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SUMMARY

In this paper, a novel decentralized algorithm is proposed to minimize power flow loss in a large-scale future
grid connecting with many real-time-distributed generation systems by which power flows bi-directionally.
The DC-power loss at each link is defined as the product of resistance and the square of current that can be
considered as a quadratic flow cost. We employ the notion of tie-sets that reduces the complexity of the
power flow loss problem by dividing a power network into a set of loops that forms a linear vector space
on which the power loss problem can be formulated as a convex optimization problem. As finding a solution
in each tie-set enables global optimization, we realize parallel computing within a system of independent tie-
sets by integrating autonomous agents. Simulation results demonstrate the minimization of the power loss on
every link by iteratively optimized power flows and show the superiority against the traditional centralized
optimization scheme. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Future power networks will likely support bi-directional flow of electricity and include power
production from multiple, disparate, and uncontrollable sources because of a high penetration of
distributed renewable energy resources [1, 2]. Effective use of renewable resources can be realized by
grid topology, controls, and optimization that can handle the dispersed and uncontrollable sources
while minimizing the transmission and distribution losses, which offsets the dependence on fossil
fuels. In addition, local autonomy is required because of communication times that are longer than
those required to communicate grid perturbations and actuate hardware to prevent widespread
outages. Local authority regimes also contain disparate policy and market frameworks in which the
optimization and control infrastructure must operate. For these reasons, development of an
autonomous distributed architecture that can minimize the power flow losses when distributing
energy resources to consumers is required in a future large-scale power grid connecting with many
real-time-distributed generation systems.

The topology of today’s grids must be modified to integrate and manage distributed energy resources
(DERs) on the grid. Current grid topology allows only one-way power flow, typically with a ‘tree’
structure in the distribution system. However, the tree topology will not hold anymore when DERs
will be integrated into the grid because the topology is the worst not only in power loss but also in
*Correspondence to: Kiyoshi Nakayama, Department of Computer Science, University of California, Irvine, CA 92697-
3435, USA.
†E-mail: kiyoshi.nakayama@ieee.org
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1210 K. NAKAYAMA ET AL.
communication delay as the number of hops between nodes grows in the order of the size of the
network [3, 4]. While an interconnected or meshed network would provide higher reliability and
flexibility, such meshed power networks are only found in a few urban areas. Nonetheless,
attention has been focused on mesh topologies for development of new grid infrastructure
because of the increased flexibility, efficiency, and resiliency they provide and the familiarity,
good understanding, and technology associated with the analogous information and
communications network of the Internet [5]. The benefit of using meshed networks also lies in
preventing the grid from being isolated with each other in the event of a failure, natural disaster,
or required maintenance. Besides those factors, it has also been studied how the minimum power
loss in a power system is related to its network topology [6]. In the later part of simulation, we
assessed how much power loss we can reduce by outputting random resistance and current value
on each link and comparing the result using a mesh topology with the one using a tree topology
to motivate the use and design of mesh topological grids.

As in Kirchhoff’s laws, a set of loops called ‘tie-sets’ has been used in circuits and power systems
demonstrating the effectiveness in controlling power flows and designing reliable systems even in a
complicated non-planar graph [7, 8]. Although it is hard to give universal values for power flow loss
(path loss) because many factors influence it (overhead or underground cables, type of cables, loading,
weather, etc.), we focus on the nature of power loss that is proportionate to the product of the square of
current and resistance on a link (the distance and thickness) [9–11]. As the power loss at a link has a
quadratic flow cost, the problem can be formulated as a convex optimization problem. Our
decentralized algorithm utilizes the notion of tie-sets that reduces the complexity of the power flow loss
problem by dividing a power network into a set of loops that is considered a linear vector space where
the power loss function can be simply formulated and solved. As finding a solution at each tie-set
enables us to reach global optimization [12], we realize parallel computing based on tie-sets by
integrating autonomous agents; the power loss on every link can be minimized with iterative
optimization within a system of independent tie-sets. After minimizing the power loss by calculating
optimal link currents within a tie-set, the minimized lost power is being injected at destination nodes.
Hence, minimizing total power loss on lines also minimizes the additional power injection needed for
the entire network. We show through simulation results that the proposed method realizes the
minimization of the power flow loss on every link by optimized power flows and is superior to the
traditional centralized optimization scheme.
2. RELATED WORK

Many efforts have been made in the domain of power loss minimization (PLM) as in [13] even
before the development of communications systems that are being integrated into the power
systems domain now. Power flow loss minimization for current power systems is discussed in [10,
11]. Stevenson [11] basically presents voltage control methods to improve the voltage level of a
power system whilst minimizing losses. As in the work, the optimal power flow (OPF) problem
classically is nonlinear and non-convex aiming to minimize the power generation costs and
transmission loss in a power network. It has been subject to physical constraints based on
Kirchhoff’s and Ohm’s law [13–15].

In the past decade, devising efficient algorithms with guaranteed performance has been much
attention for the OPF problem. For example, nonlinear interior-point algorithms for an equivalent
current injection model of the problem have recently proposed in [16] and [17].

A recent work of Jiang et al. [18] has improved implementation of the automatic differentiation
technique for the OPF problem. To convexify the OPF problem, Jabr [19] justifies that the load flow
problem of a radial distribution system can be modeled as a convex optimization problem in the
form of a conic program. To overcome the nonlinearity, the majority of these works focus on
linearization and approximation schemes to simplify the OPF. Christie et al. [20], for example,
simplify the OPF problem by the small angle approximation. Some other relaxation methods can be
found in [21, 22]. However, because of the presence of arctangent equality constraints, those results
struggle to hold for a meshed network [23].
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



A PARALLEL ALGORITHM FOR DC-POWER FLOW LOSS MINIMIZATION 1211
A recent work by Lavaei et al. also proves that a closely related problem of finding an optimal
operating point of a radiating antenna circuit is an nondeterministic polynomial time (NP)-complete
problem, by reducing the number-partitioning problem to the antenna problem [24]. In [25], the DC
OPF problem that minimizes the power loss in an electrical network is proposed by optimizing the
voltage and power delivered at the network nodes. Tan et al. [25] study the direct current special
case by leveraging recent developments on the zero duality gap of OPF [26] and presents a
decentralized algorithm based on updating primal–dual variables. In [25, 26], the OPF problems are
non-convex constrained quadratic programming problems. When zero duality gap holds between
OPF and its dual, the original OPF can be achieved by solving the dual, which is convex.

Different from prior work on decentralized algorithms for OPF, for example, [25], which mainly focus
on updating nodal variables like voltage and dual variables attached to nodes, in this paper, we design a
decentralized algorithm based on updating the loop variables. The problem we are solving here, by
making certain assumptions with our model, is a convex quadratic programming problem with linear
constraints because M of (8) in Section 3.3 is a positive semi-definite matrix. Lavaei and Low [6] imply
that a practical PLM problem is likely to be solvable using a convex algorithm. Generally, our method
is efficient and costs less computational time given the sparse structure of power grids; that is, the
number of fundamental tie-sets is in the same order as the number of nodes. By focusing on the notion
of tie-sets, we can effectively divide the grid and form a μ-dimensional linear vector space.‡ Our
objective is to find an optimal flow that minimizes the power flow line losses in a meshed power
network with distributed computations. We formulate the PLM problem on the basis of the currents,
which has been a common formulation in circuits and systems and also is applicable to the future
power systems. It is elegantly formulated with tie-set currents defined in Section 3.3, which have
played significant role in circuits and systems [8].
3. PROBLEM FORMULATION

3.1. Power loss minimization problem

We consider a power network in which the line losses and loads are all resistive. Consequently,
all voltages and currents are in phase and are represented by their root-mean-square values only.
The network and its operating conditions are specified by a group S= (V,E, I,C,R), where
V= (vk, k=1,…, n) is the set of vertices, E= (ek, k=1,…,m) is the set of links (lines),
I= (ik, k=1,…,m) is the vector of link currents, C= (ck, k=1,…,m) is the vector of link current
capacities, and R= (rk, k=1,…,m) is the vector of link resistances. Suppose the links are directed,
with arbitrarily defined directions. When the current ik flows along the direction of link ek, then ik> 0;
otherwise, ik< 0.

The power loss p(ik) on a link ek is

p ikð Þ ¼ rkik
2 �ck ≤ ik ≤ ckð Þ; (1)

and the power loss PG of an entire graph is given by the sum of the power losses on all the links:

PG ¼
X
ek∈E

p ikð Þ ¼ ITRdI; (2)

where R d = diag(r1, r2,…, rm) is a diagonal matrix whose elements are resistances rk. The PLM
problem can be considered as an optimization problem over the current vector I. Note that power
systems are usually controlled by changing the power injections at the vertices instead of directly
controlling the currents. However, to convey the idea of PLM, we select the link currents as the
variable. In implementation, currents can be controlled via, for example, controlling the voltages
at the vertices.
‡μ is the nullity of a graph as defined in Section 3.2.1.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



1212 K. NAKAYAMA ET AL.
We assume constant current injections J ∈ℝ n at the vertices vk, k = 1,…, n. The link currents I
should satisfy the current injection constraints imposed by J. Let A be the n�m incidence matrix,
with Akj= 1 if vertex vk is the source of link ej, �1 if vertex vk is the sink of link ej, and 0 otherwise.
Then, we have

AI ¼ J: (3)

By [27], if the graph is a mesh (not a tree), given J, there is a subspace of solutions I to (3). Our
objective is to find the solution I that minimizes the power loss PG in (2) as follows.

Given C and R, the PLM problem is

min
I

PG ¼ ITR dI (4)

s: t: � C ≤ I ≤ C: (5)

To develop a decentralized algorithm to solve this problem using the tie-set theory, we convert PG as
a function of tie-set currents as shown in the following section.

3.2. Tie-set graph theory

Tie-set graph theory is proposed in [12,28] and used in many applications such as [29, 30]; we provide
its brief review.

3.2.1. Fundamental system of tie-sets. For a given graph G= (V,E) with a set of vertices
V= {v1, v2,…, vn} and a set of edges E= {e1, e2,…, em}, let Li ¼ ei1; e

i
2;…

� �
be a set of all the edges

that constitutes a loop in G. The set of edges Li is called a tie-set [8]. Let T and T respectively be a
spanning tree and a co-tree of G, where T ¼ E � T . μ ¼ μ Gð Þ ¼ T

�� �� is called the nullity of a graph.

As T on a graph G= (V,E) is a spanning tree, T does not include any tie-set. In other words, for l∈T ,
T∪ {l} includes one tie-set. Focusing on a subgraph GT= (V,T) of G and an edge l ¼ a; bð Þ∈T , there
exists only one elementary path PT (b, a)⊆T whose origin is b and terminal is a in GT. Then, a
fundamental tie-set that consists of the path PT and the edge l= (a, b) is uniquely determined as

L lð Þ ¼ lf g∪PT b; að Þ: (6)

It is known that μ fundamental tie-sets exist in G, and they are called a fundamental system of tie-
sets. If G is bi-connected, a fundamental system of tie-sets LB ¼ L1; ; L2;…; ; Lμ

� �
guarantees that

it covers all the vertices and edges of G as shown in Figure 1. Even though a given graph is non-
planar, a fundamental system of tie-sets creates a set of μ-independent loops as seen in Figure 6.

3.2.2. Independency of tie-sets. Any tie-set in a fundamental system of tie-sets is independent of each
other. That is, any tie-set cannot be obtained by calculus ⊕§ among other tie-sets. As l∈T is only
included in a fundamental tie-set L(l) of a fundamental system of tie-sets LB, a tie-set that includes l
cannot be created even if the calculus ⊕ is applied to other fundamental tie-sets than L (l ). For any
L lið Þ; L lj

� �� �
⊆LB; li≠lj

� �
, if L(li) ∩ L(lj)≠∅, a tie-set L′(li) replaced by L′(li)← L(li)⊕ L (lj) is also

independent of other fundamental tie-sets. This transformation of a tie-set is carried out by the
calculus ⊕ and called L-transformation.

There are systems of independent tie-sets that do not correspond to any fundamental systems of tie-
sets constructed by spanning trees of a graph. In Figure 2, the tie-sets {L1, L2, L3,L4,L5, L6} of the
network on the left side forms a fundamental system of tie-sets as it can be created a spanning tree
expressed as thick links. Then, in Figure 2, L-transformation is conducted as follows:

L′3←L2⊕L3; L′6←L5⊕L6:

As L′3 and L′6 are created by L-transformation, they are also independent tie-sets. However, we
cannot find any spanning tree that forms the system of independent tie-sets L1; L2; L′3; L4; L5; L

′
6

� �
after the L-transformation in Figure 2.
§⊕ for a set A and a set B is defined as follows:A⊕B = (A�B) ∪ (B�A) = (A ∪B)� (A ∩B).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



Figure 1. Examples of a fundamental system of tie-sets. Thick and thin lines are links of a tree T and a co-
tree T, respectively.

Figure 2. An example of a system of independent tie-sets that does not correspond to any fundamental
system of tie-sets. Thick and thin lines are links of a tree T and a co-tree T, respectively.

A PARALLEL ALGORITHM FOR DC-POWER FLOW LOSS MINIMIZATION 1213
Let L′ be the transformed system of tie-sets from LB by replacing Li by the L-transformation
L′i←Li⊕Lj . Then, the following holds true between fundamental systems of tie-sets LBf g and
systems of independent tie-sets L′.

LBf g⊆ L′f g (7)

Therefore, by repeatedly conducting L-transformations, a system of independent tie-sets suitable for
a target network management is obtained.

3.3. Problem formulation with tie-set currents

Let x = (x1, x2,…, xμ) ∈ℝμ denote the vector of tie-set currents that circulate along the tie-sets LB ¼
L1;…; ; Lμ

� �
. Note that the tie-set currents have arbitrarily defined directions where xλ≥ 0 if it is

flowing in the same direction as the direction defined for Lλ, and xλ< 0 otherwise. Let
B= [bkλ] ∈ℝm�μ be the tie-set matrix of the graph (V,E) with respect to LB, where

bkλ ¼
0 ek ∉Lλ
1 ek ∈Lλ and in the same direction with xλ

�1 ek ∈Lλ and in the opposite direction with xλ:

8><
>:
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



1214 K. NAKAYAMA ET AL.
For example, B= [bkλ] in Figure 1(a) is

B ¼

1 0

1 0

1 �1

0 1

0 �1

2
6666664

3
7777775
:

As stated earlier, in a mesh network, there are a subspace of solutions to (3) for a given J. Select an
arbitrary solution of them, denoted by ξ, which is also called an initial current vector. Then, the current
vector I can be expressed in terms of the tie-set currents x and the initial currents ξ as

I ¼ Bxþ ξ;

because one can easily show that AB=0. Then, PG in (2) can be transformed into a function of tie-set
currents:

PG xð Þ ¼ Bxþ ξð ÞTRd Bxþ ξð Þ
¼ xTBTRdBxT þ 2ξTRdBxþ ξTRdξ

¼ xTMxþ 2Nxþ e;

where M :=BTRdB, N := ξTRdB, and e := ξTRdξ.
Given B,C,R, and ξ, the PLM problem, with respect to tie-set currents, is

min
x

PG xð Þ ¼ xMxT þ 2xN þ e (8)

s: t: � C ≤ Bxþ ξ ≤C: (9)

As PG(x) is differentiable on ℝ
μ, the necessary and sufficient condition for x* ∈ℝμ to be the optimal

point of the PLM problem in (8) and (9) is that

∇PG x�ð Þ ¼ ∂PG x�ð Þ
∂x1

;…;
∂PG x�ð Þ
∂xμ

� �
¼ 0: (10)

Now, we define a power loss function Pλ(x) with respect to a tie-set Lλ as

Pλ xð Þ ¼
X
ek∈Lλ

p ikð Þ: (11)

For each element of the vector, the following equation holds:

∂PG x�ð Þ
∂xλ

¼
X
ek∈E

∂p i�k
� �
∂xλ

¼
X
ek∈Lλ

∂p i�k
� �
∂xλ

¼ ∂Pλ x�ð Þ
∂xλ

¼ 0: (12)

According to (10), each power loss function Pλ(x) with respect to a tie-set Lλ is minimum at x = x*,
that is,

∂P0 x�ð Þ
∂x0

;
∂P1 x�ð Þ
∂x1

;…;
∂Pμ x�ð Þ
∂xμ

� �
¼ 0: (13)

Equation (13) represents that if each power loss function Pλ(x) with respect to Lλ is minimized,
the overall power loss PG becomes minimum as well. Therefore, local optimization with respect to
μ-independent tie-sets must lead to the globally optimal solution.
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



A PARALLEL ALGORITHM FOR DC-POWER FLOW LOSS MINIMIZATION 1215
4. DISTRIBUTED CONTROL FOR POWER LOSS MINIMIZATION PROBLEM

4.1. Tie-set-based communications

Each node vi has information of fundamental tie-sets to which vi belongs as state information, which we
call tie-set information. For example, node c in Figure 6 has {L1,L2} as tie-set information. There is a
leader node vλl in each tie-set Lλ∈LB, and a leader node has adjacent tie-sets La

λ ¼ Lλ1; L
λ
2;…

� �
defined

as follows: Let V(Lλ) be a set of all the vertices included in a tie-set Lλ. If V(Lλ)∩V(Lj)≠∅, Lj is
an adjacent tie-set of Lλ. For example, adjacent tie-sets of L1 in Figure 6 is La

1 ¼ L2f g so that L1
constantly communicates with L2. The mechanism of tie-set-based communication is introduced in [31]
together with distributed algorithms based on tie-sets.

4.2. Tie-set-based autonomous distributed control model

To describe the procedure of tie-set based autonomous distributed control (TADiC), we use the notations
and definitions of Table I. TADiC is conducted in a leader node in each tie-set asynchronously. A tie-set
agent (TA) constantly navigates a tie-set Lλ to bring state information of Lλ to its leader node.
TA includes a measurement vector (MV) yλ(t) that has the value of initial flows on edges in Lλ at time
t. We define tie-set evaluation function (TEF) denoted as Φ(Lλ) to decide the process priority for
overlapping resources shared by adjacent tie-sets. Here, we consider

Φ Lλð Þ ¼ d

dxλ
pλ xλð Þ

����
���� (14)

as TEF where pλ(xλ) is defined in (21) in Section 4.3. Only when the process priority cannot be
determined by the TEF in (14), we use Φ(Lλ) =Random. TEF Φ(Lλ) is calculated on the basis of yλ(t)
obtained by TA. Tie-set flags (TFs) denoted as ζ (Lλ) is used to distinguish tie-sets that are in process
from tie-sets that are standby. >When ζ (Lλ) = 1, Lλ is in process; otherwise, if ζ (Lλ) = 0, Lλ is standby.
The process priority is decided using tie-set evaluation function message (TEFM) that is sent to
adjacent tie-sets La

λ ¼ Lλ1; L
λ
2;…

� �
where the value of TEF Φ(Lλ) is written.

The procedure of TADiC is described as follows:

1. Initialize: In Initialize, TEF of a tie-set Lλ is set as Φ(Lλ) = 0. TF of Lλ is also set as ζ (Lλ) = 0.
Then, Lλ calls Send.

2. Send: In Send, the value of TEF Φ(Lλ) is calculated on the basis of the current MV yλ(t) provided
by TA with the value of Lλ’s current flows ξλ defined in (18). After calculating Φ(Lλ), Lλ writes its
TEF value into TEFM. Then, Lλ sends the TEFM to all the adjacent tie-sets La

λ .
3. Receive1: Receive1 is called when Lλ receives a TEFM after Send. In case that Send is not

completed, TEFM is temporarily stored in the leader of Lλ. Until Lλ receives TEFMs from all
the adjacent tie-sets La

λ , Lλ waits for another TEFM. Then, Lλ calls Compare.
4. Compare: After receiving all the TEFMs form La

λ , Lλ compares its value of Φ(Lλ) with the value
of TEFs from adjacent tie-sets. If the value of Φ(Lλ) is the largest among those of all the adjacent
Table I. Notations and definitions for TADiC.

La
λ Adjacent tie-sets La

λ ¼ Lj
� �

. If V(Lλ) ∩V(Lj)≠∅, Lj is an adjacent tie-set of Lλ.
MV yλ(t) Measurement vector. MV yλ(t) contains various information of a node vi ∈V(Lλ)

at time t such as loads and renewables.
TA Tie-set agent. An autonomous agent that constantly navigates a tie-set to bring the

current MV yλ(t) with state info of Lλ to its leader node.
TEF Φ(Lλ) Tie-set evaluation function. A function that evaluates a tie-set based upon the

current MV yλ(t) with certain predefined criteria.
TEFM Tie-set evaluation function message. A message used to exchange the value of TEF

Φ(Lλ) with adjacent tie-sets La
λ .

TF ζ (Lλ) Tie-set flag. When ζ (Lλ) = 0, a tie-set Lλ is standby; otherwise Lλ is in process (ζ (Lλ) = 1).
TFS Tie-set flag signal. A signal to notify the state of TF ζ (Lλ).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
DOI: 10.1002/cta



1216 K. NAKAYAMA ET AL.
tie-sets, Lλ sets its TF as ζ (Lλ) = 1; otherwise, ζ (Lλ) = 0. If the value ofΦ(Lλ) is the same as Φ(Lj), Lλ
uses another TEF Φ(Lλ) to decide the process priority such as Φ(Lλ) =Random. Then, Lλ calls
Optimize.

5. Optimize: If ζ (Lλ) = 1, Lλ conducts decentralized algorithm for power loss minimization
(DAPLM) described in Algorithm 26. DAPLM is followed by setting its TF as ζ (Lλ) = 0. Then,
Lλ calls Notify.

6. Notify: In Notify, Lλ sends a tie-set flag signal (TFS) to each adjacent tie-set Lj∈La
λ to notify that

ζ (Lλ) = 0.
7. Receive2: Receive2 is called when Lλ receives TFS after Notify. In case that Notify is not

completed, TFS is temporarily stored in the leader of Lλ. Until Lλ receives TFS from all the
adjacent tie-sets La

λ , Lλ waits for another TFS. Then, Lλ calls Confirm.
8. Confirm: After receiving all the TFS form La

λ , Lλ confirms that each TF of Lj∈La
λ is ζ (Lj) = 0.

Then, Lλ calls StandBy.
9. StandBy: Let Δt be a communication interval among adjacent tie-sets. In StandBy, Lλ stands by

for Δt to decide the speed of optimization. Then, Lλ calls Send again so that TADiC is iterated.

The flowchart of TADiC is described in Figure 3.
In Send and Receive1 after Initialize, a leader node for a tie-set Lλ sends and receives TEFMs to

decide whether it should be the one to recompute its current flows based on the magnitude of the
TEF (the value of derivative of power loss in a tie-set) with respect to Lλ and the TEFs for all
adjacent tie-sets La

λ . To determine whether the magnitude of the TEF for Lλ is the maximum among
all such tie-sets, the leader node for Lλ must receive the TEFM from the leader nodes of all adjacent
tie-sets. According to the TADiC, failure to receive the TEFM from one or more leader nodes of
adjacent tie-sets means that the leader node for Lλ simply stops, waits, and never again recomputes
the current flows for Lλ. To make the TADiC sufficiently robust to recover from communications
failures, we have a mechanism to cope with this type of failure. A leader node for Lλ polls a leader
for an adjacent tie-set, if it has not received the TEFM from the adjacent leader node within a given
amount of time and if no response is elicited from the poll, then it decides to proceed without the
TEF information about that adjacent tie-set for this round.

In Compare, a leader node for tie-set Lλ determines that the magnitude of its TEF is the maximum
among adjacent tie-sets to Optimize power flows. However, one or more adjacent tie-sets also might
share the same the TEF values. According to the TADiC, the leader node for Lλ uses random choice to
decide whether it should recompute the current flows for Lλ. The leader nodes for the adjacent tie-sets
sharing the same TEF values for their tie-sets also need to determine whether they should recompute
Figure 3. Tie-set based autonomous distributed control.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:1209–1225
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the current flows for their tie-sets. If the leader nodes of the tie-sets with identical TEF values do not make
a consistent decision on whether to recompute their respective currents, then it is possible that either leader
nodes for some or all of these tie-sets recompute their currents at the same time or that none of the leader
nodes for these tie-sets recomputes its currents. To specify a resolution technique that results in a
consistent decision among tie-sets concerning computation of current flows in this case, we incorporate
the algorithm to assign unique identifiers to leader nodes and to use them in resolving tie-sets in TEF
values among adjacent tie-sets. This results in a consistent resolution of such tie-sets among leader nodes.

In Notify and Receive2, to proceed to the StandBy state via Confirm, the leader node for a tie-set Lλ
must receive from the leader nodes of all adjacent tie-sets the TFS (flag value) indicating that they are
ready to continue. If the leader node for Lλ fails to receive flags from the leader nodes of one or more
adjacent tie-sets, it exploits the polling method that is the same mechanism used in Send and Receive1.

4.3. Decentralized algorithm for power loss minimization

Decentralized algorithm for PLM (DAPLM) is described in Algorithm 26 and called by TADiC in
Figure 3.

Let γ be the number of edges in a tie-set Lλ= {e1, e2,…, eγ} where γ = |Lλ|. Then, we define the
following:

Bλ ¼ bλ1; bλ2…; bλγ
� �

; (15)

Iλ ¼ i1; i2…; iγ
� �

; (16)

Rλ ¼ r1; r2…; rγ
� �

; (17)

ξλ ¼ ξ1; ξ2…; ξγ
� �

: (18)

With respect to a tie-set flow xλ of Lλ, the electric current vector Iλ of Lλ is defined as follows:

Iλ ¼ xλBλ þ ξλ (19)

Let pλ(xλ) be a tie-set power loss (TPL) function of a tie-set Lλ as

pλ xλð Þ ¼ ITλ R
d
λ Iλ (20)

where Rd
λ ¼ diag r1; ; r2;…; ; rγ

� �
is a diagonal matrix whose elements are Rλ= (r1, r2,…, rγ). On the

basis of definitions (15–20), the TPL function pλ(xλ) is

pλ xλð Þ ¼
X
ek∈Lλ

rk bλkxλ þ ξkð Þ2: (21)

In STEP 0, DAPLM initializes the value of a current tie-set flow xλ of Lλ as 0. The information of
current edge flows ξλ on Lλ is provided by MV yλ(t) on TA.

In STEP 1, DAPLM calculates the optimal tie-set flow xλ to satisfy

d

dxλ
pλ xλð Þ ¼ d

dxλ

X
ek∈Lλ

rk bλkxλ þ ξkð Þ2

¼
X
ek∈Lλ

d

dxλ
rk bλkxλ þ ξkð Þ2

¼ 0

(22)

that is,

xλ ¼ �
X

ek∈Lλ
rkbλkξkX

ek∈Lλ
rk

(23)

because b2λk ¼ 1.
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In STEP 2, each edge flow ik ∈ Iλ is updated to bλkxλ+ ξk where edge flows on Lλ are optimized to
minimize the power loss in Lλ.

An example of DAPLM is shown in Figure 4. In the tie-set Lλ= {e1(b, a), e2(a, c), e3(c, b)} in Figure 4,

Bλ ¼ bλ1; bλ2; bλ3ð Þ ¼ 1; 1; 1ð Þ;
ξλ ¼ ξ1; ξ2; ξ3ð Þ ¼ 9:0; 9:0; 2:0ð Þ;
Rλ ¼ r1; r2; r3ð Þ ¼ 0:2; 0:1; 0:05ð Þ:
According to (21), the TPF function in Lλ is

pλ xλð Þ ¼ r1 bλ1xλ þ ξ1ð Þ2 þ r2 bλ2xλ þ ξ2ð Þ2 þ r3 bλ3xλ þ ξ3ð Þ2
¼ 0:2� 1�xλ þ 9:0ð Þ2 þ 0:1� 1�xλ þ 9:0ð Þ2 þ 0:05� 1�xλ þ 2:0ð Þ2
¼ 0:35x2λ þ 5:6xλ þ 24:5:

In STEP 0, tie-set flow xλ is initialized to 0; the value of TPL function is pλ(0) = 24.5. In STEP 1, the
optimal xλ is calculated according to (23) as follows:

xλ ¼ �r1bλ1ξ1 þ r2bλ2ξ2 þ r3bλ3ξ3
r1 þ r2 þ r3

¼ � 0:2�1�9:0ð Þ þ 0:1�1�9:0ð Þ þ 0:05�1�2:0ð Þ
0:2þ 0:1þ 0:05

¼ �8:0:

Then, the currents are updated in STEP 2 as

i1 ¼ bλ1xλ þ ξ1 ¼ 1� �8:0ð Þ þ 9:0 ¼ 1:0

i2 ¼ bλ2xλ þ ξ2 ¼ 1� �8:0ð Þ þ 9:0 ¼ 1:0

i3 ¼ bλ3xλ þ ξ3 ¼ 1� �8:0ð Þ þ 2:0 ¼ �6:0
Figure 4. Example for DAPLM.
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so that the current vector in Lλ is

Iλ ¼ i1; i2; i3ð Þ ¼ 1:0; 1:0;�6:0ð Þ:

In summary, the power flow loss in Lλ of Figure 4 before conducting DAPLM is pλ(0) = 24.5, and
the loss after DAPLM is pλ(�8.0) = 2.1 where the lost power 0.2� 1.02 = 0.2 (W) on the link e(b, a)
is injected at node a, and the lost power 0.1� 1.02 + 0.05� (�6.0)2 = 1.9 (W) on the links e(a, c) and
e(c, b) is injected at node c.
5. SIMULATION AND EXPERIMENTS

The PLM problem can be solved through local optimizations in a system of μ-independent tie-sets that
are equivalent to μ-dimensional linear vector space as discussed in Section 3.1. By conducting the
decentralized algorithms described in Section 4, optimal flows that minimize the power line loss of a
graph can be obtained. To verify this property and conduct experiments as well as compare it with a
centralized approach, we made a simulator in Java where all the distributed algorithms to solve the
PLM problem are implemented. We exploited Java Universal Network/Graph Framework [32], which
is a software library that provides a common and extensible language for the modeling, analysis, and
visualization of data that can be represented as a graph or network. Common buffering method and
polling method are employed in a simulation node. Then, we run the simulator using OS Windows 7
as a simulation environment.

In this experiment, each link capacity is ck= 100 (A) (k= 1, 2,…,m). Tie-sets exchange Φ Lλð Þ ¼
d
dxλ
pλ xλð Þ�� �� as TEF, and every MV yλ(t) is constantly sent to a leader node of each tie-set.

Communication Interval in StandBy in Figure 3 is Δt= 1ms in this simulation. When all the tie-sets
satisfy the following termination condition, simulation procedure stops.

�0:1 <
d

dxλ
pλ xλð Þ < 0:1: (24)

5.1. Experiments using IEEE bus test systems

In this experiment, the simulation networkG= (V,E) and its properties are given on the basis of IEEE bus
test systems with 14, 30, 57, and 118 buses, and 20, 41, 78, and 179 lines, respectively. The number of
tie-sets in 14-bus, 30-bus, 57-bus, and 118-bus systems is 7, 12, 22, and 62, respectively. The sets of link
resistances, generators, and loads are provided by the IEEE bus systems. We create fundamental systems
of tie-sets on the bus systems in a distributed manner. The initial flow ξk of each edge is randomly
assigned with � 50≤ ξk≤ 50 (A). Experimental data are taken when every tie-set satisfies (24) and
conducted 10 times from the section below so that the average value is calculated.

5.1.1. Optimized edge flows. Figure 5 shows the values of edge flows (electric currents (A)) on ek ∈E
before and after optimization in the 14-bus, 30-bus, 57-bus, and 118-bus grids. In Figure 5, edge flows
are sorted in ascending order. All the edge flows are balanced to minimize the power loss of G by
iteratively updating the tie-set flow xλ in each tie-set Lλ. From Figure 5, edge flows in the 118-bus
system are more balanced as the grid has the larger number of links compared with other bus systems.

5.1.2. Current distribution based on resistance. Figure 6 is another way of showing edge flows on
resistances rk ∈R sorted in ascending order. As indicated in Figure 6, the variance of optimized edge
flows is larger on smaller resistances and smaller on lager resistances, which means the large
amount of edge flows pass through links whose resistances are small.

5.1.3. Optimized power flow losses. Figure 7 shows the power loss (W) on each edge sorted in
ascending order as well. With the optimized edge flows, the power loss of every link is minimized.
This result demonstrates that individual power losses on edges by optimized flows are almost half of
the losses by initial flows.
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Figure 5. Edge flows ik on edges ek ∈E before and after optimization in the IEEE bus test systems.

Figure 6. Edge flows ik sorted by resistances rk on edges ek ∈E before and after optimization in the IEEE bus
test systems.
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Figure 7. Power losses pk on edges ek ∈E before and after optimization in the IEEE bus test systems.
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5.1.4. Total power loss by initial and optimized flows. Table II shows the results of the total power
loss by initial and OPFs with IEEE 14-bus, 30-bus, 57-bus, and 118-bus systems. Those data are
taken 10 times, and the averaged value has been calculated. In Table II, ‘Initial PG’ represents the
total power loss by not-optimized power flows on all the edges of a graph, and ‘Optimal PG’
represents the total power loss by optimized power flows.

As suggested in Table II, the optimal flows in 14-bus and 118-bus systems achieve about a 50%
reduction of power loss. As to 30-bus and 57-bus systems, more than a 30% reduction of power loss
has been realized.
5.1.5. Analysis on property performance. Now, we analyze the property performance of the proposed
decentralized algorithm. In Figure 8, the number of computations for TADiC and DAPLM at each time
step is provided in the IEEE bus systems. As indicated in Figure 8, all the tie-sets of 17-bus, 30-bus, 57-
bus, and 118-bus system stop their procedures (TADiC and DAPLM) when t=130, 175, 156, and
323ms, respectively, as they satisfy (24). The behaviors of those results show that the proposed
method conducts many times of both TADiC and DAPLM until about 100ms and then reduces the
computations after 100ms. This result shows that distributed optimization technique based on tie-sets
tries to realize overall optimization quickly and then continues its procedures until it converges to
satisfy (24).

As to communications complexity Γ (t) at time t, which is the number of messages used in conducting

TADiC, we can calculate it with Γ tð Þ ¼ 2� α tð Þ �
X

Lλ∈LB
La
λ

�� �� where α(t) is the total number of
Table II. The total power loss by initial and optimized flows with IEEE bus test systems.

14 buses 30 buses 57 buses 118 buses

Initial PG (W) 888.055 2586.321 4708.256 3980.594
Optimal PG (W) 413.982 1786.854 2938.289 2023.729
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Figure 8. The number of computations of TADiC and DAPLM at every time step in the IEEE bus systems.
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computations by TADiC at time t. For example, in the IEEE 30-bus system used in this simulations, the

communications complexity is Γ (10) = 2� 8� 84= 1344 where α(10) = 8 and
X

Lλ∈LB
La
dαð10Þ

�� �� ¼ 84.
5.2. Comparison with centralized optimization

In this experiment, we show the effectiveness of the decentralized algorithm based on tie-sets by
comparing convergence speed with the centralized optimization approach. The centralized approach
sequentially optimizes flows by picking a tie-set whose TEF is the largest among all the tie-sets.
Initial flows are randomly given to all the edges E of G with � 50≤ ξk≤ 50 (k= 1, 2,…,m).

Figure 9 shows the result of the comparison experiment about the convergence speed in the IEEE
118-bus grid and a 100-bus grid with random link connections. In the 100-bus grid, each link
resistance rk is randomly given between 0 to 0.5 (Ω). As clearly shown in Figure 9, the decentralized
algorithm based on tie-sets demonstrated fast convergence than the centralized scheme. This is
because the decentralized method realizes parallel optimizations by communicating with adjacent tie-
sets, whereas the centralized method collects all the data of current flows from each node to conduct
optimization. Because the distributed algorithm shows its fast convergence nature, the result also
Figure 9. Comparison of convergence of power loss PG with centralized optimization in IEEE 118-bus and
100-bus grids.
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suggests that centralized systems should be replaced by autonomous distributed systems to realize
efficient parallel computation in a future power network where power flows are constantly updated
with stochastic process of loads and renewables.
5.3. Performance in different topologies

We have analyzed the specific grids using IEEE bus test systems. Therefore, we analyze the nature of
the proposed optimization method using random mesh topologies with different size of nodes and
edges. Initial flows are given to all the edges E of G with � 50≤ ξk≤ 50 (k = 1, 2,……,m) (A).
Experiment data are taken when all the tie-sets satisfy (24). We conducted 20 experiments for each
simulation network to calculate the average value.

5.3.1. Power loss with different number of links. In this experiment, we conducted a simulation to
examine the power loss PG of an entire graph with the different number of edges with a 100-bus
grid where |E| = 100, 200, 300, 400, and 500. Each link resistance rk is randomly given between 0 to
0.1 (Ω).

As seen in Figure 10, the total power loss PG by initial (not-optimized) flows shows large increase at
a rate proportional to the number of edges, whereas the loss by optimized flows shows a subtle
decrease as the number of edges increases. The delta between the loss by initial flows and optimized
flows significantly increases as the number of power lines becomes larger. This result indicates that
the larger the number of lines becomes, the more amount of the power loss we can reduce.
However, we need to consider the cost of installing power lines when we configure a power network.
Figure 11. The total power loss PG with the different number of nodes (100 to 500).

Figure 10. Power loss PG with the different number of edges (100 to 500) with a 100-bus grid.
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5.3.2. Power loss with different network sizes. Next, we conducted a simulation to look at the power
loss PG of an entire graph with the different number of nodes where |V| = 100, 200, 300, 400, and 500
with the number of links |E|≈ 200, 400, 600, 800, and 1000. Each link resistance rk is randomly given
between 0 to 0.5 (Ω).

In the experiment shown in Figure 11(a), initial edge flows are given to all the edges E of G, whereas
initial flows in Figure 11(b) are only given to the edges of tree T of G. Figure 11(a) indicates that the
power loss PG is proportionate to the number of nodes and the total loss by optimized flows is less than
the half of the total loss by initial (not-optimized) flows. Figure 11(b) shows similar tendency to the
result of Figure 11(a). From the result shown in Figure 11(b), the traditional tree or bus topology is
quite inefficient for future grids with bi-directional flows. This result gives rise to use of mesh
topologies to future power networks.
6. CONCLUSION AND FUTURE WORK

In this paper, a PLM problem is first formulated on the basis of tie-set graph theory to distribute
electricity with optimized link flows targeting prospective future grids. Then, we proposed the
decentralized algorithms based on tie-sets that represent loops in a power network to solve the PLM
problem and described how to realize autonomous distributed control with autonomous agents
navigating the tie-sets. The simulation results show that local optimizations constantly iterated
within a fundamental system of tie-sets calculate optimal edge flows of entire grids based on the
IEEE bus test systems. The results also show that the proposed method realizes more than a 50%
reduction of power loss for a grid with 100 to 500 nodes.

Here, we list up the future work to be studied as follows:

• Integration of the proposed model with optimal real-time power flow models that are also being
developed to compensate the renewable intermittency by using battery systems.

• Study on whether the uniqueness of tie-sets can be used to study the uniqueness of optimal solu-
tion and whether there is any connection between the method based on tie-sets and the previous
methods as in [25, 26].

• Comprehensive analyses of all the proposed decentralized algorithms and comparison of time
complexity, communication complexity, and space complexity of the proposed method with those
of other existing known techniques.

• Finding what factor(s) of the proposed model affect the speed of convergence and preciseness of
the optimized outcome of the total power loss compared with theoretical limitation.

• Proof that the optimized power loss converges on the solution with certain error range by iterative
power-loss minimization based on tie-sets.
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