
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
Int. J. Circ. Theor. Appl. 2016; 44:549–561
Published online 12 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cta.2093
Simultaneous generation and correlation of complete sets of
generalized pairwise complementary sequences
Matías N. Hadad1,*,†, Marcos A. Funes1, Patricio G. Donato1, Enrique García2,
Jesús Ureña2 and Daniel Carrica1

1Laboratory of Instrumentation and Control, Department of Electronics, National University of Mar del Plata,
CONICET, Argentina

2Department of Electronics, University of Alcalá, Madrid, Spain
SUMMARY

New coding schemes are increasingly being developed to adapt multisensor and communication systems to
the requirements of the current technological environment. In some cases, the practical implementation of
these schemes involves a great amount of signal processing operations. In order to achieve and make
suitable their use in different platforms, efficient algorithms are required to process coding. In the last years,
a new kind of complementary sequences, known as Generalized Pairwise Complementary sequences, has
been proposed. These sequences provide high noise immunity when they are applied to multiuser systems,
as well as a low cross-correlation, which is convenient in those applications. The aim of this paper is to pro-
pose optimized generation and correlation architectures for Generalized Pairwise Complementary sequences
that would allow to process a complete set using a reduced amount of operations. An analytical demonstra-
tion is provided, with a final comparison to evaluate the reduction with regard to other algorithms. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, more research efforts have been devoted to the theory and application of
Complementary Sets of Sequences (CSS) and other derived sequences. A growing number of
publications have addressed this topic and dealt with theoretical and practical aspects. The
applications involving the use of these sequences range from communications [1] to ultrasound
image processing [2], including sensors [3] and local positioning systems [4]. The possibility of
detecting signals immersed in noise, their multiuser properties and/or the possibility of performing
channel identification are some of the key aspects of these sequences.

Furthermore, theoretical research has focused on generation and correlation algorithms,
computational efficiency, and other implementation-related issues [5–9]. One of them is the synthesis
of new types of sequences derived from the traditional CSS in order to obtain or improve some of
their characteristics [10, 11]. As a result, in the last years, different types of sequences have been
developed, such as the ZCZ (Zero Correlation Zone [12]), LS (Loosely Synchronous [13]), and GPC
(Generalized Pairwise Complementary [14]), which are characterized by an Interference Free
Window (IFW) in their Autocorrelation Function (ACF) and Cross Correlation Function (CCF). In
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particular, GPC sequences have attracted an increasing attention because of their particular
mathematical properties, namely, greater energy efficiency and larger IFW for a given length, as
compared with other sequences. In addition, they have controlled correlation side lobes outside the IFW.

The GPC sequences are pairs of binary sequences initially introduced by Chen et al. [14]. They can
be generated and correlated using schemes derived from CSS, as proposed by García et al. [15].
However, the aforementioned schemes entail a large amount of operations, which is not a minor
issue in the applications of limited resources and/or clock frequency.

Earlier works [6,16, 17] have introduced new approaches for CSS generation and correlation, which
result in a significant reduction in the number of required operations to process CSS. Accordingly,
similar approaches can be applied to GPC sequences in order to reduce the amount of operations
required by the generation and correlation processes. This work presents optimized algorithms for
the generation and correlation of GPC sequences that allow to process a complete set of GPC
sequences in a simultaneous basis.

The paper has been structured as follows: section 2 deals with a summary of the fundamentals on
GPC sequences and previous generation and correlation architectures [15]. A new proposal is
developed in section 3, analyzing each step of the generation and correlation processes. A
comparison between the new proposal and previous ones is provided in section 4 and, finally,
section 5 draws some conclusions.
2. GENERALIZED PAIRWISE COMPLEMENTARY SEQUENCES

Generalized Pairwise Complementary sequences were introduced by Chen et al. [14] as a set of 2G

(G=2a, a∈ � {0}) pairs of binary sequences uj
g;0 k½ �; uj

g;1 k½ �
� �

(0≤ g≤G� 1) of length L=4GL0

derived from generalized even shift orthogonal sequences of length 4L0 [14]. These sequences are
divided into two subgroups (U0,U1) of G pairs of sequences, expressed in the rest of the paper by
the super index j∈ {0, 1}, which offer a uniform IFW. The main properties of GPC sequences are:

• The sum of the ACF of each pair is always zero, except at the time shifts equal to 8nL0, with
n∈ � {0}.

Cu j
g;0;u
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k½ � þ Cu j
g;1;u

j
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0 k≠8nL0;
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where Cu j
g;0;u
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g;0

k½ � is the ACF of ujg;0
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ujg;0 i½ ��uj

g;0 iþ k½ �: (2)

• Their intragroup sum of CCFs (between sequences from either U0 or U1) is always zero, except at
the time shifts equal to 8nL0.
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with g≠ g′, where Cu j
g;0;u

j

g′ ;0

k½ � is the CCF of uj
g;0 and uj

g′;0

Cu j
g;0;u

j

g′ ;0

k½ � ¼ ∑
L�1

i¼0
uj
g;0 i½ ��uj

g′;0 iþ k½ �: (4)

• Their intergroup sum of CCFs (between sequences of U0 and U1) is always zero for any time shift
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C
u j
g;0;u

j′

g′ ;0

k½ � þ C
u j
g;1;u

j′

g′ ;1

k½ � ¼ 0 (5)

with j≠ j′.

A. Generalized Pairwise Complementary generation and correlation

García et al. [15] formulated efficient generation and correlation schemes for pairs of GPC
sequences of length L=2GL0 derived from even shift orthogonal sequences (E-sequences [18]) of
length 2L0, obtained by interleaving Golay binary pairs of sequences [19].

Golay binary pairs of sequences (also known as complementary pairs of sequences) are defined as a
pair of sequences (a[k], b[k]) of the same length L, composed of two binary elements (± 1). The main
property of these sequences is that the addition of their autocorrelation functions is zero for every time
displacement difference of zero and 2L at zeros displacement (which is known as a Kronocker delta):

Ca;a k½ � þ Cb;b k½ � ¼ 2Lδ k½ �: (6)

Other important property of these sequences is the existence of an orthogonal pair for every pair of
sequences. Two pairs of sequences ((a[k], b[k]), (c[k], d[k])) are orthogonal if the addition of their CCFs
equals to zero for every time displacement (Eq. 7). The limitation of this property is that for a given
pair there is only one orthogonal pair to it [16].

Ca;c k½ � þ Cb;d k½ � ¼ 0 (7)

1. Generation algorithm: The generation algorithm can be summarized as a concatenation process
with a delay cascade and a Hadamard matrix row as follows:

Uj
g;m zð Þ ¼ Ej zð Þ∑

G�1

i¼0
hg;iz

�i�2L0
� �

Vm zð Þ; (8)

where:

• Uj
g;m zð Þ with m, j∈ {0, 1} and 0≤ g≤G� 1 refers to the sequence m of the pair g belonging to the
•
•
•

Copy
subgroup j (Figure 1) in the z domain.
hg,i is the element of row g and column i of the Hadamard matrix of order G.
L0 is the length of the Golay pairs of sequences.
Ej(z) is an E-sequence obtained by interleaving the Golay pair j.
Figure 1. Both groups of a Generalized Pairwise Complementary sequences set.
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Vm(z) is a polynomial that equals:

Vm zð Þ ¼ ∑
L�1

i¼0
�1ð Þi�m�z�i: (9)

The aim of this polynomial is to eliminate the interference in the odd shifts of the sum of aperiodic cor-
relation functions.

2. Generation Architecture: From the algorithm previously introduced, an efficient generator for a
single pair of GPC sequences (EGPCG) can be obtained, based on 8, following the steps indi-
cated in the following (Figure 2).

• Step 1: To generate the E-sequence, it is necessary to interleave the Golay pair of sequences. To
accomplish this, three sub-steps are required. First, the Golay pairs Aj and Bj are generated by
using an efficient generator (EGG) [20, 21]. Then the Golay pairs must be zero-padded by
inserting one zero between every two bits of both sequences. Finally, the zero-padded sequence
Aj must be delayed for one bit and then added with the other zero-padded sequence to obtain the
E-sequence Ej(z). In order to generate the zero-padded sequences, the delays in the efficient gen-
erator must be multiplied by 2.

• Step 2: A Walsh–Hadamard expansion is made to increase the length of the set. According to 10,
a cascade of z�2L0 delay blocks is used, weighted by the hg elements.

Uj
g;0 zð Þ ¼ Ej zð Þ∑

G�1

i¼0
hg;iz

�i�2L0 (10)

• Step 3: Finally, to generate the sequence uj
g;1, the sign of the even bits of ujg;0 must be changed

(Eq. 9). This is implemented by using a multiplexer driven by a signal of half the clock fre-
quency (clk/2) synchronized with the clock edge used in the previous stages.

3. Correlation Architecture: An efficient correlation architecture (EGPCC) can be obtained as a re-
versed version of the generator. To do so, the generation algorithm should be modified as shown
in the following steps (refer to Figure 3):

• Step 1: The inverse Walsh–Hadamard expansion of the input signal R(z) must be performed by
reversing the delay orders. This process can be summarized through the following algorithm:

Re zð Þ ¼ R zð Þ∑
G�1

i¼0
hg;iz

� G�1�ið Þ2L0 : (11)
Figure 2. Efficient generation architecture for Generalized Pairwise Complementary sequences (EGPCG
[15]). EGG, efficient Golay generator.
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Figure 3. Efficient Generalized Pairwise Complementary sequences correlator (EGPCC). EGC, Efficient
Golay Correlator.
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• Step 2: The resulting sequence must be correlated with the zero-padded sequences by replacing
the Golay generator with an Efficient Golay Correlator (EGC) with the delays multiplied by 2.

• Step 3: The delay order at the output of the EGC must be reversed to obtain the aperiodic cor-
relation between the input signal, R(z), and the sequence Uj

g;0 zð Þ, as follows:

CR;Uj
g;0

zð Þ ¼ CRe;Aj zð Þz�1 þ CRe;B j zð Þ; (12)

and the aperiodic correlation between the signal R(z) and the sequence Uj
g;1 zð Þ is:

CR;Uj
g;1

zð Þ ¼ CRe;A
j zð Þz�1 � CRe;Bj zð Þ: (13)
3. SIMULTANEOUS GENERATION AND CORRELATION ARCHITECTURES

The previous section dealt with the generation and correlation architectures for GPC sequences. By
using such generation architecture, it is possible to generate a single pair of GPC sequences. On the
other hand, the correlation architecture computes the correlation of a single input, R(z), with both
sequences of a GPC pair. To fully benefit from the properties of GPC sequences in a practical
application, the generation or correlation of the complete set of 2G GPC sequences should be
carried out on a simultaneous basis. In these cases, it is necessary to use 2G generators or 4G
correlators, with the resulting increment in the number of operations. In this section, the
architectures that enable to simultaneously generate or correlate a complete set of GPC sequences
with a reduced amount of operations are analytically developed. Because the correlation of a
complete set of GPC sequences is the most demanding operation, the proposal starts with the
development of an optimized correlation architecture with the goal of a minimum operation amount.
Later, some of the used strategies are applied to the generation algorithm in order to obtain a similar
reduction.

A. Simultaneous Generalized Pairwise Complementary Correlation Architecture

Starting with the architecture of Figure 3, the correlation of the input signal with both sequences of a
GPC pair can be expressed in z-domain as follows:

CR;Uj
g;0

zð Þ ¼ Aj 1=zð Þz�1 þ Bj 1=zð Þ� �
α zð ÞR zð Þ

CR;Uj
g;1

zð Þ ¼ Aj 1=zð Þz�1 � Bj 1=zð Þ� �
α zð ÞR zð Þ; (14)

where Aj(1/z) and Bj(1/z) are the terms in the z-domain to compute the correlation with the Golay pair
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Aj(z) and Bj(z). α(z) is the inverse Walsh–Hadamard expansion at the correlator input:

α zð Þ ¼ ∑
G�1

i¼0
hg;iz

� G�1�ið Þ2L0 : (15)

In order to compute the sum of correlations between two input signals and a pair of GPC sequences,
two correlator architectures must be used (Figure 4):

Yj
g zð Þ ¼ CR1;U0

g;0
zð Þ þ CR2;U0

g;1
zð Þ ¼ Aj 1=zð Þz�1 þ Bj 1=zð Þ� �

α zð ÞR1 zð Þ
þ Aj 1=zð Þz�1 � Bj 1=zð Þ� �

α zð ÞR2 zð Þ:
(16)

The use of the associative property with α in 16

Yj
g zð Þ ¼ α zð Þ Aj 1=zð Þz�1 þ Bj 1=zð Þ� �

R1 zð Þ	 þ Aj 1=zð Þz�1 � Bj 1=zð Þ� �
R2 zð Þ
 (17)

yields the block diagram in Figure 5, which leads to a significant reduction in the calculations’
requirements.

Upon analyzing 17, a further reduction can be obtained by splitting the correlation with Aj and Bj

(Figure 6):

Yj
g zð Þ ¼ α zð Þ Aj 1=zð Þz�1 R1 zð Þ þ R2 zð Þð Þ	

Bj 1=zð Þ R1 zð Þ � R2 zð Þð Þ
: (18)

The architecture in Figure 6 uses two EGCs to perform the correlation with the complementary
sequences. However, this implementation performs two correlations that are not used (CR′

1;B
j and

CR′
2;A

j , respectively). The sum of correlations with respect to Aj and Bj can be implemented by using

the algorithm proposed in [22] (Optimized Golay Correlator, OGC), further reducing the total
number of required calculations (Figure 7).

In the previous section, it was stated that the intra-group GPC sequences differed in the row of the
Hadamard matrix used in the Walsh–Hadamard expansion. Rewriting 15 in a matricial form and
replacing in 18:

Yj
g zð Þ ¼ Hg�D′ zð Þ�C j; (19)

where:

• C j is a column vector with the output of the OGC (Figure 7)
Figure 4. Block diagram of the sum of Generalized Pairwise Complementary correlations. EGC, Efficient
Golay Correlator.
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Figure 5. Generalized Pairwise Complementary correlator with the α block located at the output. EGC, Ef-
ficient Golay Correlator.

Figure 6. Generalized Pairwise Complementary correlator based on equation 18. EGC, Efficient Golay
Correlator.

Figure 7. Generalized Pairwise Complementary correlator based on the Optimized Golay Correlator archi-
tecture and equation 18.
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D′ zð Þ ¼

z� G�1ð Þ2L0 0 ⋯ 0 0

0 z� G�2ð Þ2L0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ z�2L0 0

0 0 ⋯ 0 1

2
6666664

3
7777775
; (20)

Hg ¼ hg;0 hg;1 ⋯ hg;G�2 hg;G�1½ �: (21)

By applying a similar reasoning to the one shown in [17], it may be assumed that the correlation of a
subgroup of GPC sequences can be obtained by replacing the single row of the Hadamard matrix (Hg)
with the full Hadamard matrix, as it is shown in 22 and Figure 8.

Y j zð Þ ¼

Yj
0 zð Þ

Yj
1 zð Þ
⋮

Yj
G�1 zð Þ

2
66664

3
77775 ¼

h0;0 h0;1 … h0;G�1

h1;0 h1;1 … h1;G�1

⋮ ⋮ ⋮ hG�1;0

hG�1;0 hG�1;1 … hG�1;G�1

2
6664

3
7775�D′ zð Þ�Cj: (22)
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Figure 8. Architecture to perform the correlation of all the sequences of a Generalized Pairwise Complemen-
tary group. OGC, Optimized Golay Correlator.
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Figure 9 provides an example of the scheme that is used to implement the product H4�D′
4 zð Þ�Cj by

using a reduced architecture.
In order to obtain the correlation with respect to the complete set of GPC sequences, the correlation

with the sequences of the second subgroup should be obtained as well. These sequences are generated
by using an orthogonal pair of complementary sequences. Then, the correlation with both pairs of
complementary sequences has to be computed. This operation can be performed by using two
OGCs, each one with a different seed (Figure 10).

Y0 zð Þ ¼ H�D′ zð Þ �C0

Y1 zð Þ ¼ H�D′ zð Þ �C1
(23)

Moreover, to further reduce the architecture, it is advisable to use the algorithm proposed in [16]
(Optimized Orthogonal Golay Correlator, O2GC), which simultaneously computes the correlation of
both pairs of complementary sequences. The proposed architecture is presented in Figure 11.
Figure 9. Architecture for computing the product HD′ for a Hadamard matrix of order 4.

Figure 10. Architecture to perform the correlation of all the sequences of both Generalized Pairwise Com-
plementary groups. OGC, Optimized Golay Correlator.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:549–561
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Figure 11. Optimized full Generalized Pairwise Complementary correlator.
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The architecture obtained performs the sum of correlations of two inputs with respect to all the
sequences of both subgroups of a GPC sequence set. This approach certainly represents a significant
improvement on the correlation architectures of GPC sequences, avoiding the replication of
architectures and/or the employ of useless operations (e.g., unused correlation outputs). The next
section analyzes the calculation requirements by means of a detailed comparison with other algorithms.

B. Simultaneous Generalized Pairwise Complementary Generation Architecture

The GPC generator can be redesigned in order to generate all the sequences of a GPC set. Starting
with the generation architecture of [15] (Figure 2), the product with a Hadamard matrix row can be
replaced with an architecture similar to Figure 9, which computes the product with the whole

Hadamard matrix to generate all the G sequences U j
g;0 zð Þ of the subgroup j (Figure 12).

The last stage of the GPC generator must be replicated for each of the G generated sequences to

generate all the pairs U j
g;0 zð Þ;U j

g;1 zð Þ
� �

. Figure 13 shows the simultaneous generator architecture

obtained for a subgroup of GPC sequences.
To generate a complete set of GPC sequences, two of the previous architectures should be used,

each one with the corresponding complementary pair to obtain E0 and E1. However, in [23], it was
demonstrated that two orthogonal pairs of sequences can be obtained by generating one pair and
making alternate sign changes on both sequences to obtain the orthogonal pair:

A1 ¼ A0○ þ1 �1 þ1 �1 ⋯½ �
B1 ¼ B0○ þ1 �1 þ1 �1⋯½ �;

(24)

where ∘ is the Hadamard product of the vectors.
The generation algorithm is based on the concatenation, with sign changes, of the E-sequences,

generated by interleaving the bits of a Golay pair. Thus, the pair of E-sequences can be obtained
using a single generator architecture:

E1 ¼ E0○ þ1 þ1 �1 �1 þ1 þ1 �1 �1⋯½ �: (25)

By applying this sign pattern to every output sequence of the generator in Figure 13, a complete set
of GPC sequences can be generated. The pattern is the inversion of two bits every two bits, and it is
implemented by using a multiplexer driven with a signal four times slower than the clock frequency
(clk/4), synchronous to the clk/2 and clk signals. Figure 14 shows the proposed architecture of the
simultaneous generator.
Figure 12. Generator architecture for all the first sequences of a Generalized Pairwise Complementary sub-
group. EGG, efficient Golay generator.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:549–561
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Figure 13. Generalized Pairwise Complementary generator of all the pairs of a subgroup. EGG, efficient
Golay generator.

Figure 14. Simultaneous generator architecture for a complete set of Generalized Pairwise Complementary
sequences. EGG, efficient Golay generator.
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4. COMPARISONS

In order to formalize the efficiency of the new proposal, an analysis of the required operations to perform
the generation and correlation of a complete set of GPC sequences was conducted. Table I lists the
amount of operations required to obtain the correlation with respect to the complete set of GPC
sequences, with L0 being the length of the Golay pair of sequences used to generate the E-sequences
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:549–561
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Table I. Comparison of the operations required to perform a correlation with a complete set of Generalized
Pairwise Complementary sequences.

Proposed correlator

Products Additions Memory

First stage 0 2 1
O2GC log2 L0 þ 1 2 log2 L0 þ 1ð Þ 2(L0� 1)
2× D′H 0 2G log2 G 4(G� 1)L0
Total log2 L0 þ 1 2 G log2 Gþ log2 L0 þ 2ð Þ 2L0(2G� 1)� 1
García et al. [15]
Total 2G 3 log2 L0 þ G� 1ð Þ 2G 2 log2 L0 þ Gþ 1ð Þ 2G(2GL0� 1)

Straightforward correlation

Total 2G �L0 2(G � L0� 1) 2(G �L0� 1)

O2GC, Optimized Orthogonal Golay Correlator.

Table II. Operations required for the proposed generator and Efficient Generalized Pairwise Complementary
Generator [15].

Proposed generator
Products Additions Memory Multiplexers

EGG log2 L0 2 log2 L0 2(L0� 1) 0
E-sequence generator 0 1 1 0
DH 0 G log2 G 2(G� 1)L0 0
Final stage 3G 0 0 3G
Total log2 L0 þ 3G 2 log2 L0 þ G log2 Gþ 1 2L0G� 1 3G
García et al. [15]
2G× Products Additions Memory Multiplexers
EGG 2G log2 L0 4G log2 L0 4G(L0� 1) 0
E-sequence generator 0 2G 2G 0
α 2G(G�1) 2G(G�1) 4G(G� 1)L0 0
Final stage 2G 0 0 2G
Total 2G Gþ log2 L0ð Þ 2G Gþ 2 log2 L0ð Þ 2G(2GL0� 1) 2G

EGG, efficient Golay generator.
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and G, the order of the Hadamard matrix used in the Walsh–Hadamard expansion. The required
calculations to perform the same correlation using the EGPCC and a straightforward correlator are
also shown. It is worth noticing that the differences between the operations required by each of the
architectures increases with G. In the case of the proposed correlator, the products are constant with
respect to G, because the architecture that implements the product D′H uses no multiplications.

Table II presents the amount of operations required for the simultaneous generation using the
proposed architecture and that by García et al. Based on the table, it can be concluded that the
proposed generator architecture requires fewer mathematical operations to generate a complete set of
GPC sequences. It is noteworthy that even though the proposed generator has G more multiplexers
than the other generator does, this increment is masked by a reduction of approximately 2G times
fewer additions, products, and memory positions. Note that in this case, the products vary in terms
of G, but the number of operations is still lower than those in [15].
5. CONCLUSIONS

This work presents optimized architectures for the simultaneous generation and correlation of a
complete set of GPC sequences based on the particular mathematical properties of CSS and the
previous contributions on that matter. The architectures proposed were compared with a
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:549–561
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straightforward correlator and simultaneous generators and correlators obtained by means of the
replication of previously presented architectures, obtaining a notorious reduction in the number of
required operations. Indeed, this is a major contribution to the practical application of GPC
sequences in platforms of limited resources and/or in high demand processing applications.
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