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SUMMARY

Focal-plane mixed-signal arrays have traditionally been designed according to the general claim that
moderate accuracy in processing is affordable. The performance of their circuitry has been analyzed in
these terms without a comprehensive study of the ultimate consequences of such moderate accuracy.
In this paper, for the first time to the best of our knowledge, we do carry out this study. We move
expectable performance of mixed-signal image processing hardware directly into the vision algorithm
making use of it. This permits to close a wider design loop, enabling a more aggressive design of
this kind of hardware provided that the algorithm, at the highest level —semantic interpretation of
the scene—, can afford it. Thus, we present a thorough analysis of the non-idealities associated with
the implementation of a QVGA array tailored for the distinctive characteristics of the Viola-Jones
processing framework. The resulting deviation models are then introduced in the processing flow of this
framework provided by the OpenCV library. We have found, contrary to what could be expected, that
these deviations do not necessarily degrade the performance of the Viola-Jones algorithm. They could
be even beneficial for certain high-level specifications. Additionally, we demonstrate the architectural
advantages of our approach: exploitation of focal-plane distributed memory and ultra-low-power
operation.

key words: Viola-Jones framework, focal-plane sensing-processing, mixed-signal circuitry, integral

images, Haar-like features, OpenCV library

1. INTRODUCTION

Back in the early 90’s, CMOS technology enabled a functional coexistence of photo-sensors and
processors on a chip, thus allowing the incorporation of intelligence into solid-state imaging
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devices [1]. The degree of embedded intelligence has ranged widely from simply control and
image correction, typically found in most current commercial image sensors, to more elaborated
tasks backing up higher cognitive vision capabilities. Significant research activity is focused on
the latter. Different strategies have been proposed to increase and improve the smart features
of image sensors [2]. Focal-plane sensing-processing [3] constitutes the best approach in terms
of exploitation and adaptation to the particular characteristics of early vision [4]. On the one
hand, the information to be handled at this processing stage —each and every pixel resulting
from the raw readings of the sensors— is massive. On the other hand, the computational
flow is very uniform. The same calculations are repeatedly carried out on every pixel. More
interestingly, the outcome for each individual pixel does not usually depend on the outcome for
the rest. Consequently, while an enormous amount of data must certainly be processed, regular
massively parallel operation can still be applied. Focal-plane sensor-processor chips make the
most of these characteristics by operating in Single Instruction Multiple Data (SIMD) mode [5]
featuring concurrent processing and distributed memory. Numerous low-level image processing
primitives have been successfully implemented following this scheme: convolution filtering [6,7],
programmable blurring [8], spatial [9] and temporal [10, 11] contrast extraction, background
subtraction [12], image compression [13] or high dynamic range imaging [14] among others.
Even academic [15,16] and commercial [17] general-purpose vision systems based on focal-plane
processing have been reported.

Focal-plane processing architectures can also benefit from the possibility of including
analog circuitry. When compared to their digital counterpart, analog circuits can reach higher
performance in terms of speed, area and power consumption, but at the cost of low, moderate at
most, accuracy. It has been generally claimed that most vision algorithms can perform properly
under these conditions [18]. There is however a lack of in-depth analysis in the literature
about the ultimate impact of such moderate accuracy on high-level vision processes delivering
the semantic interpretation of a scene. This analysis is specially relevant when it comes to
application-specific chips. For them, the study of the ultimate consequences of decisions made
at electrical or even physical design level can lead to solutions much closer to the optimal for
the targeted functionality.

All in all, the contribution of this paper is twofold: i) we address, for the first time to the best
of our knowledge, the design of focal-plane mixed-signal circuitry implementing early vision
tasks required by the Viola-Jones processing framework [19,20]; ii) we carry out, by making use
of exhaustive simulations and the OpenCV library [21], a comprehensive bottom-up analysis
of how the non-idealities of the physical realization affect the final outcome of the algorithm
underlying the mentioned framework. This analysis enables a hardware-software co-design loop
that boosts the confidence in achieving the targeted functionality from the resulting array. In
addition to other capabilities, this array provides support to the Viola-Jones processing flow
at two low-level stages. First, it is be able to deliver the integral and square integral images
at different scales. Alternatively, it can compute the sum of pixels and squared pixels at any
possible rectangular area of the image, significantly easing the extraction of Haar-like features.

The paper is organized as follows: the Viola-Jones framework is outlined in Section 2,
highlighting those tasks presenting a feasible focal-plane implementation. The methodology
and circuitry proposed to address such implementation are described in Section 3. Simulation
results are shown in Section 4. Finally, we analyze in Section 5 how these results affect the
outcome of the Viola-Jones face detection baseline algorithm provided by the OpenCV library.
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Figure 1. Simplified scheme of the Viola-Jones processing flow.

2. VIOLA-JONES PROCESSING FRAMEWORK

The Viola-Jones framework constitutes one of the best approaches reported to achieve real-
time object recognition. It is based on the extraction of very simple features across the image
—the so-called Haar-like features— which are subsequently analyzed by a cascade of classifiers
of progressive complexity. These classifiers are previously trained according to the object to
be detected, adapting their internal thresholds when successive training images are passed
through. A basic scheme of the Viola-Jones processing flow is depicted in Fig. 1. Despite its
simplicity, this framework still requires a considerable amount of computational and memory
resources. During the last few years, numerous efforts have been focused on exploiting the
increasing memory and logic capabilities available in FPGAs [22–24] as well as the highly
parallel computation structure of GPUs [25, 26]. When it comes to low-power embedded
systems, additional constraints must be introduced on the image resolution [27] or the type of
processor operations [28] in order to obtain at least moderate frame rates.

From the point of view of focal-plane processing, we are interested in the early stages of
the flow represented in Fig. 1. From now on, we will be considering the most usual operation
mode for the Viola-Jones framework [28]. In this mode, the original image is scaled down until
reaching a prescribed minimal dimension. The processing flow is repeated for each scaled image.
Note that the raw material feeding the cascade of classifiers consists of Haar-like features.
These features derive from the Haar wavelets [29] and encode differences in average intensities
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between rectangular regions. Their mathematical formulation is extremely simple. For a certain
feature Fk, we have that:

Fk =
∑
i

∑
j

Wij −
∑
p

∑
q

Bpq (1)

where Wij represents the pixel values within the white rectangle(s) and Bpq the pixel values
for the black rectangle(s). White and black are mere indicators of the area considered, with
independence of their pixel values. In practice, we are simply comparing the DC component
of the rectangles involved since the sum of the pixels is proportional to their mean value.

The large amount of resources to be allocated for the algorithm comes from the
correspondingly large number of Haar-like features to compute. As an example, the Viola-
Jones face detection algorithm provided by the OpenCV library requires 22 classifiers including
2135 features in total. Of course, most of the windows scanned across the image are rejected
at the first —and simpler— classifiers of the cascade on not containing the targeted object.
This avoids a great deal of useless calculations. But still there will be windows in which all
the features will have to be checked. In order to alleviate the computational and memory
requirements from this processing stage, an intermediate image representation is used, the
so-called integral image. This intermediate representation is defined as:

II(x, y) =
x∑

x′=1

y∑
y′=1

I(x′, y′) (2)

where I(x, y) represents the input image. That is, each pixel composing II(x, y) is given by the
sum of all the pixels above and to the left of the corresponding pixel at the input image. Two
fundamental advantages support the inclusion of this pre-processing stage. First of all, only
four pixels adequately extracted from the integral image permit to compute the sum of any
rectangular region of the input image. Consider four points as in Fig. 1, (x1, y1), (x2, y1), (x1, y2)
and (x2, y2), with x1 < x2 and y1 < y2, defining a rectangle across the input image. The sum
of pixels within this region can be expressed as:

x2∑
x=x1

y2∑
y=y1

I(x, y) = II(x2, y1) + II(x1, y2)− II(x1, y1)− II(x2, y2) (3)

The second advantage is that the integral image can be computed in one pass over the input
image by making use of the following pair of recurrences:{

r(x, y) = r(x, y − 1) + I(x, y)
II(x, y) = II(x− 1, y) + r(x, y)

(4)

with r(x, 0) = 0 and II(0, y) = 0. This single-pass computation enables a fast operation on
the part of a microprocessor.

In addition to the integral image, the Viola-Jones processing flow also requires the
calculation of the square integral image, defined as:

IIsq(x, y) =
x∑

x′=1

y∑
y′=1

I2(x′, y′) (5)
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(a)

(b)

Figure 2. The original raw image and successively downsampled versions of it (a) require the
computation of their corresponding integral images. In practice, this is equivalent to make use of

the original raw image and its successive versions obtained by pixel binning (b).

This extra intermediate representation allows, in conjunction with II(x, y), the variance
normalization of the Haar-like features. All the windows used for classifier training are variance-
normalized in order to minimize the effect of different lighting and contrast conditions.
Correspondingly, the features extracted from the input image must also be variance-
normalized. Taking into account that the variance of the generic rectangle previously defined
for Eq. (3) can be expressed as:

σ2 =
1

MN

x2∑
x=x1

y2∑
y=y1

I2(x, y)−

[
1

MN

x2∑
x=x1

y2∑
y=y1

I(x, y)

]2
(6)

where M and N denotes the horizontal and vertical dimensions in pixels of the rectangle, and
considering the counterpart of Eq. (3) for IIsq(x, y), we can re-write Eq. (6) as:

σ2 = 1
MN [IIsq(x2, y1) + IIsq(x1, y2) −IIsq(x1, y1)− IIsq(x2, y2)]

−
{

1
MN [II(x2, y1) + II(x1, y2) −II(x1, y1)− II(x2, y2)]}2 (7)

which shows how both integral images work together to achieve the variance normalization.
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Figure 3. Focal-plane sensing-processing scheme proposed for the computation of integral images.

In the next section, we will propose a processing scheme devised for the focal-plane
computation of II(x, y) and IIsq(x, y). This computation, that constitutes the lowest-level
task for the Viola-Jones framework, can clearly benefit from the concurrent operation and
distributed memory provided by focal-plane architectures. We will thoroughly describe the
mixed-signal circuitry implementing integral image computation and analyze its performance.
We will also demonstrate that the high degree of reconfigurability of the proposed scheme
would even permit to go further by skipping integral image computation and enabling a direct
extraction of Haar-like features through the concurrent computation of rectangular image
area sums. However, the exploitation of this strategy requires a substantial modification of the
algorithm at software level that falls beyond the scope of the paper.

3. IMPLEMENTATION PROPOSAL

Our objective is the implementation of reconfigurable focal-plane circuitry delivering integral
images at different scales, as depicted in Fig. 2(a). For the sake of hardware simplicity, this is
equivalent in practice to make use of the original image and its successive versions obtained by
pixel binning, as represented in Fig. 2(b). For each scale, the pixels are correspondingly merged
through averaging and the computation step along the x and y axis is doubled. In order to
reach the aforementioned objective, we propose a general scheme like that of Fig. 3. A focal-
plane array of 4-connected sensing-processing elementary cells provides the computational and
memory resources required. These cells, whose interconnection can be reconfigured by means
of peripheral circuitry, operate in a massively parallel way. They will work concurrently and
jointly according to the corresponding instruction. Note however that such parallelism cannot
be applied to obtain all the pixels of an integral image at the same time. Assuming a W ×H
array, it would mean to hold W ×H copies of the top-left pixel of the original image since this
pixel is needed for the computation of each and every pixel of the integral image. Likewise,
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a progressively reduced number of pixel copies along the original image would also have to
be held. Instead, we propose the exploitation of concurrency and distributed memory during
a sequential processing stage. The circuitry to achieve this is shown in Fig. 4. It has been
designed for the standard UMC 0.18µm 1P6M CMOS process. After photointegration, the
pixel is represented by the voltage Vij . This voltage is repeatedly copied into VSij by enabling
the analog buffer through the control signal CP EN and then squared at VSQij

in order to
respectively support the computation of the integral and square integral images. We re-use
the squarer reported in [31] because of its simplicity and successful experimental verification.
The sum of pixels and squared pixels is carried out through charge redistribution enabled by
the switches controlled by ENSi,i+1 , ENSj,j+1 , ENSQi,i+1 and ENSQj,j+1 . These signals are set
by peripheral circuitry according to the scale and current pixel location of the integral images
being calculated, as will be explained shortly. A timing diagram for two consecutive stages of
copy, squaring and charge redistribution for scale #1 is depicted in Fig. 5. Once redistributions
take place in parallel at VSij

and VSQij
, these voltages constitute new pixels of the targeted

integral images. Charge redistribution can really be described as a diffusion process defined,
for example for VSij , as:

RSCS

dVSij

dt
= −4VSij

+ VSi+1,j
+ VSi−1,j

+ VSi,j+1
+ VSi,j−1

(8)

where RS is the equivalent resistance of the switches and CS is the capacitance holding VSij
.

Eq. (8) is for an inside cell like that of Fig. 4 featuring full connectivity. Cells at the edges are
connected to fewer than four neighbors. Unlike the implementation presented in [31], we are
not now interested in transient states of this diffusion process but in the steady state. And
we want to attain it as fast as possible. Consequently, the switches must be as wide as area
restrictions allow, thereby reducing their resistance. The steady state of a diffusion process like
that of Eq. (8) is characterized by a uniform distribution of voltages across the group of cells
involved. Every voltage reaches the same value, that coincides with the average of the initial
voltages at the cells. It is this average what encodes the sum required by the integral images.

In order to better visualize how the charge redistribution is configured, a simplified scheme
of the proposed array is shown in Fig. 6. It can be seen that the cells can be grouped column-
wise and row-wise through the corresponding control signals. Each pixel of the integral images
is related to a stage of copy, squaring and charge redistribution. After these three steps,
the array must be re-arranged for the next pixel. As an example, the computation of the
first row of the integral images at scale #1 requires to disable all row connections between
cells and then progressively enable column connections. Thus, if we focus on ENSi,i+1 , the
column interconnection pattern ‘0000...0’ leads to II(1, 1), ‘1000...0’ to II(2, 1), ‘1100...0’
to II(3, 1) and so on. Applying ones’ complement to these patterns, those of ENSQi,i+1

for IIsq(1, 1), IIsq(2, 1), IIsq(3, 1), etc. are respectively obtained. For further scales, a more
complex redistribution arrangement is needed. To explain this, let us describe peripheral
circuitry capable of providing ENSi,i+1

and ENSQi,i+1
—exactly the same is used for ENSj,j+1

and ENSQj,j+1
. It is depicted in Fig. 7. We basically require a shift register like in [31]. This

makes reconfiguration for scale #1 very simple and also ease further processing capabilities [32].
But the point is how to deal efficiently with successive scales. Keep in mind that we first need
pixel binning and then reconfigurable charge redistribution over the resulting image. To speed
up these two tasks, we incorporate the possibility of disabling the shift register and setting
interconnection patterns in parallel through the signals denoted as SC#. These signals are
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Figure 4. Proposed circuitry for integral image computation at the elementary sensing-processing cell.

distributed along the peripheral cells as illustrated in Fig. 8. For scale #1, binning is not
necessary. Our starting point is therefore an all-0’s bit string for rows and columns. For scale
#2, binning is achieved by switching the signal SC2, distributed as indicated in Fig. 8, from
logic ‘0’ to ‘1’. In so doing, we merge voltages VSij and VSQij within 2×2-px blocks. By
switching also the signal SC3 to ‘1’, again as distributed in the figure, the merging process
would affect blocks of 4×4-px. Likewise, SC4 is associated with 8×8-px blocks and SC5 with
16×16-px blocks. A single signal therefore permits to re-arrange the array for the next scale.
The final step is to perform charge redistribution between the macro-pixels thus generated.
This can be done by loading the adequate interconnection patterns, similarly to scale #1.
Taking scale #2 as an example, and assuming again the computation of the first row, the
column interconnection pattern ‘1000...0’ would lead to II(1, 1), ‘111000000..0’ to II(2, 1),
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Figure 5. Timing diagram of two consecutive stages of copy, squaring and charge redistribution at an
elementary cell for scale #1.

‘111110000..0’ to II(3, 1), etc. These patterns mean to double the computation step along
the x axis with respect to that of scale #1, accordingly to the macro-pixel dimensions. It
is this enormous flexibility for focal-plane reconfiguration what endows the array with the
additional asset of computing the sum of pixels and squared pixels at multiple rectangular
areas in parallel, as required for the direct extraction of Haar-like features.

As a final comment, notice that, in order to read out and convert every pixel of the integral
images, we must simply connect VS1,1 and VSQ1,1 to respective analog-to-digital converters
located at the periphery of the array. These voltages will always contain the targeted calculation
for each pixel at each scale, according to the definition of integral image and the proposed
hardware implementation based on charge redistribution.

4. ERROR CHARACTERIZATION

We have built up a 320×240-px array by making use of the circuitry depicted in Fig. 4 plus
additional transistors and another photodiode in order to exploit the array reconfigurability for
block-wise intra-frame HDR imaging [30]. The resulting layout is shown in Fig. 9. Post-layout
simulation results will endow our analysis with very high reliability concerning expectable
performance from the array. The array is surrounded by peripheral circuitry providing the
functionalities already described.

In order to evaluate how the non-idealities of the proposed circuitry impact the targeted
computation of integral images, we have thoroughly analyzed the elementary cell after RC
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Figure 6. Simplified scheme of how the charge redistribution can be reconfigured in the proposed
focal-plane array.

Figure 7. Peripheral cell per column connection. The same cell is used per row connection in order to
provide ENSj,j+1 and ENSQj,j+1 .

parasitic extraction. Specifically, five primary sources of deviation have been studied, namely:
charge injection on pixel voltage, mismatch between sensing capacitances, error in pixel copy,



PERFORMANCE ANALYSIS OF MIXED-SIGNAL HARDWARE FOR VIOLA-JONES TASKS 11

Figure 8. Distribution of the signals SC# in order to set five scales.

Figure 9. Layout of the elementary cell including the circuitry depicted in Fig. 4 plus additional
transistors and another photodiode for block-wise intra-frame HDR imaging.

error in squaring and error in charge redistribution. The worst-case scenario under global
process parameter variations at the different technology corners and local mismatch for each
corner is always considered. MOSFET models (HSPICE level 49 BSIM3V3.2) provided by the
manufacturer are used. Let us start by charge injection on pixel voltage. This signal-dependent
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Figure 10. Signal-dependent positive offset undergone by Vij due to charge injection after
photointegration.

deviation takes place when photointegration finishes by switching OFF the pMOS switch acting
as a transmission gate. In order to characterize it, we have simulated different photodischarge
operations ending at a number of pixel voltages along the signal range. The photodischarge is
stopped by switching from ON to OFF the pMOS transistor, recording the change undergone
by the pixel at that moment. The worst case occurs for the ‘FF’ corner, where 30 Monte Carlo
mismatch simulations lead to positive average offsets from 2.3mV for a pixel voltage of 0.5V
up to 22.1mV for a pixel voltage of 1.4V, as depicted in Fig. 10. The standard deviation is
negligible, ranging from 0.03mV for 0.5V to 0.2mV for 1.4V.

Mismatch between sensing capacitances is the main parameter of the fixed-pattern noise
that we can reliably estimate since the manufacturer does not provide information about the
mismatch and photo-response of the photodiodes employed. Ideally, the pixel value is inversely
proportional to the sensing capacitance:

Vij ∝
Iphij

Tint

C
(9)

where Iphij
is the average photocurrent generated at pixel (i, j) during the integration period

Tint and C is the value of the MOS capacitance holding Vij . Due to mismatch, we will have a
certain deviation on this capacitance that can be expressed as:

Vij ∝
IphijTint

C

1

1 + δij
(10)

In order to determine the magnitude of δij , we connected the MOS capacitor —and all its
associated parasitics— to an ideal grounded resistor of 1kΩ. This value of resistance is arbitrary.
Its only function is to provide a reference for comparison with an ideal RC circuit. The reset
voltage, 1.4V in our case, was then set as the initial condition of the resulting RC circuit and 30
Monte Carlo transient simulations were carried out at all the corners of the technology. For each
simulation, the dynamics along the signal range was compared with that of the corresponding
ideal RC circuit obtained by least square fitting. The first point we must remark is the good
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(a) (b)

Figure 11. Least square fitting of 30 Monte-Carlo simulations of the buffer operation (a) and extracted
signal-dependent error parameters (b). The ‘FNSP’ corner (worst case) is considered in both plots.

(a) (b)

Figure 12. Least square fitting of 30 Monte-Carlo simulations of the squaring operation (a) and
extracted signal-dependent error parameters (b). The ‘FF’ corner (worst case) is considered in both

plots.
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linearity of the MOS capacitors. For the worst case, the ‘SS’ corner, the average root-mean-
square error (RMSE) between the simulated and the ideal dynamics was 1.96%. In this corner,
the average capacitance was 76.662fF with a standard deviation of 0.012fF. This value could
seem very small, but it makes sense when taking into account the size of the design grid of
the process, 10nm, the gate oxide thickness and the dimensions of the capacitor. It is also
consistent with the very low fixed pattern noise —0.4% of voltage swing— experimentally
measured from a smart imager manufactured in the same technology reported in [33]. We thus
model δij as a random variable picking up values across the array with normal distribution:

δij = N(µ, σ2) = N [0, (0.012/76.662)2] (11)

A much greater deviation is associated with the pixel copy. The ideal input-output voltage
transfer of the analog buffer along the signal range is compared in Fig. 11(a) with the outcome
of 30 Monte-Carlo transient simulations performed at the ‘FNSP’ corner —worst case in terms
of RMSE for this operation. The maximum time interval required by the buffer to achieve the
pixel copy is 150ns. A suitable deviation model to accommodate this input-output transfer
function is given by:

VSij
= kVij + eoffset (12)

where we can distinguish a gain error (k) and an offset error of statistical nature (eoffset).
The gain error term can be considered a constant according to the least square fitting of
the simulation results presented in Fig. 11(a), leading to k = 0.975. The offset term can
be mathematically described by means of two signal-dependent parameters quantified in
Fig. 11(b): an average offset esavg

and a maximum offset, in absolute value, esmax
. The

parameter esavg
describes the average offset due to local mismatch variations whereas the

parameter esmax
corresponds to the absolute value of the maximum deviation caused by

mismatching. The offset term eoffset can thus be defined as:

eoffset = esavg
+ ∆eoffset (13)

that is, the offset is equal to the average offset plus a certain deviation added to this mean
value due to mismatching. Finally, to determine this deviation, we set a pessimistic interval of
variation defined by:

∆eoffset = (esmax
− |esavg

|)U(−1,1) (14)

where the use of absolute value is mandatory in order to account for negative average offsets.
This equation means that there can be a positive or negative maximum deviation on the
average offset with equal probability than any other intermediate deviation. If a Gaussian
distribution were used instead, the maximum deviations would be much less probable. This is
the reason behind making use of a uniform distribution. The final error model, according to
Eq. (12), is therefore defined by:

VSij
= 0.975Vij + esavg

+ (esmax
− |esavg

|)U(−1,1) (15)

The pixel squaring operation takes place faster than the pixel copy. Only 25ns are required
once the MOS capacitor is precharged to VDD —this precharge is realized during the pixel
copy, as illustrated in Fig. 5. The resulting voltage VSQij

can be expressed as:
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4×4-px 8×8-px 16×16-px 32×32-px 64×64-px 128×128-px∣∣∆VS1,1

∣∣ 0.57% 0.33% 0.19% 0.17% 0.16% 0.08%∣∣∆VSQ1,1

∣∣ 0.31% 0.16% 0.25% 0.18% 0.14% 0.12%

Table I. Maximum error, in terms of percentage of signal range, for the operation of charge
redistribution when dismissing charge injection and clock feedthrough.

VSQij
= VDD − k1(VSij

− k2)2 (16)

where the parameters k1 and k2 demand external calibration since they are strongly dependent
on global process variations, as explained next. In order to characterize this operation, we set
different voltages along the signal range at VSij . For each voltage, the corresponding value of
VSQij

is obtained, enabling the least square fitting of Eq. (16). For 30 Monte-Carlo mismatch
simulations at each process corner, the worst case occurs for the ‘FF’ corner, as depicted in
Fig. 12(a). The deviation parameters esqmax

and esqavg
, calculated similarly to esmax

and esavg
,

are also extracted in Fig. 12(b). The statistical deviation model of pixel squaring at this corner
can thus be built as:

VSQij
= VDD − 0.78(VSij

− 0.28)2 + esqavg

+(esqmax
− |esqavg

|)U(−1,1)
(17)

where again esqmax
and esqavg

depends on the input voltage, in this case VSij
. Note that

Eq. (17) defines the worst case in terms of local variations for particular values of k1 and k2
related to a specific corner. Unfortunately, these parameters feature a significant variability
across the technology corners: k1 varies between 0.57V−1 and 0.78V−1 whereas k2 ranges
from 0.28V to 0.41V. Thus, for calibration of different array instances, a similar procedure to
the characterization just described can be followed. The voltage Vrst can externally be swept
along the signal range while making use of the control signals RST AV and PI EN to set
different voltages at VSij

. The corresponding voltage VSQij
can thus be achieved and read out

for external fitting, leading to particular values of k1 and k2.
The last error to be analyzed is related to charge redistribution. There are three sources

of deviation for this operation: the mismatch between the different transistors involved, the
charge injection generated by the switches when they are set ON and OFF to start and
stop the redistribution and finally, the clock feedthrough associated with the switching of the
control signals. The deviation caused by mismatch is negligible. We have initialized the MOS
capacitors, both those used for computing the integral image and the ones providing the square
integral image, according to a scaled version of the Lena image for different sizes of block. The
dynamics of each RC network is then released until the steady state (99% of the expected
value) is reached. The maximum error, in terms of percentage of signal range, for the top-left
pixel after 30 Monte-Carlo simulations with typical transistor models for each size of block is
represented in Table I. These results hardly change across the rest of corners. The key point
in these simulations is that the transistors acting as switches were already ON before releasing
the dynamics and therefore their channel was already created. However, this is not realistic
since we have to make use of their gate control signals during the operation of the array,
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4×4-px 8×8-px 16×16-px 32×32-px 64×64-px 128×128-px

∆VS1,1 +3.83% +5.14% +6.17% +6.52% +6.69% +6.79%
σ 0.02% 0.03% 0.01% 0.01% 0.02% 0.02%

∆VSQ1,1
-3.77% -5.68% -6.36% -6.74% -6.97% -6.98%

σ 0.01% 0.01% 0.02% 0.02% 0.01% 0.02%

Table II. Average error along with the corresponding standard deviation for the operation of charge
redistribution at the ‘FF’ corner, taking into account now channel charge injection and clock

feedthrough.

thereby creating and destroying their channel. When considering these signals, channel charge
injection and clock feedthrough become major sources of deviation. The average error along
with the corresponding standard deviation, again expressed as percentage of signal range, after
30 Monte-Carlo simulations for the ‘FF’ corner —worst case— in these conditions is shown in
Table II†. Note that, unlike in Table I, we are not considering the absolute value of the error
in Table II. Due to the dominance of charge injection as the primary source of deviation, and
the different type of switches used —nMOS for the integral image and pMOS for the square
integral image—, the error always features a positive offset for VS1,1

and a negative offset for
VSQ1,1

. We will therefore model this deviation as an offset depending on block size, added
to the final value of the integral and square integral sums. The numerical values presented
in Table II are taken as reference for any other possible images being processed. It must be
noticed that charge redistribution can be a limiting factor when it comes to pushing the frame
rate up. The reason is the time interval required to reach the steady state when the whole
array is involved in the redistribution. While for small blocks this interval does not go beyond
few nanoseconds, a simulation of the complete QVGA RC network leads to dynamics around
3µs for the nMOS lattice and 5µs for the pMOS lattice. This is why the ratio W/L of the
switches is as high as possible, compromising unfortunately area and accuracy.

†The error presents dependency with the block size due to the increasing ratio ‘number of switches per cell
capacitor’ as blocks grow. For small blocks, a significant number of cells with respect to the total amount
composing the block will be located at the edges. For example, all cells in a 2×2-px block fall at edges,
featuring connectivity to only one neighbor. This means that there is only one switch per capacitor causing
charge injection. The error is smaller in this case than when more switches per capacitor are involved in the
operation. Indeed, the larger the block size is, the more full-connected cells —that is, cells not located at edges—
there will be within the block. This progressively increases the ratio above defined, what in turn increases the
error originated by charge injection. Fortunately, this increase rapidly slows down, as shown in Table II. The
results presented in this table make total sense in numerical terms since, in the extreme case of an infinite
network, there would be two switches per cell capacitor —keep in mind that an infinite 4-connected 2-D lattice
can be seen as composed of cells providing connection to the east and south, and therefore receiving connection
from the western and northern neighbors. This would mean to double, in principle, the error for small blocks
where only one switch per capacitor is accounted. The numerical values extracted from the simulations follow
such tendency.
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5. HIGH-LEVEL IMPLICATIONS OF EARLY VISION HARDWARE PERFORMANCE

Once the mixed-signal early processing core is characterized, the next step is to evaluate how
its moderate computational accuracy affects high-level vision capabilities. This will allow to
confirm the validity of our approach. To this end, we make use of the Viola-Jones face detection
baseline algorithm provided by the release 2.4.0 of the OpenCV library. As a test bench, we
apply the 450 face images composing the Caltech Frontal Face Dataset [34]. These images
are scaled down to QVGA resolution to meet our array’s specifications. The algorithm is first
run without modification in order to obtain the ideal outcome. Each scale is forced to be
attained by downsampling the image dimensions of the previous one by a factor 2, just like
the proposed processing array operates. Then, the deviation models described in Section 4
are inserted into the Viola-Jones processing flow, as shown in Fig. 13. Note that we comment
the function cvIntegral available in OpenCV for the computation of integral and square
integral images. This function is substituted by two ‘for’ loops. The first one creates the
array images encoded by VSij and VSQij according to Fig 10 and Eqs. (11), (15) and (17).
The second one carries out the computation of the integral images, incorporating the error
associated to charge redistribution. The resulting integral images’ pixels are stored in double

variables representing analog voltages. In the final step provided by the functions scale sum

and scale sq, they are truncated to an integer within the range [0,255] in order to emulate
the A-to-D conversion that would deliver the corresponding digital output flow. The complete
source code written for the emulation of the array operation together with the test bench, ideal
and array outcomes and a description of the different files involved can be found at www.imse-
cnm.csic.es/mondego/IJCTA/. The results are summarized in Table III. The ideal outcome
(first row) features a hit rate of 81.5%, detecting 367 faces out of 450. No false positives are
triggered. Regarding the emulated array outcome (second row), we realized 10 executions of
the algorithm in order to take into account the statistical nature of the deviations introduced.
The figures presented in Table III correspond to the mean and standard deviation for each
parameter. Surprisingly enough [35], the hit rate is slightly higher than for the ideal case,
86.7%, though it is achieved at the cost of some false positives. Finally, in order to account
for other possible deviations not considered in our models, we have added white Gaussian

Faces detected # False positives # Hit rate (%)
(out of 450)

Ideal outcome 367 0 81.5

Mixed-signal array 390.2 4.3 86.7
σ 4.1 1.2 1.2

Mixed-signal array 326.9 1.1 72.7
(additional noise)

σ 4.9 0.7 1.1

Table III. Comparison between the ideal outcome (first row) and 10 executions of the algorithm
including physical deviation models (second row) and an additional source of white Gaussian noise

(third row).
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noise directly on the pixel value, that is, on Vij . This noise features a mean value of 0V and a
standard deviation of 5% of signal range (that is, 45mV). It impacts the operation of pixel copy
across the array in an uncorrelated way, affecting therefore squaring and charge redistribution
too. The third row in Table III shows the performance of the algorithm when this preemptive
deviation is introduced into the processing flow. Despite having considered the worst-case for
each primitive and the additional noise, the algorithm still performs relatively well, not far from
the ideal case. We can therefore conclude, according to the proposed hardware-software design
loop, that there is still margin for a more aggressive design of the mixed-signal processing
hardware in terms of area and power consumption at the cost of some extra inaccuracy.
Conversely, some parameters of the algorithm could be adjusted for better exploitation of
the performance expected from the early vision hardware.

Finally, to conclude this section, we must highlight that the array reaches the performance
just described while featuring one of the main assets of the focal-plane sensing-processing
approach: power efficiency. Bear in mind that we are targeting typical video frame rates, that
is, around 30fps. At this rate, the switching power associated to the peripheral digital circuitry,
measured by a magnitude of µW/MHz, will hardly impact energy consumption. Regarding
the mixed-signal core, squaring and charge redistribution do not require extra energy once the
initial voltages at the corresponding capacitors have been set. Thus, three major sources of
power consumption are left: reset of the photodiode and sensing capacitance, precharge of the
capacitance holding VSQij

and pixel copy operation. We will be considering a fixed frame rate
of 30fps for the figures provided next. The reset of the photodiode is needed only once per
frame. According to the simulations, this operation demands 16.4pW per cell, 1.26µW for the
whole array. Regarding precharge for subsequent pixel squaring, a single operation requires
only 0.18pJ. However, it is performed at each cell of the array for each pixel of the square
integral image at each scale. Adding up all these operations for five scales, the resulting power
consumption is 42.4mW. Likewise, a single copy of pixel demands only 0.47pJ whereas all the
operations required across five scales amount to 111.36mW. A total power consumption always
less than 200mW is therefore expected for the mixed-signal processing array. As a reference, we
can scale this figure in order to compare it to the power consumption reported in [27]: 240mW
for a smart camera handling 30×30-px images at 80fps. Under these conditions of image size
and frame rate, the power consumption of our array boils down to less than 100µW. Of course
this comparison is not fair enough since the camera described in [27] constitutes a general-
purpose digital system carrying out the complete Viola-Jones processing flow. However, it still
permits to give an idea of the energy efficiency reached by the approach presented. Starting
at 100µW for imaging and low-level processing, it seems rather feasible to address the design
of a vision system featuring a power consumption significantly less than 240mW.

6. CONCLUSIONS

The design of smart image sensors for artificial vision application frameworks must be driven
by the vision algorithm to be implemented. A comprehensive analysis of the characteristics
of such algorithm will permit to convey to the sensing-processing stage just those operations
where the smart sensor can really become efficient. In this paper, we demonstrate the physical
and functional feasibility of a QVGA mixed-signal processing array tailored for the Viola-
Jones processing framework. We study the ultimate consequences of physical non-idealities on
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cvResize(�img,�&img1,�CV_INTER_LINEAR�);
//�cvIntegral(�&img1,�&sum1,�&sqsum1,�_tilted�);

//�///////////////////////////////////////////////////////////////////////////////
//�Code�introduced�to�emulate�the�performance�expected�from�the�mixed�signal�array

srand(time(NULL));�//�initialize�random�number�generator

//�We�first�create�the�images�from�which�the�integral�images�are�going�to�be�computed
for�(rows�=�0;�rows�<�img1.rows;�rows++)
{

for�(cols�=�0;cols�<�img1.cols;�cols++)
{

orig_pixel�=�*CV_MAT_ELEM_PTR_FAST(img1,rows,cols,CV_ELEM_SIZE(img1.type));�//�digitized�ideal�pixel�value
//�conversion�to�array�signal�range,�mismatch�between�sensing�capacitances�and�charge�injection�error
array_pixel�=�cap_mismatch_ch_injection(orig_pixel);
//�noise�added�to�the�"captured"�image�in�order�to�account�for�other�possible�sources�or�error
array_pixel�+=�(MAX_PX���MIN_PX)*randn(0,STD_ADD)/100;
array_copy�=�buffer(array_pixel);�//�error�in�pixel�copy
array_sq�=�squarer(array_copy);�//�error�in�squaring
*(double�*)CV_MAT_ELEM_PTR_FAST(array_image1,rows,cols,sizeof(double))�=�array_copy;
*(double�*)CV_MAT_ELEM_PTR_FAST(array_sqimage1,rows,cols,sizeof(double))�=�array_sq;

}
}

//�Next�the�integral�images�are�computed
for�(rows�=�0;�rows�<�img1.rows;�rows++)
{

for�(cols�=�0;�cols�<�img1.cols;�cols++)
{

array_sum�=�0;
array_sqsum�=�0;
for�(i�=�rows;�i�>=�0;�i��)
{

for�(j�=�cols;�j�>=�0;�j��)
{

array_copy�=�*(double�*)CV_MAT_ELEM_PTR_FAST(array_image1,i,j,CV_ELEM_SIZE(array_image1.type));
array_sq�=�*(double�*)CV_MAT_ELEM_PTR_FAST(array_sqimage1,i,j,CV_ELEM_SIZE(array_sqimage1.type));
array_sum�+=�array_copy;�//�integral�sum
array_sqsum�+=�array_sq;�//�square�integral�sum

}
}
//�We�accommodate�the�signal�range�back�to�digital�values.�The�offset�due�to�charge�redistribution�is�also�added�here
*(sumtype*)CV_MAT_ELEM_PTR_FAST(sum1,rows+1,cols+1,sizeof(sumtype))�=�scale_sum(array_sum,rows+1,cols+1,sz.height,sz.width);
*(sqsumtype*)CV_MAT_ELEM_PTR_FAST(sqsum1,rows+1,cols+1,sizeof(sqsumtype))�=�scale_sq(array_sqsum,rows+1,cols+1,sz.height,sz.width);
if�(rows�==�0�||�cols�==�0)
{

���� *(sumtype*)CV_MAT_ELEM_PTR_FAST(sum1,rows,cols,sizeof(sumtype))�=�0;
���� *(sqsumtype*)CV_MAT_ELEM_PTR_FAST(sqsum1,rows,cols,sizeof(sqsumtype))�=�0;

}
}

}

*(sumtype*)CV_MAT_ELEM_PTR_FAST(sum1,img1.rows,0,sizeof(sumtype))�=�0;
*(sumtype*)CV_MAT_ELEM_PTR_FAST(sum1,0,img1.cols,sizeof(sumtype))�=�0;
*(sqsumtype*)CV_MAT_ELEM_PTR_FAST(sqsum1,img1.rows,0,sizeof(sqsumtype))�=�0;
*(sqsumtype*)CV_MAT_ELEM_PTR_FAST(sqsum1,0,img1.cols,sizeof(sqsumtype))�=�0;

//�/////////////////////////////////////////////////////////////////

int�ystep�=�factor�>�2�?�1�:�2;

Figure 13. Source code emulating the array operation inserted into the Viola-Jones processing flow
provided by the OpenCV libray.

the high-level interpretation of the scene targeted by this framework. The presented results
definitely prove the validity of our approach and highlight its major asset: energy efficiency.
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