1 ∈ T (i+p+1, dT1

), dT1
≥ i+p−1. If d7 = 1,

then i+ p = d− 2, G7 = C3, thus

mk(H) ≥ mk(Td−1,d−3 ∪ C3) ≥ mk(Td−1,d−3 ∪ P3) ≥ mk(Td+1,d−2)

or

mk(H) ≥ mk(Pi+p+1 ∪G7) ≥ mk(Pi+p+1 ∪C3) ≥ mk(Pi+p+1 ∪ P3)

≥ mk(Pi+p+3) = mk(Pd+1) ≥ mk(Td+1,d−2).

If d7 = 2, then i+ p ≥ d− 3, s7 ≥ 4, accordingly,

mk(H) ≥ mk(Ti+p+1,i+p−1 ∪ Ss7) ≥ mk(Ti+p+1,i+p−1 ∪ T4,2)

≥ mk(Ti+p+4,i+p+1) ≥ mk(Td+1,d−2)

or

mk(H) ≥ mk(Pi+p+1∪Ss7) ≥ mk(Pi+p+1∪T4,2) ≥ mk(Ti+p+4,i+p+2) ≥ mk(Td+1,d−2).

If d7 ≥ 3, then

mk(H) ≥ mk(Ti+p+1,i+p−1 ∪ Us7,d7) ≥ mk(Ti+p+1,i+p−1 ∪ Ts7,d7)

≥ mk(Ti+p+s7,i+p+d7−1) ≥ mk(Td+1,d−2)

or

mk(H) ≥ mk(Pi+p+1∪Us7,d7) ≥ mk(Pi+p+1∪Ts7,d7) ≥ mk(Ti+p+s7,i+p+d7) ≥ mk(Td+1,d−2).

Subcase 2.2 v lies outside any cycle. Then H ⊇ Ca ∪ Cb.
First, suppose that v lies on P (G) and take v = xi. If P (G) has no

common vertices with any cycle, then H ⊇ Ca ∪ Cb ∪ Pi ∪ Pd−i. Thus

mk(H) ≥ mk(Ca∪Cb∪Pi∪Pd−i) ≥ mk(P3∪Pd−1) ≥ mk(Pd+1) ≥ mk(Td+1,d−2).
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If P (G) has no common vertices with exactly one cycle, say Ca. Then
H ⊇ Ca ∪ Pi ∪ G1, where G1 ∈ U(s1, d1), d1 ≥ d − i − 1, s1 ≥ d1 + 2. If
d1 = 1, then i = d− 2, G1 = C3, hence

mk(H) ≥ mk(Ca∪Pi∪C3) ≥ mk(P2∪Pi∪P3) ≥ mk(Pi+3) = mk(Pd+1) ≥ mk(Td+1,d−2).

If d1 = 2, then i ≥ d− 3, s1 ≥ 4. Consequently,

mk(H) ≥ mk(Ca∪Pi∪G1) ≥ mk(P2∪Pi∪Ts1,2) ≥ mk(Ti+s1,i+2) ≥ mk(Td+1,d−2).

If d1 ≥ 3, then

mk(H) ≥ mk(Ca ∪ Pi ∪G1) ≥ mk(P2 ∪ Pi ∪ Us1,d1) ≥ mk(P2 ∪ Pi ∪ Ts1,d1)

≥ mk(Pi+1 ∪ Ts1,d1) ≥ mk(Ts1+i,d1+i) ≥ mk(Td+1,d−2).

If P (G) has common vertices with both cycles, then H ⊇ Pi∪G2 or G3∪G4,
where G2 ∈ U(s2, d2), G3 ∈ U(s3, d3), G4 ∈ U(s4, d4). Meanwhile, d2 ≥
d − i − 1 ≥ 3, n − 2 − i ≥ s2 ≥ d2 + 3, d3 ≥ i − 1 ≥ 1, s3 ≥ d3 + 2,
d4 ≥ d− i− 1 ≥ 1, s4 ≥ d4 + 2.
Suppose thatH ⊇ Pi∪G2. Since s2−d2 ≤ n−2−i−(d−i−1) = n−d−1 < h,
thus by the induction hypothesis, G2 ≻ Bs2,d2 . Then

mk(H) ≥ mk(Pi ∪G2) ≥ mk(Pi ∪Bs2,d2) ≥ mk(Pi ∪ Ts2,d2)

≥ mk(Ts2+i−1,d2+i−1) ≥ mk(Td+1,d−2).

Suppose that H ⊇ G3 ∪ G4. If d3 = d4 = 1, then n = 8, d = 4, G3 = G4 =
C3. In this case, it is easy to obtain that G ≻ B8,4.
If d3 = 2, d4 = 1, then d = 5, s3 ≥ 4, G4 = C3. We can have

mk(H) ≥ mk(G3∪G4) ≥ mk(Ss3∪C3) ≥ mk(T4,2∪P3) ≥ mk(T6,4) ≥ mk(Td+1,d−2).

If d3 ≥ 3, d4 = 1, then d3 ≥ d− 3. Accordingly,

mk(H) ≥ mk(G3 ∪G4) ≥ mk(Us3,d3 ∪ C3) ≥ mk(Ts3,d3 ∪ P3)

≥ mk(Ts3+2,d3+2) ≥ mk(Td+1,d−2).

If d3 = 2, d4 = 2, then d = 6, s3 ≥ 4, s4 ≥ 4. Hence

mk(H) ≥ mk(G3∪G4) ≥ mk(Ss3∪Ss4) ≥ mk(T4,2∪T4,2) ≥ mk(T7,4) = mk(Td+1,d−2).

If d3 ≥ 3, d4 = 2, then d3 ≥ d− 4, s4 ≥ 4. Thus

mk(H) ≥ mk(G3 ∪G4) ≥ mk(Us3,d3 ∪ Ss4) ≥ mk(Ts3,d3 ∪ Ts4,2)

≥ mk(Ts3+s4−1,d3+2) ≥ mk(Td+1,d−2).

If d3 ≥ 3, d4 ≥ 3, then d3 + d4 ≥ d− 2. Therefore,

mk(H) ≥ mk(G3 ∪G4) ≥ mk(Us3,d3 ∪ Us4,d4) ≥ mk(Ts3,d3 ∪ Ts4,d4)

≥ mk(Ts3+s4−1,d3+d4) ≥ mk(Td+1,d−2).
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Next, suppose that v lies outside P (G). Then H ⊇ Ca ∪ Cb ∪ P (G),
Ca ∪G5 or G6, where G5 ∈ U(s5, d) with s5 ≥ d+ 2 and G6 ∈ B(s6, d) with
d+3 ≤ s6 ≤ n− 2. It is easy to show as above that mk(H) ≥ mk(Td+1,d−2).

Case 3 Any diametrical path of G contains all pendent vertices.
Let P (G) = x0x1 · · · xd be any diametrical path of G. Suppose that

y0y1 · · · yp is a path whose internal vertices y1, y2, . . . , yp−1 all have degree
two and yp is a pendent vertex. Then we call it a pendent path, denoted by
(y0, yp).

Subcase 3.1 There are exactly two pendent vertices in G, namely, x0
and xd.

Suppose that degG(xi), degG(xl) ≥ 3 such that (xi, x0) and (xl, xd) are
distinct pendent paths. Let s = l − i.
If s = 0, i.e., xi = xl. Then i ≥ 3, l ≤ d− 3. Since

mk(G) = mk(G− xi−3xi−2) +mk−1(G − xi−3 − xi−2)

= mk(G− xi−3xi−2 − xl+1xl+2) +mk−1(G− xi−3xi−2 − xl+1 − xl+2)

+ mk−1(G− xi−3 − xi−2 − xl+2xl+3) +mk−2(G− xi−3 − xi−2 − xl+2 − xl+3)

= mk(G1 ∪ Pi−2 ∪ Pd−i−1) +mk−1(G3 ∪ Pi−2 ∪ Pd−i−2)

+ mk−1(G2 ∪ Pi−3 ∪ Pd−i−2) +mk−2(G4 ∪ Pi−3 ∪ Pd−i−3)

and

mk(Bn,d) = mk(Bn−d+3,3 ∪ Pd−3) +mk−1(Sn−d+2 ∪ Pd−4)

= mk(Bn−d+3,3 ∪ Pi−2 ∪ Pd−i−1) +mk−1(Bn−d+3,3 ∪ Pi−3 ∪ Pd−i−2)

+ mk−1(Sn−d+2 ∪ Pi−2 ∪ Pd−i−2) +mk−2(Sn−d+2 ∪ Pi−3 ∪ Pd−i−3),

it suffices to prove that G1, G2 ≻ Bn−d+3,3 and G3, G4 ≻ Sn−d+2, where
G1 = G − (xi−3, x0) − (xl+2, xd) ∈ B(n − d + 3, d1), G2 = G − (xi−2, x0) −
(xl+3, xd) ∈ B(n − d + 3, d2), G3 = G − (xi−3, x0) − (xl+1, xd), G4 = G −
(xi−2, x0)− (xl+2, xd), d1 ≥ 4, d2 ≥ 4. Since n− d+3− d1 ≤ n− d− 1 < h,
n − d + 3 − d2 ≤ n − d − 1 < h. Then by the induction hypothesis, G1 ≻
Bn−d+3,d1 ≻ Bn−d+3,3, G2 ≻ Bn−d+3,d2 ≻ Bn−d+3,3. In addition, both G3

and G4 are bicyclic graphs with n − d + 2 vertices, consequently, we have
G3, G4 ≻ Sn−d+2.
If s = 1 or s = 2, then by similar arguments as above, we have the desired
result.
If s ≥ 3, it is easy to obtain that i ≥ 2 and l ≤ d− 2. Then

mk(G) = mk(G− xi−2xi−1) +mk−1(G − xi−2 − xi−1)

= mk(G− xi−2xi−1 − xl+1xl+2) +mk−1(G− xi−2xi−1 − xl+1 − xl+2)

+ mk−1(G− xi−2 − xi−1 − xl+1xl+2) +mk−2(G− xi−2 − xi−1 − xl+1 − xl+2)

= mk(G5 ∪ Pi−1 ∪ Pd−l−1) +mk−1(G7 ∪ Pi−1 ∪ Pd−l−2)

+ mk−1(G6 ∪ Pi−2 ∪ Pd−l−1) +mk−2(G8 ∪ Pi−2 ∪ Pd−l−2),
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mk(Bn,d) = mk(Bn−d+l+1,l+1 ∪ Pd−l−1) +mk−1(Bn−d+l,l ∪ Pd−l−2)

= mk(Bn−d+s+2,s+2 ∪ Pi−1 ∪ Pd−l−1) +mk−1(Bn−d+s+1,s+1 ∪ Pi−2 ∪ Pd−l−1)

+ mk−1(Bn−d+s+1,s+1 ∪ Pi−1 ∪ Pd−l−2) +mk−2(Bn−d+s,s ∪ Pi−2 ∪ Pd−l−2).

Hence it suffices to show that G5 ≻ Bn−d+s+2,s+2, G6, G7 ≻ Bn−d+s+1,s+1,
G8 ≻ Bn−d+s,s.

Let dj = d(Gj), and nj = |V (Gj)|, where j = 5, 6, 7, 8. Then dj ≥ 4. If
nj − dj < h holds for all j ∈ {5, 6, 7, 8}, then by the induction hypothesis
and previous Lemmas, we have the desired results. Otherwise, there exists
at least a j ∈ {5, 6, 7, 8} such that nj − dj = h. When j = 5, G5 ∈
B(n − d + s + 2, s + 2). If there exists some diametrical path P (G5) such
that xi−1 or xl+1 lies outside P (G5), the proof is similar with Case 2, thus
G5 ≻ Bn−d+s+2,s+2. Otherwise, G5 −xi−1 ∈ B(n− d+ s+1, s+1), then by
Lemma 4.3, G5 ≻ Bn−d+s+1,s+2. We also have G5 − xi−1 − xi � Un−d+s,s ≻
Tn−d+s,s ≻ Ts+3,s. Therefore, G5 ≻ Bn−d+s+2,s+2.

When j = 7, G7 ∈ B(n− d+ s+ 1, s+ 1). If xi−1 lies on all diametrical
paths of G7, then by Lemma 4.3, G7 ≻ Bn−d+s+1,s+2 ≻ Bn−d+s+1,s+1. Oth-
erwise, in the same way as in Case 2, we can also obtain G7 ≻ Bn−d+s+1,s+1.

Similarly, when j = 6, we can have G6 ≻ Bn−d+s+1,s+1.
When j = 8, G8 ∈ B(n−d+s, s). Since G8 contains no pendent vertices,

then by Lemmas 2.11 and 4.2, G8 ≻ Bn−d+s,s+1 ≻ Bn−d+s,s.
Subcase 3.2 There is only one pendent vertex in G, say x0.
Since there are two vertex-disjoint cycles in G, degG(xd) = 2. Suppose

that xl is the vertex such that degG(xl) ≥ 3 and degG(xi) = 2 for l + 1 ≤
i ≤ d. It is easy to check that l ≤ d− 2. Then G−xd−1xd ∈ U(n, d9), where
d9 ≥ d, and G− xd−1 − xd ∈ U(n− 2, d10), where d10 ≥ d− 1. Hence,

mk(G) = mk(G− xd−1xd) +mk−1(G− xd−1 − xd)

≥ mk(Un,d9) +mk−1(Un−2,d10)

≥ mk(Un,d) +mk−1(Un−2,d−1)

≥ mk(Un,d) +mk−1(Tn−2,d−1)

≥ mk(Un,d) +mk−1(Pd−3 ∪ Sn−d+1)

= mk(Bn,d).

In particular, m2(G) > m2(Bn,d). Thus, G ≻ Bn,d.
Therefore, we complete the proof.

Theorem 4.5 Let G ∈ B(n, d) with n ≥ 8, 3 ≤ d ≤ n− 3 and G 6= Bn,d. If
there is no vertex-disjoint cycles in G, then G ≻ Bn,d.

Proof. We will prove this theorem by induction on n− d.
By Lemma 4.1, the result holds for n−d = 3. Let h ≥ 4 and suppose that

the result holds for n− d < h. Now assume that n− d = h, let G ∈ B(n, d)
and G 6= Bn,d.
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Case 1 If G contains no pendent vertices.
Then by Lemmas 2.11 and 4.2, G ≻ Bn,d+1 ≻ Bn,d.
Case 2 If there exists a pendent vertex outside some diametrical path

P (G) = x0x1 . . . xd.
Let u be a pendent vertex outside P (G) and v be its unique neighbor.

Then G − u ∈ B(n − 1, d). If G − u = Bn−1,d, then it can be checked that
G − u − v ≻ Td+1,d−2. And thus from (∗), we can obtain that G ≻ Bn,d.
Otherwise, by the induction hypothesis, we have G − u ≻ Bn−1,d. Let
H = G − u − v, in order to prove the result, we only need to show that
mk(H) ≥ mk(Td+1,d−2). We choose Ca, Cb as above in G, and if there exists
the third cycle, denote it by Cc.

Subcase 2.1 When v lies on some cycle, say Ca.
First, suppose that v = u0 or ut, then H contains no cycles. If v lies

outside P (G), then H ⊇ P (G). Thus mk(H) ≥ mk(P (G)) = mk(Pd+1) ≥
mk(Td+1,d−2). If v lies on P (G), say v = xi.

(1) If Ca and Cb have exactly one common vertex, then H ⊇ P2 ∪ P2 ∪
Pi ∪ Pd−i, P2 ∪ Pi ∪ Pd−i+1, P2 ∪ Pi+1 ∪ Pd−i, Pi+1 ∪ Pd−i+1, P2 ∪ Pi ∪ T1,
P2∪Pd−i∪T2, Pi+1∪T1, Pd−i+1∪T2 or T1∪T2, where T1 ∈ T (d−i+1, d−i−1)
and T2 ∈ T (i+ 1, i− 1).

IfH ⊇ P2∪P2∪Pi∪Pd−i, P2∪Pi∪Pd−i+1, P2∪Pi+1∪Pd−i or Pi+1∪Pd−i+1,
then mk(H) ≥ mk(Pd+1) ≥ mk(Td+1,d−2);

If H ⊇ P2 ∪ Pi ∪ T1, then mk(H) ≥ mk(Pi+1 ∪ T1) ≥ mk(Pi+1 ∪
Td−i+1,d−i−1) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2); Similarly, if H ⊇ P2∪Pd−i∪
T2, we also have mk(H) ≥ mk(Td+1,d−2);

If H ⊇ T1 ∪ T2, then mk(H) ≥ mk(T1 ∪ T2) ≥ mk(Td−i+1,d−i−1 ∪
Ti+1,i−1) ≥ mk(Td+1,d−2);

If H ⊇ Pi+1 ∪ T1 or H ⊇ Pd−i+1 ∪ T2, then mk(H) ≥ mk(T1 ∪ T2) ≥
mk(Td+1,d−2).

(2) If Ca and Cb have at least two common vertices, then H ⊇ P3 ∪Pi ∪
Pd−i, Pi∪Pd−i+2, P (G), Pi∪T3 or Pi∪T4, where T3 ∈ T (d− i+2, d− i−1)
and T4 ∈ T (d− i+ 2, d − i).

If H ⊇ P3 ∪ Pi ∪ Pd−i, Pi ∪ Pd−i+2 or P (G), then mk(H) ≥ mk(Pd+1) ≥
mk(Td+1,d−2);

If H ⊇ Pi ∪ T3, then mk(H) ≥ mk(Pi ∪ T3) ≥ mk(Pi ∪ Td−i+2,d−i−1) ≥
mk(Td+1,d−2);

If H ⊇ Pi ∪ T4, then mk(H) ≥ mk(Pi ∪ T4) ≥ mk(Pi ∪ Td−i+2,d−i) ≥
mk(Td+1,d−1) ≥ mk(Td+1,d−2).

Next, suppose that v 6= u0 and v 6= ut. If v lies outside P (G), then
H ⊇ P (G), similarly, we have mk(H) ≥ mk(Td+1,d−2). So suppose that v
lies on P (G). Then P (G) and Ca have common vertices, say xi, . . . , xi+p,
where p ≥ 0.

(1) If p = 0, then i ≥ 1 and H ⊇ Pi ∪ Pd−i ∪ Cs, where s = b or c. It
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follows that

mk(H) ≥ mk(Pi ∪ Pd−i ∪ Cs) ≥ mk(Pi ∪ Pd−i ∪ Ss) ≥ mk(Pi ∪ Pd−i ∪ P3)

≥ mk(Pd+1) ≥ mk(Td+1,d−2).

(2) If p ≥ 1. When v 6= xi and v 6= xi+p, then H ⊇ G1, where G1 ∈
U(s1, d1), d1 ≥ d and s1 ≥ d1 + 2. Thus

mk(H) ≥ mk(G1) ≥ mk(Us1,d1) ≥ mk(Ts1,d1) ≥ mk(Ts1,d) ≥ mk(Td+1,d−2).

When v = xi or xi+p, say v = xi(i ≥ 1), then H ⊇ Pi ∪ G2, where G2 ∈
U(s2, d2), d2 ≥ d− i−1 ≥ 2 (d− i−1 ≥ 1, for d− i−1 = 1, clearly mk(H) ≥
mk(Ti+3,i)) and s2 ≥ d − i + 2; or H ⊇ Pi ∪ G3, where G3 ∈ U(s3, d3),
d3 ≥ d − i ≥ 2 and s3 ≥ d3 + 2; or H ⊇ Pi ∪ G′, where G′ is the graph
obtained by attaching a path Pd−i−2 to a vertex of Cb = C3.

Suppose that H ⊇ Pi ∪G2. If d2 = 2, then i = d− 3 and s2 ≥ 5. Hence,

mk(H) ≥ mk(Pi∪G2) ≥ mk(Pi∪Ss2) ≥ mk(Pi∪T5,2) ≥ mk(Ti+4,i+1) = mk(Td+1,d−2).

If d2 ≥ 3, then

mk(H) ≥ mk(Pi ∪G2) ≥ mk(Pi ∪ Us2,d2) ≥ mk(Pi ∪ Ts2,d2)

≥ mk(Ti+s2−1,i+d2−1) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

Suppose that H ⊇ Pi ∪G3. If d3 = 2, then i = d− 2 and s3 ≥ 4. Thus

mk(H) ≥ mk(Pi ∪G3) ≥ mk(Pi ∪ Ss3) ≥ mk(Pi ∪ T4,2)

≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

If d3 ≥ 3, then

mk(H) ≥ mk(Pi ∪G3) ≥ mk(Pi ∪ Us3,d3) ≥ mk(Pi ∪ Ts3,d3)

≥ mk(Ti+s3−1,i+d3−1) ≥ mk(Td+1,d−1) ≥ mk(Td+1,d−2).

Suppose that H ⊇ Pi∪G
′. If d−i−2 = 0, then i = d−2 andH ⊇ Pi∪C3.

Therefore,

mk(H) ≥ mk(Pi∪G
′) ≥ mk(Pi∪T4,2) ≥ mk(Ti+3,i+1) = mk(Td+1,d−1) ≥ mk(Td+1,d−2).

If d− i− 2 ≥ 1, choose an edge u0u1 of G′ in C3 such that both u0 and u1
have degree 2. Then

mk(H) ≥ mk(Pi ∪G′)

= mk(Pi ∪G′ − u0u1) +mk−1(Pi ∪G′ − u0 − u1)

= mk(Pi ∪ Td−i+1,d−i−1) +mk−1(Pi ∪ Pd−i−1)

≥ mk(Td,d−2) +mk−1(Pd−3)

= mk(Td+1,d−2).
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Subcase 2.2 When v lies outside any cycle.
In this case, H contains two cycles Ca and Cb with at least one common

vertex. Let Ca · Cb denote the subgraph of G induced by V (Ca) ∪ V (Cb).
First, suppose that v lies on P (G), say v = xi.
If vertices on P (G) lie outside any cycle, then H ⊇ Ca · Cb ∪ Pi ∪ Pd−i.

Thus,

mk(H) ≥ mk(Ca·Cb∪Pi∪Pd−i) ≥ mk(P3∪Pi∪Pd−i) ≥ mk(Pd+1) ≥ mk(Td+1,d−2).

Otherwise, H ⊇ Pi ∪ G1, where G1 ∈ B(s1, d1), d1 ≥ max{d− i− 1, 2} and
d1 + 2 ≤ s1 ≤ n− 2− i.

Suppose that s1 ≥ d1 +3. If d1 = 2, then i ≥ d− 3 and s1 ≥ 5. Thus we
have

mk(H) ≥ mk(Pi∪G1) ≥ mk(Pi∪Ss1) ≥ mk(Pi∪T5,2) ≥ mk(Ti+4,i+1) ≥ mk(Td+1,d−2).

If d1 ≥ 3, then d− i− 1 ≤ d1, which deduces that s1 − d1 ≤ n− 2− i− (d−
i− 1) = n− d− 1 < h. By the induction hypothesis, G1 ≻ Bs1,d1 , therefore,

mk(H) ≥ mk(Pi ∪G1) ≥ mk(Pi ∪Bs1,d1) ≥ mk(Pi ∪ Ts1,d1) ≥ mk(Td+1,d−2).

Now suppose that s1 = d1 +2. In this case, G1 is obtained by attaching
respectively paths Pl(0 ≤ l ≤ d1 − 2) and Pd1−l−2 to the two non-adjacent
vertices in K4 − e. If d1 = 2, then i ≥ d− 3. It can be easily checked that
mk(K4−e) ≥ mk(T5,2). Thus mk(H) ≥ mk(Pi∪(K4−e)) ≥ mk(Pi∪T5,2) ≥
mk(Td+1,d−2). If d1 ≥ 3, choose an edge u0u1 of G1 such that u0 and u1 are
both of degree 3 in K4 − e. Then we get

mk(H) ≥ mk(Pi ∪G1)

= mk(Pi ∪G1 − u0u1) +mk−1(Pi ∪G1 − u0 − u1)

≥ mk(Pi ∪ Us1,d1) +mk−1(Pi ∪ Pl+1 ∪ Pd1−l−1)

≥ mk(Pi ∪ Ts1,d1) +mk−1(Pi ∪ Pd1−1)

≥ mk(Pi ∪ Td−i+1,d−i−1) +mk−1(Pi ∪ Pd−i−2)

≥ mk(Td,d−2) +mk−1(Pd−3)

= mk(Td+1,d−2).

Next, suppose that v lies outside P (G).
In this case, H ⊇ G2 or H ⊇ Ca · Cb ∪ P (G), where G2 ∈ B(s, d) with

d+ 2 ≤ s ≤ n− 2. It is easy to verify that mk(H) ≥ mk(Td+1,d−2).
Case 3 If any diametrical path of G contains all pendent vertices in G.
We can obtain that G ≻ Bn,d by similar arguments as those in Case 3

of Theorem 2.
Consequently, the proof is complete.
Combining Theorems 4.4 and 4.5, we obtain the following main result of

this section.
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Theorem 4.6 Let G ∈ B(n, d) with n ≥ 8, 3 ≤ d ≤ n − 3 and G 6= Bn,d.
Then ME(G) > ME(Bn,d).

Proof. According to Theorems 4.4 and 4.5, we have known that G ≻ Bn,d.
And then using the increasing property (namely, G1 ≻ G2 =⇒ ME(G1) >
ME(G2)), we get the result we want.

We will conclude this section by discussing the case d = n − 2. Since
any graph G in B(n, n− 2) is of the form Bs

n(as shown in Figure 9), where
0 ≤ s ≤ ⌊n/2⌋ − 2. Through simple analysis, we get the following result.

. . . . . .
︸ ︷︷ ︸

s
︸ ︷︷ ︸

n−s−4

u0 u1 u2 us+3 ud−1us−1

us

ud

Figure 9: Graph Bs
n with 0 ≤ s ≤ ⌊n/2⌋ − 2.

Theorem 4.7 Let G ∈ B(n, n−2) with n ≥ 6 and G 6= B1
n, then ME(G) >

ME(B1
n).

Proof. Since G ∈ B(n, n − 2) and G 6= B1
n, then G is Bs

n, where s =
0, 2, . . . , ⌊n/2⌋ − 2.

Case 1 G = B0
n.

Then G−ud = B0
n−ud = B1

n−u0 and G−ud−1−ud = B0
n−ud−1−ud ≻

B1
n − u0 − u1. Thus we have G = B0

n ≻ B1
n by Lemma 2.8.

Case 2 G = Bs
n(s = 2, . . . , ⌊n/2⌋ − 2).

Then

mk(G = Bs
n) = mk(B

s
n − us−2us−1) +mk−1(B

s
n − us−2 − us−1)

= mk(Ps−1 ∪B1
n−s+1) +mk−1(Ps−2 ∪B0

n−s),

together with

mk(B
1
n) = mk(B

1
n − ud−s+1ud−s+2) +mk−1(B

1
n − ud−s+1 − ud−s+2)

= mk(Ps−1 ∪B1
n−s+1) +mk−1(Ps−2 ∪B1

n−s).

By Case 1, we have got that B0
n−s ≻ B1

n−s, then mk−1(Ps−2 ∪ B0
n−s) ≥

mk−1(Ps−2 ∪ B1
n−s) and m2(Ps−2 ∪ B0

n−s) > m2(Ps−2 ∪ B1
n−s). Thus G =

Bs
n ≻ B1

n.
Therefore, we always have G ≻ B1

n. And then ME(G) > ME(B1
n).
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5 Summary

In [25, 35], the authors introduced the concept of “set-complexity”, based
on a context-dependent measure of information, and used this concept to
describe the complexity of gene interaction networks. The binary graphs
and edge-colored graphs are studied and the relation between complexity
and structure of these graphs is examined in detail. In contrast, we put
the emphasis on analyzing properties of spectra-based entropies and study
interrelations thereof.

In this paper, we characterize the graphs with minimal matching energy
among all unicyclic and bicyclic graphs with a given diameter d. With re-
spect to matching energy of graphs, Un,d and Bn,d are two extremal graphs
in U(n, d) and B(n, d) respectively. Moreover, both of them are interesting
and have the similar extremum property in other aspects. For example,
among all unicyclic graphs of a given diameter, Un,d is the extremal graph
on graph energy [29]. Besides, it is also the underling graph of the extremal
graph on skew energy [38]. In addition, Bn,d has the minimal energy in
one class of bicyclic graphs with a given diameter [39]. From this point, we
guess that this two graphs may also be the extremal graphs on some other
parameters of graphs. Studying the properties of this two graphs will be
one of the future work of us. An important question is how general the
bounds are. Obviously, the proof techniques use structural properties of the
graphs under consideration and it may be intricate to extend the techniques
when using more general graphs. On the other hand, the roots of graph
polynomials could be used to characterize graphs structurally. This will be
one of the future work. For more results, we refer to [11, 28].
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