
ar
X

iv
:1

50
8.

05
37

1v
1

 [
nl

in
.C

G
]

 1
9

A
ug

 2
01

5

Asynchronous Cellular Automata and

Pattern Classification

Biswanath Sethia,∗, Souvik Royb, Sukanta Dasb

aDepartment of Computer Science Engineering & Applications

Indira Gandhi Institute of Technology, Sarang

Odisha, India-759146
bDepartment of Information Technology

Indian Institute of Engineering Science & Technology, Shibpur

West Bengal, India-711103

Abstract

This paper designs an efficient two-class pattern classifier utilizing asynchronous
cellular automata (ACAs). The two-state three-neighborhood one-dimensional
ACAs that converge to fixed points from arbitrary seeds are used here for pattern
classification. To design the classifier, we first identify a set of ACAs that always
converge to fixed points from any seeds with following properties - (1) each ACA
should have at least two but not huge number of fixed point attractors, and
(2) the convergence time of these ACAs are not to be exponential. In order to
address the first issue, we propose a graph, coined as fixed point graph of an ACA
that facilitates in counting the fixed points. We further perform an experimental
study to estimate the convergence time of ACAs, and find that there are some
convergent ACAs which demand exponential convergence time. Finally, we find
that there are 71 (out of 256) ACAs which can be effective candidates as pattern
classifier. We use each of the candidate ACAs on some standard data sets, and
observe the effectiveness of each ACAs as pattern classifier. It is observed that
the proposed classifier is very competitive and performs reliably better than
many standard existing algorithms.

Keywords: Asynchronous cellular automata (ACAs), convergence, fixed point
attractor, fixed point graph, pattern classification.

I. Introduction

Cellular automata (CAs) were introduced by Jon von Neumann in 1950s
to primarily model biological self-reproduction [1–7]. However, these systems
soon captured the attention of researchers due to their massive parallelism and

∗Corresponding author
Email addresses: sethi.biswanath@gmail.com (Biswanath Sethi), svkr89@gmail.com

(Souvik Roy), sukanta@it.iiests.ac.in (Sukanta Das)

Preprint submitted to Physica D August 8, 2018

http://arxiv.org/abs/1508.05371v1

ability of modelling physical systems [8–12]. They are also proved to be compu-
tationally universal and more expressive than turing machine [13–18]. A cellular
automaton (CA) is defined by a lattice of cells and a local rule. The system
evolves in discrete time and space, and all the cells follow same rule to generate
its next state. The von Neumann’s CAs were two dimensional with 29 states per
cell and each cell is dependent on itself and its four non-orthogonal neighbors.
The CA structure was later simplified by many researchers, and finally a two-
state three-neighborhood CA structure was proposed on one-dimensional lattice
[15, 19]. Since 1980s, the researchers have been showing that even these simple
CAs can model complex systems [8, 16, 20–24]. Such CA can find wide range
of interesting applications such as modelling some natural growth processes like
seashell patterns and snowflakes [25, 26].

However, investigations and studies on CAs are mostly centred around syn-
chronous (deterministic) CAs where all the cells are updated simultaneously.
In other words, like other synchronous systems, the CA assumes a global clock
that forces the cells to get updated simultaneously. Though the synchronous
CAs are proved to be good in modelling physical systems, the assumption of
global clock is not very natural. On the other hand, in asynchronous CAs
(ACAs), cells are independent and are, therefore, updated independently dur-
ing the evolution of the system. Hence, the choice of ACAs with independent
cell dynamics as models of physical systems are better [27, 28]. In recent times,
there is a growing interest on ACAs since they can better model the natural
systems [26, 27, 29–32]. Researchers are more concerned in the properties of
self-replications on ACAs [33–37]. Self-replication on ACAs allows avoidance of
defective parts and simplifies programming of computers and therefore can be
used in nano computers, where reconfigurability is an essential property. Also,
the independently updated scheme of ACAs may be appropriate for modelling
social networks or computer network communications. Although the applica-
tions of ACAs are limited, in a recent work, Bolt et al. [38], from a theoretical
as well as practical analysis on stochastic cellular automata, have provided a
formal description of their properties suitable for applications in the domain of
systems modelling without the need of a strong mathematical background.

The design of pattern classifiers using CAs are widely reported in literature
where synchronous CAs have been used [32, 39–42]. It should be mentioned
here that, the issue of pattern classification was not previously tackled with
ACAs. Therefore, the objective of this work is to design a two-class pattern
classifier using ACAs. Here, for an ACA, we adopt one-dimensional two-state
three-neighborhood CAs that are updated asynchronously. In order to achieve
the goal, we first characterized the ACAs. We observed that during their evo-
lution, some of the ACAs converged to fixed points from an arbitrary seed. A
set of configurations/states of an ACA that approach to a fixed point can be
considered as the patterns of a single class. This idea is explored in developing
real-life pattern classifier. A preliminary work on this is already reported in
[43].

We report the design of two-class pattern classifier in Section III. Since we
utilize ACA that always converges to a fixed point in the design of pattern clas-

2

sifier, our first task is to identify such ACAs. In two-state three-neighborhood
one-dimensional system, there are 256 local rules [20]. Convergence of a set
of 64 (out of 256) rules under asynchronous update has been studied in [44].
We explore here all of the 256 rules, and identify a set of ACAs (see Table 3)
as convergent ACAs (Section IV). However, a convergent ACA having a single
fixed point can not act as two-class pattern classifier. Similarly, a convergent
ACA having huge number of fixed points is not a good classifier. We, therefore,
develop an algorithm to count fixed points of an n-cell ACA, and then decide
which ACAs can and cannot act as good classifier (Section V).

It is further observed that some convergent ACAs take huge amount of time
to converge. It is not practical to use these ACAs as real-life pattern classifier.
In this work, we develop a method to estimate average convergence time of
convergent ACAs. As a next step, we point out the convergent ACAs that are
having exponential (average) convergence time, and exclude them from the list
of candidate classifiers (SectionVI). Finally, we use each of the candidate ACAs
on some standard data sets, and observe the effectiveness of each ACAs as
pattern classifier (Section VII). The ACA that shows highest efficiency against
a given data set, is considered as a classifier for that data set. We observe that
the proposed classifier is very competitive and performs reliably better than
many standard existing algorithms (see Table 12). Before going to address the
issue we intend to present in brief the preliminaries of CAs in the next section.

II. Cellular Automata Preliminaries

A CA is a discrete dynamical system which evolves in discrete space and
time. It consists of a lattice of cells, each of which stores a variable at time t,
that refers to the present state of the CA cell [1]. In this work, we consider,
one-dimensional three-neighborhood binary CAs with periodic boundary condi-
tion, where the cells are arranged as a ring. The next state of each CA cell is
determined as

St+1
i = f(St

i−1, S
t
i , S

t
i+1) (1)

where f is the next state function, St
i−1, S

t
i and St

i+1 are the present states of the
left neighbor, self and right neighbor of the ith CA cell at time t respectively. A
collection of (local) states St(St

1, S
t
2, · · · , St

n) of cells at time t is referred to as a
configuration or a (global) state of the CA at t. The function f : {0, 1}3 7→ {0, 1}
can be expressed as a look-up table (see Table 1). The decimal equivalent of
the 8 outputs is called ‘rule’ [20]. There are 28 = 256 CA rules in two-state
three-neighborhood dependency. Three such rules (40, 99 and 219) are shown
in Table 1. First row of the table shows the possible combinations of present
states (PSs) of left, self and right neighbors of a cell. Whereas, third, fourth and
fifth rows show the next states (NSs) of corresponding PSs. The last column
notes the rules.

Definition 1. The association of the neighborhood x, y, z to the value f(x, y, z),
which represents the result of the updating function, is called Rule Min Term
(RMT). Each RMT is associated to a number r(x, y, z) = 4x+ 2y + z.

3

Table 1: Look-up table for rules 40, 99 and 219

PSs : 111 110 101 100 011 010 001 000 Rule
(RMT) (7) (6) (5) (4) (3) (2) (1) (0)
(i)NSs : 0 0 1 0 1 0 0 0 40
(ii)NSs : 0 1 1 0 0 0 1 1 99
(iii)NSs : 1 1 0 1 1 0 1 1 219

The first row of Table 1 shows the 8 possible RMTs of three-neighborhood CA.
A CA state can be viewed as a sequence of RMTs. For example, the state

1110 in periodic boundary condition can be viewed as 〈3765〉, where 3, 7, 6 and
5 are corresponding RMTs on which the transitions of first, second, third and
fourth cell can be made. To get a sequence of RMTs for a state, we consider an
imaginary 3-bit window that slides over the state. The window contains a 3-bit
binary value which is equivalent to an RMT. To get the ith RMT, the window is
loaded with (i− 1)th, ith and (i+ 1)th bits of the state. The window slides one
bit right to report the (i+1)th RMT. Now the current content of the window is
ith, (i+ 1)th and (i + 2)th bit of the state. In the sequence of RMTs, however,
two consecutive RMTs are related. If 5 (101) is the ith RMT in some sequence,
then (i+ 1)th RMT is either 2 (010) or 3 (011). Similarly, if 0 (000) or 4 (100)
is the ith RMT, then 0 (000) or 1 (001) is the (i + 1)th RMT. The relations of
two consecutive RMTs in a sequence of RMTs are noted in Table 2.

Definition 2. An RMT r(x, y, z) of a rule is active if f(x, y, z) 6= y and other-

wise passive.

In rule 219, RMT 1 (001) is active and RMT 6 (110) is passive (see Table
1).

Example 1. As a proof of concept, consider the evolution of rule 219 ACA with
only 4 cells. Assume the initial state is 0101 (Figure 1(b)). Selecting the second
cell to update (shown in figure 1(b)) the next state is 0001 as RMT 2 is active
for rule 219 ACA. Updating the 3rd cell in state 0001, we get the state 0011 and
updating the 2nd cell again in state 0011, we reach at state 0111. Updating any
cell in state 0111, the ACA remains in state 0111 forever, since RMTs 5, 3, 7
and 6 are passive for rule 219 ACA (see Table 1).

Traditionally, all the cells of a CA are forced to get updated simultane-
ously. This constraint is relaxed in an asynchronous CA, where the cells can
act independently. Though asynchronism is considered as an uncontrolled phe-
nomenon, it is generally modelled as a stochastic process. Fully asynchronous
update, where an arbitrary cell is updated at each step is one primary scheme
to evolve an ACA [44]. In this paper, we evolve ACAs under fully asynchronous
update. Figure 1 shows the partial state transition diagram of a 4-cell rule
219 ACA. The cells, updated fully asynchronously during state transitions, are
noted beside arrows. Note that each state of figure 1 converges to a fixed point.

4

Table 2: Relationship between ith and (i+ 1)th RMTs

ith RMT (i+ 1)th RMT
0 0, 1
1 2, 3
2 4, 5
3 6, 7
4 0, 1
5 2, 3
6 4, 5
7 6, 7

During the evolution of an ACA, a sequence (ut)t∈N of cells can be observed
where ut denotes the cell updated at time t. We call the sequence as update
pattern [45]. For an initial condition x and an update pattern U , the evolution
of the system is given by the sequence of states (xt) obtained by successive
applications of the updates of U . Formally, we have: xt+1 = F (xt, ut) and
x0 = x, with:

xt+1
i =

{
f(xt

i−1, x
t
i, x

t
i+1) if i = ut

xt
i otherwise.

This evolution can be represented in the form of a state transition diagram. For
x = 0000 and U = (1, 4, 3, 1, . . .), the 4-cell rule 219 ACA converges to a fixed
point (1011), which is shown in figure 1(d).

Definition 3. A fixed point is an ACA state, next state of which is the state
itself for any random update of cells. That is, if an ACA reaches to a fixed
point, the ACA remains in that particular state forever.

In figure 1, the states 1101, 0111, 1011, 1110 and 1111 are fixed points. The
next state of 1111 is always 1111 for any random update of cells, because RMT
7 of rule 219 is passive. It can be observed that all the RMTs of a fixed point
are passive. Hence, the following lemma can be obtained.

Lemma 1. Rule R ACA forms a fixed point with state S if all the RMTs of
the RMT sequence of S are passive.

Since there are five attractors in 4-cell rule 219 ACA (Figure 1), we can find
five basins of attraction. A fixed point is the representative of the corresponding
attractor basin.

III. Design of pattern classifier

An n-cell ACA with multiple fixed points can act as natural classifier. Each
class contains a set of states that converge to a fixed point. To identify the
class of patterns, the fixed points, representing the classes, need to be stored

5

1111

1/2/3/4
 (c)

0001

1001

1011

0000

1000

1001

1000

0000

1000

1001

1 1 1

3
4 1

3
4

3

1/2/3/4
 (d) (e)

0010

0110

1110

1000

1100

1001

1001

1000

1100

2

1

2

3

1

4

2

3

1/2/3/4

 (a)

0000

1000

1101
1100

0001

1001

0100

1100

1

2

4

1

2

1

4

0001 0101

0011

0111

 0001 0011

0110

0010

1010

3 2 1

2 3

2

3

4

1/23/4
(b)

Figure 1: Partial state transition diagram for 4-cell rule 219 ACA.

in memory (Figure 2). For the identification of the class of an input pattern p,
the ACA is loaded with p and continuously updated till it reaches to any fixed
point. Then, from the fixed point and the stored information, one can declare
the class of the input pattern p. In figure 2, the class of p is I. However, if there
are more than two fixed point attractors, then a set of fixed points identify the
class.

Memory

I

II

p

Figure 2: Multiple fixed point based classification strategy

Example 2. Let us show that the ACA of figure 1 can act as a two class clas-
sifier. Assume that the fixed points 0111, 1111 and 1110 are of class 1 and the
rest 1011 and 1101 are of class 2. Hence, the ACA of figure 1 can act as a
two-class pattern classifier.

A proper distribution of the patterns among the CA attractor basins is neces-
sary to design a CA based two-class classifier. This design theoretically requires
a proper distribution of CA fixed points among the two pattern sets P1 and P2.

6

However, for real-life data-sets, the attractor basins may mix up the patterns
of two classes. Therefore, the primary metric for evaluating the performance of
classifier is the classification accuracy. It is measured as:

Efficiency =
patterns properly classified

Total No. of patterns
× 100 % (2)

Example 3. Let us consider the ACA of figure 1 as a two-class classifier (see
Example 2). Assuming P1={1111, 0011,1100, 0110} and P2={0000, 0001,1000}
are the two pattern sets. We now consider P1 as patterns of class 1, and P2 as
patterns of class 2. However, the pattern 1000 is of class 2, but suppose it is
wrongly identified by the classifier as in class 1. Therefore, out of 7 patterns only
6 patterns are properly identified. So the classification efficiency is 85.714% for
the above pattern set and the classifier. We can vary the efficiency by changing
the pattern set and the ACA.

The above discussion shows that ACAs that converge to fixed points during
their evolution can act as a pattern classifiers. However, an arbitrary ACA can
not be a two-class classifier. The following tasks are, therefore, identified to get
appropriate candidates that can act as real-life pattern classifier.

1. All of the 256 ACAs do not converge to fixed points. So the first task is
to identify the ACAs that converge to some fixed points from an arbitrary
seed.

2. An ACA of the above set may have a single fixed point, to which all
possible ACA states converge. Such an ACA can not act as two-class
classifier. Similarly, an ACA with a huge number of fixed points can not
be a good classifier. Since we store the fixed points, memory overhead is
increased in that case. So, our next task is to find a subset of above set
of ACAs that has atleast two but not a huge number of fixed points.

3. Convergence time of an ACA may be huge which can make the ACA inap-
propriate to be a practical pattern classifier. Our final task is, therefore,
to exclude those ACAs from the above subset which requires exponential
time to converge to a fixed point.

The subsequent sections (Sections IV, V and VI) handle these issues to get a
set of candidate ACAs as pattern classifiers. The performance of the proposed
classifier is evaluated utilizing these candidate ACAs.

IV. Identification of convergent ACAs

This section identifies those ACAs, which always converge to some fixed
point attractors during their evolution. Following theorem states the condition
of ACAs to be convergent ACAs.

Theorem 1. Rule R ACA converges to fixed point attractor if one of the fol-
lowing condition is satisfied:

7

(i) RMT 0 (resp. RMT 7) of R is passive and RMT 2 (resp. RMT 5) is active.
(ii) RMTs 0, 1, 2 and 4 (resp. RMTs 3, 5, 6 and 7) are passive and RMT 3 or
6 (resp. RMT 1 or 4) is active.
(iii) RMTs 1, 2, 4 and 5 (resp. RMTs 2, 3, 5 and 6) are passive.

Proof : Proof of case (i): Let us consider RMT 0 of R is passive and RMT
2 is active. We shall show that the rule R ACA can reach to a fixed point
attractor from any initial state. Since RMT 0 is passive, the all-0 state (RMT
sequence 〈00 · · · 0〉) is a fixed point attractor. In any other state (except all-1),
a sequence of consecutive 1s guided by 0s can always be found.

Consider, RMT 7 of R is active. Now in such a state (like · · · 0111110 · · ·),
we can find RMT 7 in its corresponding RMT sequence. If a cell with RMT 7 is
selected to update, then, the sequence of consecutive 1s is divided into two sub-
sequences of consecutive 1s guided by 0s. The new sequences have less number
of 1s (like · · · 0111110 · · · → · · · 0101110 · · ·). After a number of similar updates,
we can get a state with a number of single 1 and two consecutive 1s guided by
0s. A cell has state 1 with left and right neighbor’s states as 0s (010) implies
that the cell can act on RMT 2. Since RMT 2 is active, all such cells can reach
to state 0. So, finally, we get either the all-0 state (that is, the ACA is converged
to all-0 state), or a state with two consecutive 1s guided by 0s (· · · 001100 · · ·).
In second case, the RMT sequence contains RMT 0 and RMTs 1, 3, 4 and 6.
If RMTs 1, 3, 4 and 6 are passive, the state · · · 0110 · · · itself is a fixed point
attractor. Otherwise, the ACA can reach to all-0 (fixed point) state after some
update of cells. Hence, from an arbitrary state with sequences of consecutive
1s guided by 0s, the ACA can reach to a fixed point attractor. The all-1 state
is a special state which contains no 0. However, if an arbitrary cell is updated,
then we can get a 0, and then the new state can reach to fixed point attractor
with the above logic.

Now consider, RMT 7 is passive. Then, the all-1 state (RMT sequence
〈77 · · · 7〉) is another fixed point attractor. A state with a sequence of consecutive
1s, guided by 0s, contains RMTs 3 and 6. If any one of them is active, the ACA
with that state can reach to all-0 fixed point. If both RMTs (RMT 3 and 6)
are passive but RMT 1, 4 or 5 is active, the ACA can reach to all-1 fixed point.
If all RMTs except RMT 2 are passive, then the state itself is a fixed point
attractor. Hence, the rule R ACA that can reach to fixed point attractors from
any initial state if RMT 0 of R is passive and RMT 2 is active.

While RMT 7 is passive and RMT 5 is active (and the rest RMTs are active
or passive) it can be shown by similar logic that the rule R ACA converge to
fixed point attractors

Proof of case (ii): Consider RMTs 0, 1, 2 and 4 of R are passive. Then,
the states where two 1s are separated by at least two consecutive 0s (like
· · · 001000100 · · ·) are fixed point attractors, because the corresponding RMT
sequences of these states contain only RMTs 0, 1, 2 and 4 (Lemma 1). Now
consider a state which contains two or more consecutive 1s. Then, the corre-
sponding RMT sequence of the state contains RMTs 3, 6 and 7 (along with

8

other RMTs). If RMT 3 or 6 is active, the number of 1s can be reduced to
a single 1 separated by 0s during evolution of the ACA. The resultant state is
a fixed point attractor if corresponding RMT sequence contains RMTs 0, 1, 2
and 4 only. If the resultant state (like · · · 001010 · · ·) contains any other RMT
(RMT 5 in this case) which is active (except 3 or 6) then updating the cell
with that active RMT, the state will have three consecutive 1s separated by 0s
(· · · 001110 · · ·). The RMT sequence of this state is now with RMTs 0, 1, 3, 7,
6 and 4. Now, updating the cell with RMT 3 or 6, the state reaches to a state
with RMTs 0, 1, 2 and 4 only. Since RMTs 0, 1, 2 and 4 are passive, the state
is a fixed point.

While RMTs 3, 5, 6, and 7 are passive, the states where two 0s are separated
by at least two consecutive 1s (like · · · 11011011 · · ·) are fixed point attractors
because the corresponding RMT sequences of these states contain RMTs 3, 5,
6 and 7 only (Lemma 1). Now consider a state which contains two or more
consecutive 0s. Therefore, the corresponding RMT sequence of state contains
RMTs 4, 0 and 1 (along with other). If RMT 1 or 4 is active, the number of
0s can be reduced to single 0 separated by 1s during the evolution of the ACA.
The resultant state is a fixed point attractor if corresponding RMT sequence
contains RMT 3, 5, 6, 7 only. If the resultant state contains any other RMT
which is active (except RMT 1 or 4) then updating the cell with that active
RMT, we can reach to a fixed point attractor.

Proof of case (iii): Consider RMTs 1, 2, 4 and 5 of R are passive. We
next show that from any initial state, the ACA can reach to a fixed point
attractor. Let us consider RMTs 0 and 7 are active. Now, from all-0 state,
updating cell with RMT 0 we can reach to the state 0101 · · · after number of
updates. The state 0101 · · · is now with RMTs 2 and 5 only. This state is
a fixed point attractor since RMT 2 and 5 are passive. The transitions are
: 0000 · · · → 0100 · · · → · · · → 0101 · · · .

Similarly, from all-1 state, the ACA can reach to 0101 · · ·01 or 0101 · · ·011
(depending on the number of cells). The state 0101 · · ·01 is itself a fixed point
attractor as RMTs 2 and 5 are passive and 0101 · · ·011 can be a fixed point
attractor if RMTs 3 and 6 are passive. If RMT 3 or 6 is active, the ACA can
obviously reach to a fixed point attractors by updating the cell with RMT 3 or
6. The transitions are: 0101 · · ·011 → 0101 · · ·001. Now, it can easily be shown
that the ACA can reach to a fixed point attractor from any state.

Lastly, it can also be shown that rule R ACA converges to fixed point at-
tractors, if RMTs 2, 3, 5 and 6 are passive. We omit the detail steps of this
proof because the rationale is similar with other cases. ✷

Example 4. Let us consider the rule 40 ACA, in which RMTs 0, 1, 3 and 4
are passive (Table 1). Therefore, the rule satisfies the condition for convergence
to fixed points (Theorem 1 (i)). Here, we assume number of cells are 4 and
the initial state is 1111. The ACA can reach to a fixed point attractor after
some random update of cells from the initial state. One possible transition is:
1111(2) → 1011(1) → 0011(4) → 0010(3) → 0000 (the cell updated in a step is

9

Table 3: ACAs converge to fixed points

0 2 4 5 8 10 12 13 16 18
24 26 32 34 36 40 42 44 48 50
56 58 64 66 68 69 72 74 76 77
78 79 80 82 88 90 92 93 94 95
96 98 100 104 106 112 114 120 122 128
130 132 133 136 138 140 141 144 146 152
154 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178
179 180 181 182 183 184 185 186 187 188
189 190 191 192 194 196 197 200 202 203
204 205 206 207 208 210 216 217 218 219
220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249
250 251 252 253 254 255

noted in bracket).

There are 64 rules where the RMT 0 is passive and RMT 2 is active (Theorem
1(i)). 8 more rules can be identified where RMTs 0, 1, 2 and 4 are passive and
RMT 3 is active (Theorem 1(ii)). In this way, we can get 146 ACAs (out of
256), which always approach to some fixed-point attractors. Such ACA rules
are listed in Table 3.

Corollary 1. An arbitrary state of an ACA, with multiple fixed point attractors,
may converge to different fixed point attractors for different update patterns.

Proof : From the concept of the proof of the Theorem 1, it has been proved
that any arbitrary state of an ACA can converge to fixed point attractor depend-
ing upon the active and passive RMTs of that particular ACA. It has also been
shown that an ACA state can converge to fixed point, by selecting cells with
active RMTs (Theorem 1 (case-1)). Since ACA cells are updated randomly, so
an ACA may converge to different fixed points following different sequence of
update of cells for different run. Hence, ACA with multiple fixed points, may
converge to different fixed point attractors. ✷

Example 5. This example illustrates the convergence of a state of an ACA to
two different fixed points following two different update sequences of cells. Let us
consider an ACA with RMT 0 and RMT 7 as passive and RMT 2 and RMT 5
as active. Since both the RMTs 0 and 7 are passive for the ACA, the all-0 state
(with RMT 0 only) and all-1 state (with RMT 7 only) are fixed points. We will
now show a state can converge to both all-0 and all-1 fixed points following two
different sequences of updates of cells. Consider the state 101010 as the seed for
6-cell ACA. The state 101010 can converge to all-0 state, updating 1st, 3rd and

10

 1

2 3

4 5
6

Figure 3: Fixed-point graph (FPG) of rule 77 ACA

5th cell. Similarly, the state 101010 can also converge to all-1 state updating
2nd, 4th and 6th cell. Here, we get two different update patterns. These are (1,
3, 5) and (2, 4, 6) respectively. The detail transitions are as follows:

• 101010 (1) → 001010 (3) → 000010 (5) → 000000.

• 101010 (2) → 111010 (4) → 111110 (6) → 111111.

The cells updated during transitions are noted in bracket right to the state.

V. Counting of fixed points

This section reports a scheme of counting fixed points of an ACA, and then
excludes the ACAs from Table 3 which have-

• only one fixed point, or

• huge number of fixed points.

We now propose a (directed) graph, named fixed point graph (FPG), that facil-
itates the counting of fixed points of a given ACA.

V.1. Fixed Point Graph

The FPG of an ACA is a directed graph, where the vertices represent the
passive RMTs of the ACA rule. To get FPG for an ACA, a forest considering
the passive RMTs as individual vertices is formed. Now, we put a directed edge
from vertex u to vertex v, if u and v are related following Table 2. For example,
if RMTs 1, 2 and 5 are passive, then we can draw directed edges from vertex 1
to vertex 2, vertex 2 to vertex 5 and vertex 5 to vertex 2. But we can not draw
a directed edge from vertex 1 to vertex 5, as RMT 1 and RMT 5 are not related
(see Table 2).

Example 6. This example illustrates the steps of constructing the FPG for rule
77 ACA. Here, the passive RMTs are 1, 2, 3, 4, 5 and 6. The vertices of the
graph are 1, 2, 3, 4, 5 and 6 (see Figure 3). Now considering the first vertex

11

as RMT 1, we get the next RMTs of vertex 1 as RMT 2 and 3 (from Table 2).
As these two RMTs are also vertices, we draw directed edges from vertex 1 to
both the vertices 2 and 3 (see Figure 3). Similarly, for vertex 3 the next possible
RMTs are 6 and 7. But only one directed edge is possible from vertex 3 to vertex
6, since vertex 7 is absent (Figure 3). After the construction of directed edges
for all the vertices, the graph is the desired FPG for rule 77 ACA (Figure 3).

Using FPG, we can easily identify the fixed points of an ACA. To get a fixed
point of an n-cell ACA, we start from a vertex of the FPG and check whether
the vertex can be reached after visiting n vertices (a vertex may be visited many
times) including the starting vertex. If we can, then the sequence of vertices,
visited, is the RMT sequence which represents a fixed point (Lemma 1).

Example 7. This example illustrates the steps for identifying fixed points for
4-cell rule 77 ACA. Figure 3 is the FPG for rule 77 ACA. Starting from vertex
1, we can reach to vertex 1 again after visiting the intermediate vertices 3,
6 and 4 (see Figure 3). So, the RMT sequence (1, 3, 4, 6) represents fixed
point for the 4-cell rule 77 ACA, as total number of visited vertices is 4 (see
Figure 3). Similarly, starting from vertex 3 we can reach to vertex 3 again
after visiting intermediate vertices 6, 4 and 1. Hence, the RMT sequence (3,
6, 4, 1) is another fixed point of the ACA. We can also get another two fixed
points staring from vertex 6 (RMT sequence (6 ,4, 1, 3)) and vertex 4 (RMT
sequence (4, 1, 3, 6)). We find two more fixed points starting from vertex 2
(RMT sequence 2, 5, 2, 5) and vertex 5 (RMT sequence (5, 2, 5, 2)). Hence,
we identify total 6 fixed points of the 4-cell rule 77 ACA.

Therefore, fixed points of an ACA can be identified as well as counted
utilizing the FPG. We can use the following recursive procedure for identify-
ing/counting fixed points of an n-cell ACA–

Start from each vertex, recursively visit next n vertices. If the final vertex
is the start vertex, consider that a fixed point is identified.

The above procedure correctly finds the number of fixed points of an n−cell
ACA. However, it demands exponential time. Practically, for a moderate value
of n, it is very difficult to count the number of fixed points.

V.2. The Counting Algorithm

In order to understand the difficulty of the above scheme, we develop recur-
sion tree of the procedure considering a node of the FPG as a starting vertex.
Figure 4 shows the recursion tree of 6-cell rule 77 ACA. Obviously, the tree grows
exponentially, which implies that the procedure demands exponential time to
count the fixed points.

However, we observe that a node of the FPG can appear many times in a
level of the tree. For example, in level 4 of figure 4, node 2 and node 3 of figure 3
appear twice. However, the subtrees following the node 2 or node 3 are similar.
In general, two subtrees, rooted at the same node of the FPG at any level, are

12

1

2 3

4 5

1

2 3

4 5

1 32

6

4 5

2 3

4 5

1

2 3

2 3

4 5 6

6

4 5

1 2 3

6

4 5

1

2 3

4 5 6

2 3

4 5

1 2 3

6

4 5

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Figure 4: Recursion tree for 6-cell rule 77 ACA

similar. Moreover, two similar subtrees produce same number of fixed points.
That is, if we get x number of fixed points from one subtree, then another x
fixed points will be received from another similar subtree. For example, each of
the subtrees following the node 2 at level 4 of figure 4 produces one fixed point.
So, we need not to proceed with all duplicate nodes, but with a single one, after
assigning appropriate weight to the node of the tree. This weight of nodes of the
tree plays a crucial role to drastically reduce time complexity of the proposed
counting algorithm.

However, the number of fixed points present in an n-cell ACA can be decided
after reaching at leaves of the tree. If a node at level n is same with the root,
we consider a fixed point is received. In this way, we get three fixed points from
figure 4 (for 6-cell rule 77 ACA).

The sequence of nodes from the root to a leaf of the recursion tree can
represent at most one fixed point. So, we initially consider that the weights of
nodes of the tree are one. When we find a single node of the FPG appears twice
or more in a level of the tree, we keep one node in the tree having its weight
as sum of weights all of its duplicates and its own. Figure 5 shows the tree
after assigning weights to the nodes of figure 4. The weights are noted within
brackets, and the duplicates are dropped in the figure. In figure 5, there is only
one leaf, which is same with the root (according to the FPG). The weight of the
leaf is 3. Hence, we conclude that the tree can shown three fixed points.

In the proposed algorithm, we develop a tree, similar to recursion tree, con-
sidering each node of the FPG as the root. However, the algorithm does not

13

1

2 3

4 5

1

2 3

4 5

1 32

6

4 5

2 3

4 5

1

2 3

2 3

4 5 6

6

4 5

6

4 5

1

2 3

2 3

level 0

level 1

level 2

level 3

level 4

level 5

level 6

(1)

(1) (1)

(1) (1)
(1)

(1) (1) (1) (1) (1)

(1) (1)(2) (2) (1) (1) (1)
(1)

(3) (3) (2) (1) (1) (1)(1)(1)(2)(2)

(3) (3) (3) (2)(2) (1) (1) (2) (2) (2)

Figure 5: The tree for 6-cell rule 77 ACA after removing duplicate nodes

store the whole tree. Rather, it stores the nodes of a single level. Initially, we
assign the weight of the root as one. When a child is generated from a parent,
the child copies the weight of its parent. As we have mentioned before, if we
find duplicate nodes in a level of the tree, we proceed with one having weight
equals to the summation of weights of its duplicates (including itself).

The algorithm (Algorithm 1) takes FPG of an ACA, and the number of cells
(n) of the ACA as input, and outputs the number of fixed points, present in
the n-cell ACA. The algorithm uses a variable, FP (which is initialized to 0)
to count the fixed points. However, for each vertex of the FPG, we develop a
tree (Step 1). Step 6 find the nodes of next level of the tree, whereas Step 8
removes the duplicates from the generated nodes. We use a variable, m to note
the number of unique nodes in a level. The variable wj stores the weight of
jth (1 ≤ j ≤ m) unique node (from the set of m unique nodes). Finally, the
algorithm reports the number of possible fixed points of the ACA.

Example 8. This example illustrates the counting of fixed points of 6-cell rule
77 ACA using Algorithm 1. Considering node 1 of the FPG (Figure 3) as the
root, we get the tree of Figure 5. For this tree, we get 3 fixed points. When node
2 is the root, we find another 6 fixed points. In this way, we can finally get that
there are 20 fixed points in the 6-cell rule 77 ACA.

Complexity:

The complexity of Algorithm 1 depends on a nested loop, which includes
three for loops at lines 1, 3 and 5. The for loop at line 5 depends on m,

14

Algorithm 1 Count Fixed Points
Input: FPG of an ACA, ACA cell size (n)
Output: Number of Fixed points

Initialization : FP = 0
1: For each vertex u of the FPG, repeat Step 2 to Step 12
2: m = 1, S1 = u, w1 = 1
3: for i = 1 to n− 2 do

4: k = 0
5: for j = 1 to m do

6: For each v when (Sj , v) exist, set k=k+1, S′
k = v and w′

k = wj

7: end for

8: For any p (≤ k) and q (≤ k) when p 6= q and
S′
p = S′

q, remove S′
q and set w′

p = w′
p + w′

q

9: Set m as the number of vertices in S′

10: Assign Sk = S′
k for all k= 1, 2, · · · m

11: end for

12: For each j (1 ≤ j ≤ m) if (Sj , u) exist, then FP = FP + wj

13: Print FP as number of fixed points.

which is dependent on the number of vertices of the FPG. Since, the number
of vertices of a given FPG is fixed (it can be at most 8), the time requirement
of each execution of this loop is O(1). However, the loop of line 3 is clearly
dependent on n, which implies that, the time requirement of the steps 3 to 7
is O(n). Steps 8 to 10 require O(1) time, and the most outer loop (at line 1)
depends on the number of vertices of an FPG, which is a constant for a given
FPG. Hence, complexity of Algorithm 1 is O(n).

Out of 256, 146 ACAs in two-state three-neighborhood interconnection that
always approach towards fixed points are already listed in Table 3 (Theorem
1). However, we can further identify a set of ACAs which are having multiple
attractors. Algorithm 1 guides us to identify such set of ACAs. There are 84
ACAs which are having multiple fixed points. We further eliminate ACAs 76,
140, 196, 200, 220, 205, 206 and 236 from the list of 84 ACAs. These ACAs have
only one RMT active and rest 7 RMTs are passive. So, these ACAs have huge
number of fixed points for a given n. These ACAs are not suitable candidates as
pattern classifier. Rule 204 ACA is the special rule where all RMTs are passive.
All the states of rule 204 ACA are fixed points. Hence, we eliminate rule 204
ACA as a pattern classifier. Table 4 shows the list of ACAs with multiple fixed
points after eliminating the above noted rules.

However, we further identify and eliminate ACAs from Table 4, whose con-
vergence time is exponential. These ACAs are not better candidate as pattern
classifier. In the next section, we identify such ACAs and eliminate them.

15

Table 4: ACAs with multiple fixed points

4 5 12 13 36 44 68 69 72 77
78 79 92 93 94 95 100 104 128 130
132 133 136 138 141 144 146 152 154 160
162 164 166 168 170 172 174 176 178 180
182 184 186 188 190 192 194 197 202 203
207 208 210 216 217 218 219 221 222 223
224 226 228 232 234 237 238 240 242 244
246 248 250 252 254

VI. ACAs with exponential convergence time

In this section, we report the method of finding the average convergence
time of ACA. In our earlier work [46], we have experimentally studied the con-
vergence time of ACAs. We have simulated ACA rules to find their average
convergence time and studied the rate of growth of convergence time with re-
spect to the size of automaton. However, we have not studied, the average
convergence time of ACA with different update patterns from a particular initial
configuration. In this work, we consider different update patterns for finding of
average convergence time of ACA from a particular initial configuration.

VI.1. Experimental setup

The convergence time of an ACA depends on both, initial configuration and
update pattern. During calculation of convergence time, however, we consider n
updates as a single time step.

In the reported experiment we use simple random sampling with replace-
ment to estimate the population mean (µ). We take a series of samples of size
m in the estimation process. Consider, Xk denotes the mean of kth sample,

and X̂k denotes the kth estimate to the population mean (k ≥ 1). Obviously,
Xk = 1

m

∑m
i=1 xi, where xi is an element of the population chosen randomly

and uniformly. However, the X̂k is determined in the following way.

X̂1 = X1

X̂2 = X1+X2

2 = 1
2X̂1 +

1
2X2

X̂3 = X1+X2+X3

3 = 2
3
(X1+X2)

2 + 1
3X3 = 2

3X̂2 +
1
3X3

. . .

X̂k = k−1
k

̂Xk−1 +
1
kX1

(3)

Since the mean of all possible samples’ means is the population mean, the

series (X̂k)k∈N approaches to µ. Population size in our study is generally large.
So, neither consideration of all possible samples nor finding of µ is possible. We,

therefore, declare X̂k as our final estimate to the population mean if
|̂Xk−

̂Xk−1|
̂Xk

<

16

δ, where δ is a small threshold value. The δ specifies the precision we desire to
achieve. We consider δ = 0.01.

However, in our experiment estimation of sample sizem is an issue. Consider,
we wish to control the relative error r in Xk, such that

Pr

(∣∣∣∣
Xk − µ

µ

∣∣∣∣ ≥ r

)
= α

where α is a small probability. If we now assume thatXk is normally distributed,
we can get the estimated value of m [47].

m =
t2S2

r2µ2
(4)

where S2 and µ are the population variance and mean respectively, and t is a
parameter related to α. In our experimentation, we consider α = 0.05 which
yields to t = 2, and r = 0.1 [47]. However, S2 and µ both are unknown in our
case. So we need to again estimate these two parameters. The most reliable
method to do this is, take a sample of size m1 and estimate S2 and µ for the
use of Equation 4 [47]. We have taken m1 = 100 in this study. It may be noted
that in all cases sample size is much less than population size.

Above method is used to estimate average convergence time of an ACA. It
is worthwhile to mention that though we allow error with a small probability
α, the error in estimate, if any, is reduced due to the use of the method noted
in Relation 3. For each convergence time, we randomly and uniformly choose
a configuration (with replacement) from 2n possible configurations of an n-cell
ACA, and then find the time using fully asynchronous updating scheme. Before
estimating the average convergence time of an ACA having n cells, however, we
first estimate the sample size m. Following example illustrates the estimation
of m for an ACA.

Example 9. Consider m1 = 100, t = 2 and r = 0.1. To estimate sample size
m for ACA 226 with n = 20, we first choose 100 configurations randomly and
uniformly (with replacement) from 220 possible configurations. Then, we find
convergence time of ACA 226, updated under fully asynchronous mode, against
each of the 100 configurations. We observe in an experiment that convergence
time vary from 1 to 192 with estimated S2 = 1762 and estimated µ = 41. Hence,

using Equation 4 we get m = 22×1762
(0.1)2×(41)2 ≈ 419.

It is, however, already mentioned that convergence time of an ACA depends
not only on initial configuration but also on update pattern. That is, for each
initial configuration, we may get different convergence time for different update
patterns. Since there are a huge number of possible ways for an ACA to con-
verge from an arbitrary initial configuration, we again use the above method to
estimate average convergence time for each initial configuration. Whole scheme
that is used to estimate average convergence time of an n-cell ACA is noted in
the following Algorithm 2.

17

Algorithm 2 Find Convergence Time
Input: ACA rule, n (size of ACA)
Output: Average convergence time

Initialization : m1 = 100, δ = 0.01
1: Choose a configuration (C) randomly and uniformly from 2n possible con-

figurations.
2: Find convergence time of the ACA against C updated under fully asyn-

chronous mode.
3: Repeat Steps 1 and 2 for m1 times, and estimate variance (S2) and mean

(µ) to convergence time.
4: Estimate sample size m using Equation 4. Consider t = 2 and r = 0.1.
5: Choose a configuration (C) randomly and uniformly from 2n possible con-

figurations.
6: Find convergence time for m1 times with the same initial configuration (C).

That is, we are considering m1 update patterns for the C. Estimate sample
size m′ like Step 4.

7: Find convergence time for m′ times with C. Get the mean value of this
sample.

8: Get another mean using Step 7. If the difference between two consecutive
means is less than δ × last mean, we consider the last mean as the average
convergence time of the ACA for the C. Otherwise, repeat Step 8.

9: Repeat Steps 5 to 8 for m times to get m convergence time. Calculate the
average of these convergence time.

10: Repeat Step 9 to get another average convergence time. If the dif-
ference between two consecutive average convergence time is less than
δ × last average time, we consider the last average time as the estimated
convergence time. Otherwise, repeat Step 10.

11: Output the estimated convergence time.

18

VI.2. The results

We now use Algorithm 2 to find average convergence time of all 146 ACAs
of Table 3. Since we are interested to establish a relation between convergence
time and n, the ACA size, we find a series of average convergence time of an
ACA for different values of n. As n increases, average convergence time of an
ACA (except ACA 204) increases. To find the rate of growth of convergence
time, we use the empirical curve bounding technique [48]. However, we estimate
here the upper bound of convergence time. We declare that the convergence
time T (n) has upper bound g(n) (we write T (n) = O(g(n))) if there exist two
positive constants c and n0 such that 0 ≤ T (n) ≤ c g(n), for all n ≥ n0 [48].

To estimate the upper bound, we assume that the convergence time (t)
follows power rule, that is, t ≈ kna [48]. We next approximate the coefficient
a by taking empirical measurements of time t1 and t2 for ACA size n1 and n2

respectively. Hence, we can get t2
t1

≈ (n2

n1

)a, and

a ≈ log(t2/t1)

log(n2/n1)
(5)

Now, our task is to experimentally find a series of t values for different n, and
then using Equation 5 we estimate the g(n).

Tables 5 – 7 show the experimental results of 13 representative ACAs. The
tables show the convergence time (t) of ACAs for different n, and values of a
(Equation 5). Note that the ACAs of each table have similar convergence time.

For Table 6, the value of a for each ACA is nearly 2 after some value of n.
So we estimate g(n) = n2. Hence we get the average convergence time of these
ACAs as O(n2). This is validated in figure 6(a), where the red curve denotes
0.2 n2 (that is, c = 0.2) and other 6 curves are for 6 ACAs – 138, 146, 170, 178,
194 and 226.

In Table 5, the a values are ever decreasing and they are generally less than
1. The trend of a values suggests that for these ACAs of Table 5, g(n) = logn.
We always consider that the base of log is 2. So average convergence time of
these ACAs is O(log n). We validate this estimation in figure 6(c), where the
red curve shows the upper limit which is 3.5 logn (that is, c = 3.5), and other
6 curves are for 6 ACAs – 130, 192, 202, 206, 234 and 242.

Table 7 contains only ACA 210, whose rate of growth of convergence time is
high. Our guess is, convergence time for this case is exponential. To validate this
guess, we take log of convergence time, and replace the t values of Equation 5
by log of t values. So we get a new a values, say they are a′. Table 7 shows both
the values, log t and a′. After some values of n, a′ is nearly 1. So the value of
log t, almost linearly increases with n. Hence, we estimate g(n) = 2n. That is,
average convergence time is O(2n). This is validated in figure 6(b).

The average convergence time for rule 204 ACA is constant as all the RMTs
for rule 204 ACA are passive. Hence, the convergence time for rule 204 ACA is
O(1). The rest 145 ACA rules are categorized in 4 classes based on their upper
bound of convergence time. All 146 ACA are listed with their rate of growth of

19

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of cells

A
ve

ra
g

e
co

n
ve

rg
en

ce
 t

im
e

ACA 138
ACA 146
ACA 170
ACA 178
ACA 194
ACA 226

0.2*n2

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

6

Number of cells

A
ve

ra
g

e
co

n
ve

rg
en

ce
 t

im
e

ACA 210

2.(2n)

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

50

60

Number of cells

A
ve

ra
g

e
co

n
ve

rg
en

ce
 t

im
e

ACA 130
ACA 192
ACA 202
ACA 206
ACA 234
ACA 242
3.5*log(n)

(c)

Figure 6: Convergence time of ACAs having upper bound (a) n2 (b) 2n (c) logn

20

convergence time in the first column of Table 8. Therefore, there are mix ACAs–
90, 122, 154, 161, 165, 166, 180 and 210, which are having exponential average
convergence time. We consider none of these ACAs as potential classifier.

Table 5: ACAs with convergence time O(logn)

cells ACA 130 ACA 192 ACA 202
n t a t a t a
6 2.27 1.74 1.22
12 4.02 0.82 2.66 0.83 3.83 1.65
20 5.72 0.69 3.49 0.39 4.89 0.47
40 8.20 0.51 4.99 0.51 7.01 0.51
80 10.71 0.38 6.35 0.34 9.12 0.37
140 12.66 0.29 7.36 0.26 11.02 0.33
280 15.80 0.31 8.44 0.19 13.34 0.27
560 18.70 0.24 10.11 0.26 15.24 0.19
1000 21.37 0.23 11.49 0.22 17.12 0.20
4000 27.65 0.18 14.01 0.19 21.32 0.15
8000 30.87 0.15 15.39 0.13 24.07 0.17
40000 39.00 0.14 18.53 0.12 29.20 0.12
cells ACA 206 ACA 234 ACA 242

n t a t a t a
6 0.73 1.65 1.76
12 1.46 1 3.78 1.19 5.03 1.51
20 2.4 0.97 5.25 0.64 7.46 0.77
40 3.91 0.70 7.29 0.47 10.85 0.54
80 4.72 0.27 9.34 0.35 14.11 0.37
140 5.84 0.38 10.58 0.22 17.24 0.35
280 7.39 0.33 12.68 0.26 20.87 0.27
560 8.52 0.20 1521 0.26 25.01 0.26
1000 9.74 0.23 16.74 0.16 28.20 0.20
4000 12.53 0.18 21.32 0.17 36.38 0.18
8000 14.08 0.16 23.21 0.12 40.54 0.15
40000 17.16 0.12 28.59 0.12 50.25 0.13

Table 9: Candidate ACAs as pattern classifier

4 5 12 13 36 44 68 69 72 77
78 79 92 93 94 95 100 104 128 130
132 133 136 138 141 144 146 152 160 162
164 168 170 172 174 176 178 182 184 186
188 190 192 194 197 202 203 207 208 216
217 218 219 221 222 223 224 226 228 232
234 237 238 240 242 244 246 248 250 252
254

21

Table 6: ACAs with convergence time O(n2)

cells ACA 138 ACA 146 ACA 170
n t a t a t a
4 3.080 2.39 0.53
8 16.010 2.41 11.14 2.22 5.47 3.36
10 24.049 1.82 16.93 1.87 8.90 2.18
20 89.54. 1.89 54.57 1.68 39.02 2.13
30 177.669 1.68 109.01 1.70 89.61 2.05
40 229.929 1.82 185.17 1.84 162.11 2.06
50 466.399 1.97 279.0 1.83 249.88 1.93
80 1032.280 1.69 618.94 1.69 671.96 2.10
120 2177.929 1.84 1298.06 1.83 1476 1.94
200 5867.109 1.93 3255.46 1.79 4182 2.03
400 23018.94 1.97 11401.88 1.80 16294 1.96

cells ACA 178 ACA 194 ACA 226
n t a t a t a
4 0.53 2.84 0.53
8 4.13 2.96 15.4 2.43 5.44 3.35
10 6.74 2.19 22.15 1.62 8.94 2.22
20 24.78 1.87 82.15 1.89 38.90 2.12
30 54.57 1.94 173.96 1.85 88.12 2.00
40 94.69 1.91 283.64 1.69 161.02 2
50 146.50 1.995 459.60 2.16 263.66 2.20
80 363.32 1.93 1014.91 1.68 658.77 1.94
120 777.40 1.87 2121.05 1.81 1470 1.97
200 2129.06 1.97 5720.00 1.94 4064 1.99
400 8615.53 2.01 19601.85 1.77 16514.31 2.02

VII. Performance of Pattern Classifier

The design of ACA based pattern classifier is already reported in Section III.
It has been pointed out that an ACA can act as pattern classifier if - (1) the ACA
converges to a fixed point from an arbitrary seed, (2) the convergent ACA is
having at least two but not huge number of fixed points, and (3) the convergence
time is not exponential. Table 9 shows the list of ACAs (71 ACAs) which satisfy
the above demands. However, this section presents the performance analysis of
these ACAs as pattern classifiers. We have considered standard and widely ac-
cepted data sets available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
for the study of efficiency of the classifier. To understand the effectiveness of
the classifier, it must be passed through two phases–training phase and testing
phase.

22

http://www.ics.uci.edu/~mlearn/MLRepository.html

Table 7: ACA with convergence time O(2n)

ACA 210
cell t a log t a′

n
4 6.75 2.75
6 44.66 4.66 5.48 0.58
8 210.72 5.39 7.71 0.84
10 889.51 6.45 9.79 0.93
12 3629.33 7.71 11.82 0.96
14 15409.08 9.37 13.91 0.94
16 65297.30 10.81 15.99 0.95
18 249072.09 11.36 17.92 1
20 1044845.12 13.60 19.99 0.96

VII.1. Training Phase

All the 71 candidate ACAs can act as pattern classifier. However, to find the
best effective classifier, we need to train all the candidate ACAs in this training
phase. All these ACAs are trained with patterns of two different data sets. We
use Algorithm 3 for the training of all these candidate ACAs. The ACA with
highest efficiency is considered as the desired classifier. It takes two data sets
(P1 and P2) and a list of candidate ACAs (Table 9) as its input. In this training
phase, an ACA of Table 9 is loaded with patterns of two different data sets
(P1 and P2) and updated till the ACA converge to a fixed point attractor. We
store all the attractors and count the number of patterns converged to them.
An attractor is declared as of class 1 if more patterns from pattern set P1 than
that of P2 are converged to the attractor and the attractor is stored in attrset-1,
otherwise the attractor is of class 2 and stored in attrset-2. The efficiency of an
ACA is determined using the following:

Efficiency =

m∑
i=1

max(ni
1, n

i
2)

|P1|+ |P2|
. (6)

Where, ni
1 and ni

2 are the maximum number of patterns converged to the
ith fixed point attractor of an ACA from data set P1 and P2 respectively. |P1|
and |P2| are the number of patterns of two data sets used for the pattern clas-
sification. The ACA with highest efficiency and attrset-1 and attrset-2 for the
ACA are output of Algorithm 3.

A list of candidate ACAs with their efficiencies are reported as an example
of training in Table 10. Monk-1 data set is considered for this training. It
has been obvious that rule 4 ACA is the classifier for Monk-1 data set (Table
10). Since the cells of an ACA are updated randomly, and an ACA state may
converge to different fixed point attractors (Corollary-1), so the efficiency of an
ACA may vary for different run of the classifier. Hence, the efficiencies shown

23

Table 8: Convergence time of ACAs

Rate of ACAs
growth
O(1) 204

O(log n) 0, 2, 4, 5, 8, 10, 12, 13, 16, 18, 24,
32, 34, 36, 40, 42, 44, 48, 50, 56, 64, 66,
68, 69, 72, 76, 78, 77, 79, 80, 92, 93, 94,

95, 96, 98, 100, 104, 112, 128, 132, 133 ,130,
136, 140, 141, 144, 160, 162, 164, 168, 171, 172,
175, 176, 179, 183, 185, 186, 187, 189, 190, 191,
192, 196, 197, 200, 202, 203, 205, 206, 207, 216,
217, 218, 219, 220, 221, 222, 223, 224, 227, 228,
231, 232, 233, 234, 235, 236, 237, 238, 239, 241,
242, 243, 245, 246, 247, 248, 249, 250, 251, 252,

253, 254, 255

O(n1/2) 26, 58, 74, 82, 88, 106, 114, 120, 163, 167,
169, 173, 177, 181, 225, 229

O(n2) 138, 146, 152, 170, 174, 178, 182, 184, 188, 194,
208, 226, 240, 244, 230

O(2n) 90, 122, 154, 161, 165, 166, 180, 210

in Table 10 may change for different run of the classifier algorithm (Algorithm
3). To understand the effectiveness of the desired classifier, we need to test the
classifier with a new set of patterns. This phase is commonly known as testing
phase.

VII.2. Testing Phase

In the testing phase the proposed classifier is tested with a new set of pat-
terns. We use Algorithm 4 to test the designed classifier. The classifier, two
pattern sets (P1 and P2) and the class of attractors (attrset-1 and attrset-2) are
the input to Algorithm 4. The ACA is loaded with the patterns of P1 and P2

and updated till all the patterns converge to any fixed point attractor. The ef-
ficiency of the ACA is determined considering the number of patterns correctly
identified by the classifier. For example, if an attractor is present in attrset-1
then the algorithm counts only the number of patterns from data set P1 con-
verge to the attractor as correctly identified patterns. The ACAs with their
training and testing efficiencies for different data sets are reported in Table 11.

The proposed classifier is an ACA based classifier, so the cells of ACA are
updated stochastically. So, there is a chance that the efficiency of the classifier
can vary in different run. So, this variations in efficiencies of the classifier need
to be reported. To overcome this problem of variation in efficiencies, we find
the margin of error in both training and testing phase.

24

Algorithm 3 Training Classifier
Input: Table 9, n (Size of ACA), Two pattern sets P1 and P2.
Output: ACA as classifier, attrset-1 and attrset-2.

Initialization : Success= 0
1: For each ACA, A ∈ Table 9 repeat Step 2 to Step 14.
2: Repeat Step 3 and Step 4 for each pattern p of P1 and P2.
3: Load A with p.
4: Run A until it reaches to any fixed point attractor, attr.
5: Suppose n1 and n2 are the number of patterns from P1 and P2 respectively

mapped into an fixed point attractor, attr.
6: if n1 > n2 then

7: Success = Success + n1 and store attr in attrset-1.
8: else

9: Success = Success + n2 and store attr in attrset-2.
10: end if

11: Repeat Step 5 to Step 10 for each fixed point.
12: Find efficiency as Success

|P1|+|P2|

13: Report maximum efficiency ACA and its class of attractors.

Table 10: Efficiencies of ACAs during training of monk-1 data-set
ACAs Efficiency number of ACAs Efficiency number of ACAs Efficiency number of

(in %) attractors (in %) attractors (in %) attractors
4 95.671 199 5 73.38 22 12 95.16 199
13 73.38 22 36 85.48 67 44 84.67 67
68 94.35 199 69 69.35 22 72 73.38 67
77 83.06 198 78 70.96 23 79 68.54 22
92 73.38 23 93 73.38 22 94 71.77 23
95 70.96 22 100 81.45 67 104 70.16 34
128 50.00 2 130 50.00 2 132 89.51 200
133 71.77 23 136 50.00 2 138 50.00 2
141 72.58 23 144 50.00 2 146 50.00 2
152 50.00 2 160 52.41 2 162 56.45 2
164 82.25 68 168 52.41 2 170 60.48 2
172 83.87 68 174 50.00 2 176 53.22 2
178 62.09 2 182 50.00 2 184 62.60 2
186 55.64 2 188 50.00 2 190 50.00 2
192 50.00 2 194 50.00 2 197 69.35 23
202 75.00 68 203 77.41 67 207 91.93 199
208 50.00 2 216 77.41 68 217 86.29 67
218 83.06 68 219 83.06 67 221 91.93 199
222 87.90 200 223 93.54 199 224 52.41 2
226 58.870 2 228 81.45 68 232 85.48 200
234 51.61 2 237 71.77 67 238 50.00 2
240 59.67 2 242 53.22 2 244 50.00 2
246 50.00 2 248 51.61 2 250 51.61 2
252 50.00 2 254 50.00 2 - - -

25

Algorithm 4 Testing Classifier
Input: ACA, attrset-1, attrset-2, pattern sets P1 and P2,
Output: Testing efficiency.

Initialization : Success = 0.
1: Repeat Step 2 to Step 4 for each pattern p of P1 and P2.
2: Load ACA with p.
3: Run ACA until it reaches to any fixed point attractor, attr.
4: Suppose n1 and n2 are the number of patterns from P1 and P2 respectively

mapped into an fixed point attractor, attr.
5: if attr ∈ attrset-1 then

6: Success=Success + n1

7: else if attr ∈ attrset-2 then

8: Success=Success + n2

9: else if (attr /∈ attrset-1) & (attr /∈ attrset-2) then
10: if n1 > n2 then

11: Success = Success + n1

12: else

13: Success = Success + n2

14: end if

15: end if

16: Repeat Step 4 to Step 15 for each fixed point attractor.
17: Efficiency = Success

|P1|+|P2|

18: Report Testing efficiency of the ACA.

26

VII.3. Margin of Error

A margin of error expresses the maximum expected difference between the
true population parameter and a sample estimate of that parameter [47]. We
estimate the margin of error for sample size m using Equation 7 [47]. We have
considered 30 samples for the experimentation.

M Error = Zn/2 (
S√
m
) (7)

where S is the variance and S can be found from Equation 8.

S =
√∑

(xi − x)2/(m− 1) (8)

Where xi is the efficiency of ith sample and x is the mean of efficiencies of
samples. We set Zn/2= 1.96, as we consider the confidence level is 95% for our
sampling experimentation [47].

The margin of error in both training and testing phase for the efficiencies of
the proposed classifier are reported in Table 11. It is found that the margin of
error is very less in both training and testing phase. Hence, the efficiencies of the
proposed classifier varies a little during different run of the classifier algorithm.

VII.4. The Comparison

We have used six data-sets for the study of effectiveness of the proposed pat-
tern classifier. These data sets are Monk-1, Monk-2, Monk-3, Haber-man, Spect
heart and Tic-tac-toe. These data-sets are modified suitably and fit with the
input characteristics of our proposed pattern classifier. Our proposed classifier
is a two-class classifier. So, all the data-sets we have used are of two classes.

Table 10 shows the efficiencies and the number of attractors of the candidate
ACAs. The efficiencies reported in this table are found using Monk-1 data
set during training phase. It is also noted that, the efficiency of classifier (in
training) changes if data-set changes.

Table 11 shows the performance results of our proposed pattern classifier.
The efficiencies for the proposed classifiers using different data sets in both
training and testing phase with their margin of errors are also noted in this
table. Column 1 shows the name of data-set while column 2 reports the size of
ACA. The efficiencies of the classifier with their margin of errors during training
are reported in next two columns and efficiencies during testing with margin of
errors are reported in column 5 and column 6 respectively. The ACA, as the
proposed classifier is reported in the last column. Finally, the performance of our
proposed ACA based classifier is compared with other well known classifiers in
Table 12. We show that our proposed ACA based classifier performs much better
than traditional CA based classifier and also more competitive and performs
reliably better than other well known classifier algorithms.

27

Table 11: Performance of proposed classifier
Data-sets ACA size Efficiency in % ACA rules

Training Margin of error Testing Margin of error (Proposed)
in Training in Testing

Monk-1 11 95.671 0.482 81.519 0.254 4
Monk-2 11 88.934 0.352 73.410 0.305 68
Monk-3 11 96.310 0.485 83.749 0.134 207

Haber Man 9 82.179 0.405 77.493 0.773 36
Spect Heart 22 100.000 0 100.000 0 4
Tic-Tac-Toe 18 99.867 0.059 99.721 0.040 12

Table 12: Comparison of classification accuracy

Data-sets Algorithms Efficiency Efficiency
in % in % (proposed)

with margin of error
Monk 1 Bayesian 99.9 81.519 ± 0.254

C4.5 100 (rule 4)
TCC 100
MTSC 98.65
MLP 100

Traditional CA 61.111
Monk 2 Bayesian 69.4 73.410 ± 0.305

C4.5 66.2 (rule 68)
TCC 78.16
MTSC 77.32
MLP 75.16

Traditional CA 67.129
Monk 3 Bayesian 92.12 83.749 ± 0.134

C4.5 96.3 (rule 207)
TCC 76.58
MTSC 97.17
MLP 98.10

Traditional CA 80.645
Haber-man Traditional CA 73.499 77.493 ± 0.773

(rule 36)
Spect Heart Traditional CA 91.978 100 ± 0.0

(rule 4)
Tic-Tac-Toe Sparse grid 98.33 99.721 ± 0.040

ASVM 70.000 (rule 12)
LSVM 93.330

Traditional CA 63.159

28

VIII. Conclusion

In this work we have proposed a design of ACA based pattern classifier
and compared the efficiency of the designed classifier with other well known
existing classifiers. For this design, we have used ACAs under fully asynchronous
update scheme in periodic boundary condition. ACAs are characterized for their
convergence towards any fixed point attractors. A theorem has been designed to
identify such convergent ACAs which are used for the pattern classification. 146
ACAs (out of 256) are identified, that converge to some fixed point attractors
during their evolution. The concept of fixed point graph has been introduced to
facilitate the counting of fixed points in an ACA. An algorithm is also designed
which counts the number of fixed points utilizing FPG and identifies ACAs with
multiple attractors. 84 ACAs (out of 146) are identified with multiple fixed
points. An experimental study is made on the convergence time of ACAs with
a designed algorithm. All convergent ACAs (146 ACAs) with their convergence
time are reported in this work. ACAs with exponential convergence time and
ACAs with huge number of fixed points are not allowed as pattern classifier.
These ACAs are not good candidates for pattern classification. 71 ACAs are
identified as candidate ACAs which are used as pattern classifier. Both training
and testing of the classifier have been done considering widely accepted data sets.
Since there is a chance of change in the efficiency of the ACA based classifier, we
have also calculated the margin of error in both training and testing phase. It
has been shown that the margin of errors in both the phases are very less with
a negligible effect in the efficiency of the classifier. Finally, in this work we have
also compared the efficiency of our proposed ACA based classifier with some
well known existing classifiers. We report that our proposed classifier performs
better than the traditional CA based classifier and also more competitive and
performs reliably better than some of the other well known classifiers.

References

[1] J. V. Neumann, The theory of self-reproducing Automata, A. W. Burks
ed., Univ. of Illinois Press, Urbana and London, 1966.

[2] S. Wolfram, A New Kind of Science, Wolfram Media, Inc., 2002.

[3] C. G. Langton, Self-reproduction in cellular automata, Physica D 10 (1984)
135–144.

[4] C. G. Langton, Studying artificial life with cellular automata, Physica D
22 (1986) 120–149.

[5] A. W. Burks, Essays on cellular automata, Tech. rep., Univ. of Illinois,
Urbana (1970).

[6] C. Salzberg, H. Sayama, Heredity, Complexity, and Surprise: Embedded
self-replication and evolution in CA, in: Proceedings of International con-
ference on cellular automata for research and industry (ACRI), Springer,
2004, pp. 161–171.

29

[7] J. A. Reggia, H. H. Chou, J. D. Lohn, Cellular automata models of self-
replicating systems, Advances in computers 47 (1998) 141–183.

[8] B. Chopard, M. Droz, Cellular Automata Modelling of Physical Systems,
Cambridge University Press, 1998.

[9] E. F. Codd, Cellular Automata, Academic Press Inc., 1968.

[10] P. Sarkar, A brief histroy of cellular automata, Acm Computing Surveys
32 (1) (2000) 80–107.

[11] M. Garzon, Models of massive parallelism: Analysis of cellular automata
and neural networks, Springer, 1995.

[12] M. Mitchell, P. T. Hraber, J. P. Crutchfield, Revisiting the egde of chaos:
Evolving cellular automata to perform computations, Complex Systems
(1993) 7: 89–130.

[13] T. Toffoli, N. Margolus, Invertible cellular automata: A review, Physica D
45 (1990) 229.

[14] J. Thatcher, Universality in Von Neumann cellular model, in: Tech. Report
03105-30-T, ORA, University of Michigan, 1964.

[15] S. Wolfram, Universality and complexity in cellular automata, Physica D
10 (1984) 1–35.

[16] J. Kari, Theory of cellular automata: A survey, Theoretical computer sci-
ence (Elsevier) 334 (2005) 3–33.

[17] H. Gutowitz, Cellular Automata: Theory and Experiment, MIT
Press/Bradford Books, Cambridge Mass., 1991, ISBN 0-262-57086-6.

[18] M. Cook, Universality in elementary cellular automata, Complex systems
15 (2004) 1–40.

[19] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys.
55 (3) (1983) 601–644.

[20] S. Wolfram, Theory and applications of cellular automata, World Scientific,
Singapore, 1986, ISBN 9971-50-124-4 pbk.

[21] S. Wolfram, Cellular automata as models of complexity, Nature 311 (5985)
(1984) 419–424.

[22] G. Tempesti, A new self-reproducing cellular automaton capable of con-
struction and computation, in: Proceedings of 3rd European conference on
artificial life, no. 929, Springer, 1995.

[23] J. Gorodkin, A. Sorensen, O. Winther, Neural network and cellular au-
tomata complexity, Complex systems 7 (1993) 1–23.

30

[24] A. G. Hoekstra, J. Kroc, P. M. A. Sloot, Introduction to mod-
eling of complex systems using cellular automata, springer, 2010.
doi:10.1007/978-3-642-12203-3-1.

[25] H. Meinhardt, The Algorithmic beauty of sea shells, springer, 1995.

[26] E. L. Patel, D. Broomhead, A max-plus model of asynchronous cellular
automata, arXiv:1502.04097 (2015) 1–26.

[27] N. Fatès, Guided tour of asynchronous cellular automata, J. Cellular Au-
tomata 9 (5-6) (2014) 387–416.

[28] D. Regnault, N. Schabanel, E. Thierry, Progresses in the analysis of stochas-
tic 2D cellular automata: A study of asynchronous 2D minority, Theoretical
Computer Science (Elsevier) 410 (2009) 4844–4855.

[29] H. Bersini, V. Detour, Asynchrony induces stability in cellular automata
based models, in: R. A. Brooks, P. Maes (Eds.), Artificial Life IV, The
MIT Press, Cambridge, Massachusetts, 1994, pp. 382–387.

[30] T. Ingerson, R. Buvel, Structure in asynchronous cellular automata, Phys-
ica D: Nonlinear Phenomena 10 (1-2) (1984) 59–68.

[31] C.L.Nehaniv, Evolution in asynchronous cellular automata, in: Proceedings
of eighth international conference on artificial life, MIT Press, 2003, pp. 65–
73.

[32] P. Maji, N. Ganguly, S. Saha, A. K. Roy, P. P. Chaudhuri, Cellular Au-
tomata Machine for Pattern Recognition, Proceedings of Fifth Interna-
tional Conference on Cellular Automata for Research and Industry, ACRI,
Switzerland (2002) 270–281.

[33] F. Peper, T. Isokawa, N. Kouda, N. Matsui, Self timed cellular automata
and their computational ability, Future generation computer systems (el-
sevier) 18 (2002) 893–904.

[34] X. Huang, Q. Zhu, Self reproduction of worms in asynchronous cellular
automata, Journal of software (Academy publishing) 8 (2013) 1699–1706.

[35] X. H. Q. Zhu, A novel triggered self reproduction of self reproduction loops
in asynchronous cellular automata, Journal of information and computa-
tional science 9 (16) (2012) 4961–4968.

[36] X. Huang, J. Lee, R. L. Yang, Q. S. Zhu, Simple and flexible self-
reproducing structures in asynchronous cellular automata and their dy-
namics, International Journal of modern physics C 24 (1350015).

[37] Y. Takada, T. Isokawa, F. Peper, Asynchronous self-reproducing loops with
arbitration capability, Physica D: Nonlinear phenomena 227 (2007) 26–35.

31

http://dx.doi.org/10.1007/978-3-642-12203-3-1

[38] W. Bolt, J. M. Baetens, B. D. Baets, On the decomposition of stochastic
cellular automata, arXiv:1503.03318 (2015) 1–27.

[39] S. Das, S. Mukherjee, N. Naskar, B. K. Sikdar, Characterization of single
cycle ca and its application in pattern classification, Electr. Notes Theor.
Comput. Sci. 252 (2009) 181–203.

[40] S. Das, S. Mukherjee, N. Naskar, B. K. Sikdar, Modeling single length cycle
nonlinear cellular automata for pattern recognition, in: NaBIC, 2009, pp.
198–203.

[41] N. Ganguly, P. Maji, B. K. Sikdar, P. P. Chaudhuri, Design of a Cellular
Automata Based Pattern Classifier, Transaction on Pattern Analysis and
Machine Intelligence, TPAMI (116429).

[42] N. Ganguly, P. Maji, A. Das, B. K. Sikdar, P. P. Chaudhuri, Characteriza-
tion of Non-Linear Cellular Automata Model for Pattern Recognition, in:
Proceedings of AFSS International Conference on Fuzzy Systems, Calcutta,
India, 2002, pp. 214–220.

[43] B. Sethi, S. Das, Modeling of asynchronous cellular automata with fixed-
point attractors for pattern classification, in: Proceedings of International
Conference on High Performance Computing and Simulation, Finland,
IEEE, 2013, pp. 311–317.

[44] N. Fatès, E. Thierry, M. Morvan, N. Schabanel, Fully asynchronous behav-
ior of double-quiescent elementary cellular automata, Theor. Comput. Sci.
362 (1-3) (2006) 1–16.

[45] B. Sethi, N. Fatès, S. Das, Reversibility of elementary cellular automata un-
der fully asynchronous update, in: Proceedings of International conference
on Theory and Applications of Models of Computation, India, Springer,
2014, pp. 39–49.

[46] B. Sethi, S. Roy, S. Das, Experimental study on convergence time of el-
ementary cellular automata under asynchronous update, in: Proceedings
of International Workshop on Cellular Automata and Discrete Complex
Systems (Automata), 2013, pp. 223–228.

[47] W. G. Cochran, Sampling Techniques, third edition, Vol. ISBN 978-81-265-
1524-0, John Wiley & Sons, 1977.

[48] C. McGeoch, P. Sanders, R. Fleischer, P. R.Cohen, D. Precup, Using finite
experiments to study asymptotic performance, Experimental Algorithmics,
LNCS (2547) (2002) 93–126.

32

	I Introduction
	II Cellular Automata Preliminaries
	III Design of pattern classifier
	IV Identification of convergent ACAs
	V Counting of fixed points
	V.1 Fixed Point Graph
	V.2 The Counting Algorithm

	VI ACAs with exponential convergence time
	VI.1 Experimental setup
	VI.2 The results

	VII Performance of Pattern Classifier
	VII.1 Training Phase
	VII.2 Testing Phase
	VII.3 Margin of Error
	VII.4 The Comparison

	VIII Conclusion

