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Abstract

High-dimensional Hilbert spaces possess large information encod-
ing and transmission capabilities. Characterizing exactly the real po-
tential of high-dimensional entangled systems is a cornerstone of to-
mography and quantum imaging. The accuracy of the measurement
apparatus and devices used in quantum imaging is physically limited,
which allows no further improvements to be made. To extend the pos-
sibilities, we introduce a post-processing method for quantum imaging
that is based on the Radon transform and the projection-slice the-
orem. The proposed solution leads to an enhanced precision and a
deeper parameterization of the information conveying capabilities of
high-dimensional Hilbert spaces. We demonstrate the method for the
analysis of high-dimensional position-momentum photonic entangle-
ment. We show that the entropic separability bound in terms of stan-
dard deviations is violated considerably more strongly in comparison
to the standard setting and current data processing. The results indi-
cate that the possibilities of the quantum imaging of high-dimensional
Hilbert spaces can be extended by applying appropriate calculations
in the post-processing phase.
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1 Introduction

The field of quantum imaging has been proposed to reveal and exploit the
deeply involved, currently open and still uncharacterized hidden potentials
of quantum mechanics. Quantum imaging has already been applied success-
fully in the fields of quantum optics, ghost imaging, quantum lithography
and quantum sensing [1-28]. One of the most interesting subfields of quan-
tum imaging is related to the study of high-dimensional entangled spaces [1,
7]. High-dimensional Hilbert spaces represent a useful resource for quantum
computation, quantum communication protocols and quantum cryptogra-
phy. A high-dimensional entangled system is equipped with several impor-
tant features and offers numerous additional benefits, but for communication
purposes one of the most important properties is the large data encoding
and transmission capability. In particular, the exact characterization of the
information-conveying property of a high-dimensional Hilbert space is a cor-
nerstone of quantum imaging and tomography. A photonic entangled system
can convey several bits in a single photon state. One of the most plausible
members of this set is the high-dimensional position-momentum entangle-
ment, since the photonic position and momentum degree of freedom can be
efficiently manipulated within the current technological framework. Another
tangible example of position-momentum coding is continuous-variable quan-
tum communications, where the information is encoded into the position and
momentum quadratures of the coherent states. The transmission capabil-
ity of these kinds of high-dimensional Hilbert spaces can be quantified by
the photon coincidence detections, whose measurement data finally “draw
an image” from the exploitable encoding possibilities of the analyzed space.
On the other hand, the accuracy of quantum imaging is limited by several
factors, most importantly by imperfections of the measurement process and
the fundamental laws of quantum mechanics. Since these boundaries and
limitations cannot be neglected, an appropriate solution for the enhance-
ment of the current solutions could be only the application of clever data
processing steps and numerical calculations on the measured raw data in
the so-called post-processing phase. The post-processing phase operates on
the raw data that is resulted from the coincidence detections in the physical
layer, and requires no further quantum-level interactions, i.e., the problem
of enhancing can be converted and reformulated from the physical layer into
the logical layer. All further steps that are related to any boosting opera-
tions will be made in this layer, which is a particularly convenient approach,
since we get a “free hand” to maximize the extractable valuable information
from the raw data by any intelligent computational steps.
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The information transmission capability of a high-dimensional entan-
gled quantum system can be rephrased in the framework and well-known
tools of quantum Shannon theory [29, 33-35]. High-dimensional position-
momentum entanglement [1, 7] can also be discussed by appropriate corre-
lation measure functions of this field, such as the mutual information that
quantifies exactly the classical correlation of two quantum systems – such as
between the subsystems of a high-dimensional entangled biphotonic system.
Taking into consideration the joint coincidence detections in the measure-
ment process, the mutual information function is an appropriate measure
to study and quantify precisely the information transmission capabilities
of high-dimensional Hilbert spaces. In particular, the mutual information
function in the level of the logical layer results from joint photon coincidence
detection events in the level of the physical layer. Hence there is a strict
connection between the physical layer and the mutual information function
that specifically derives from these measurement data. The accuracy of the
measurement apparatus is critical, and unfortunately it is also limited by the
laws of quantum mechanics. An appropriate answer could be to integrate
some “intelligence” into the post-processing phase, which can be applied
freely on the raw data to extract as much valuable information as possible.
Since the physical limitations of the measurement process cannot be traced
out from the picture, only one path remains to enhance the performance
and quality: to find an appropriate post-processing in the logical layer. All
improvement has to be investigated and integrated into this layer.

In the process of quantum imaging of high-dimensional photonic entan-
glement, the information transmission capability is characterized by coinci-
dence detections. The statistic of the joint detection events builds up the
mutual information function, which finally leads to an adequate descrip-
tion of the information transmission capability of the Hilbert space. The
measurement devices (practically controllable pixel mirrors) are equipped
with a given measurement dimension (referred as measurement space or
resolution). Since in current quantum imaging and tomography several im-
perfections are added into the process, the detection is not optimal. Having
arrived at this point, according to these argumentations our answer has to be
clear: post-processing. Numerical post-processing techniques have already
demonstrated their capability in several different areas related to quantum
computations and communications, and have been found to be a useful tool
in enhancing and amplifying the performance of physical layer processes. A
carefully constructed post-processing consists of several algorithmical steps,
and basically it is performed by purely the logical layer, i.e., in an abstract
layer independently from the physical layer. It also means that no further
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physical interaction is needed to improve the performance of the analyzed
system. As we have found, it is also possible to boost the capabilities of
quantum imaging and to achieve more accurate and precise results from
the collected coincidence measurements by applying an appropriate post-
processing technique in the data processing phase. The effective entropic
channel quantity [1, 7] takes into consideration both the entangled photonic
system and the measurement apparatus. It is a suitable measure to quan-
tify accurately the transmission capacity of the high-dimensional photonic
Hilbert space in bits of information per photon. The entropic channel mea-
sure is analogous to the Shannon capacity formula and is characterized by
several joint photon detection events [1]. Briefly, our model uses the mutual
information function, and our approach also lies on the use of this essential
quantity.

The Radon transform is a useful tool in medical imaging and particu-
larly in the processes of medical tomography. This transform consists of the
integral transform of several pieces of an unknown function (e.g., a physical
object), from which the unknown density can be recovered by the inverse
Fourier transform. A well-known medical application of Radon transform is
X-raying, where several parallel lines (rays) each from a different angle con-
vey information about an unknown internal density function, and each ray
captures and characterizes a different piece of the unknown target. The aim
of Radon transform in these traditional applications is to collect together
these information slices, and then to apply an appropriate inverse transfor-
mation that is able to recover the unknown internal function from the gath-
ered slices. In our quantum imaging scenario we explicitly do the same thing
to reach several advantageous features. However, instead of physically emit-
ted rays and spatial rotations (such as is the case in X-raying), our model
is interpreted by “abstracted” lines in the high-dimensional Hilbert space,
whose “lines” are defined by the coincidence measurements and convey in-
formation about the position and momentum components of the analyzed
high-dimensional quantum system. Similarly, the rotation does not mean a
physical rotation in the spatial space, but a unitary transformation in the
phase, as will be revealed in detail in Section 3.

In this work, we introduce a Radon transform-based post-processing for
quantum imaging and quantum tomography, which uses the raw data of
the coincidence measurements to enhance the accuracy of the study of in-
formation transmission capabilities of high-dimensional position-momentum
entangled quantum states. The proposed post-processing phase provides
several benefits for us to get a sharper and considerably deeper picture from
the internal life of high-dimensional Hilbert spaces, without the necessity of
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any further quantum-level interactions in the physical layer.
This paper is organized as follows. In Section 2, the preliminaries are

summarized. Section 3 discusses the proposed scheme, while Section 4 re-
veals the data processing steps. Finally, Section 5 concludes the paper.
Supplementary material is included in the Appendix.

2 Preliminaries

The information transmission capability of the high-dimensional position-
momentum entangled photonic state will be quantified by photon coinci-
dence detections, which lead to the direct application of the mutual infor-
mation function.

The mutual information between discrete variables A and B is denoted
by I (A:B), and given by I (A:B) =H (A) +H (B)−H (AB), where H (·) is
the Shannon entropy, H (A) =

∑
x∈A p (x)logp (x), while the joint entropy is

as H (AB) =
∑

x∈A, y∈B p (x, y)logp (x, y).

A position-momentum entangled photonic bipartite state |ψAB〉 can be
characterized by the entangled biphoton wave function in the position and
momentum basis, respectively, as follows. Introducing the notations xA and
xB for the position basis, the biphoton wave function f (xA, xB) is expressed
as [1]

f (xA, xB) =Ne
−(xA−xB)2

4w2
1 e

−(xA+xB)2

16w2
2 , (1)

where

N=
1

2πw1w2
, (2)

while 2w1 is the Gaussian width in the x1−x2 direction, and w2 is the
Gaussian width in the x1+x2 direction [1, 7]. In the momentum basis, the
biphoton wave function f (pA, pB) is evaluated as

f (pA, pB) =(4w1w2)
2Ne−w

2
1(pA−pB)2e−4w

2
2(pA+pB)2 . (3)

From w1 and w2, the measured single photon width σs is expressed as

σ2s=w
2
2+
(w1

2

)2
, (4)

while the conditional width σC is as follows:

σ2C=
4w2

1w
2
2

4w2
2+w2

1

. (5)
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Assuming that w1�w2 holds, these relations are simplified to

σs=w2 (6)

and
σC=w1. (7)

Further details about the characterization of these functions can be found
in [1, 7].

3 Quantum Imaging with Radon Transform

Radon transform is a well-known and applied technique in medical tomog-
raphy to discover an unknown two-dimensional internal density function
µ (x, y), where x and y are variable parameters. (An illustrative example
of the application of the Radon transform is in X-raying, where a two-
dimensional picture is constructed from the unknown density function.)

In the traditional interpretation (i.e., for non-quantum imaging pur-
poses) of Radon transform, the task is to recover µ (x, y) from the knowledge
of the measurement (such as the light intensity) results. The information
about the unknown internal function is divided into several parallel lines,
each conveying partial information or slice of information about the un-
known function. Radon transform integrates these slices together to extract
and recover the full information about the unknown function. In practice,
these Radon transform steps are as follows. All information that could be
cumulated from an unknown function µ (x, y) across a single path can be
described by an appropriate integral operation. Taking a line L through the
unknown density function, the line integral of µ along L can be expressed
as: ∫

L
µ (x, y)da, (8)

where a is the arc length parameter [30-32]. Since, by the nature of the
problem, it is not possible to fully recover µ (x, y) from a single line L, the
tomography process has to take into account several other paths each from
a different angle φ, 0≤φ<π. Each path catches and characterizes a different
property of the unknown density function. In particular, one can obtain
several different line integrals through the unknown density to build up a
detailed picture, hence the main task is to determine the unknown density
function µ (x, y) from the measured line integrals and the variable density
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function values. A given path Ω can convey only partial information about
the internal function, and can be modeled as

Ω (ξ) =

∫ ξ

ξ0

µ (x, y)dxdy, (9)

where ξ0, ξ are points of the line L. The unknown function µ (x, y) can be
computed from the derivate Ω′′, however it requires the full knowledge of (9),
which is not a reasonable assumption in any practical scenario. Hence, the
appropriate calculation requires the use of several different rotation angles
φ (i.e., a sensor rotates about a center, a plausible example for this is X-
raying.). Fortunately, in our setting this kind of spatial restriction can be
removed and the formula of (9) can be directly applied, however some further
steps are still needed to apply it in the quantum imaging.

At this point, we have to turn our attention from the traditional interpre-
tation to the quantum imaging of high-dimensional Hilbert spaces, specifi-
cally the position-momentum entanglement. Fortunately, a well-characterized
connection exists between them. In our quantum imaging scenario, the un-
known two-dimensional function identify an mutual information slice as

µ (x, p) , (10)

where x and p are the position and momentum components. (For the exact
derivation of the mutual information function in a Radon transform of a
high-dimensional entangled system, see Section 3.1.)

In terms of the measured raw data the encoded mutual information quan-
tities as follows. A given i -th coincidence detection measurement Mφ,i at
a given phase delay φ, 0≤φ<π (see Fig. 1) defines an encoded information
slice

E (µ (x, p)) =

∫
Mφ,i

µ (x, p)dxdp, (11)

which conveys a piece from the mutual information that can be extracted
from the position and momentum components, respectively.

Putting n encoded slices of (11) together and freezing the phase delay
into φ leads to the encoded partial mutual information

E
(
IMφ

(A:B)
)

= E (µφ (x, p)) =

∫
Mφ,1

. . .

∫
Mφ,n

µ (x, p)dxdp, (12)

which information is present in the form of the coincidence detections Mφ

at a given value of φ.
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The encoded full mutual information, E (IR (A:B)) that is contained in
the raw data is evaluated as

E (IR (A:B))=

∫
φ
E
(
IMφ

(A:B)
)
dφ

=

∫
φ
E (µφ (x, p))dφ

=

∫
φ

∫
Mφ,1

. . .

∫
Mφ,n

µ (x, p)dxdpdφ,

(13)

where 0≤φ<π. The task is to recover the full mutual information function
IR (A:B) from the knowledge of the raw data values E (IR (A:B)). As one
can readily see, with no phase delay φ (i.e., φ= 0), a single coincidence
measurement precisely leads to the mutual information I0 (A:B) in (12),
which is exactly the case in a standard setting.

The Radon transform-based quantum imaging builds up the mutual in-
formation function IR (A:B) from several different fractions where each frac-
tion, in fact, conveys a partial mutual information function IMφ

(A:B).
The R Radon transform of the unknown slice µ (ρ, φ) can be expressed

as
R (µ (ρ, φ)) = E (µ (x, p))

=

∫
Mφ,i

µ (x, p) dxdp,
(14)

which identifies an information slice (see (11)), where ρ is defined as

ρ= (x, p) · (cosφ, sinφ) =xcosφ+psinφ. (15)

For the i -th abstracted line, for 0≤φ<π,

ρi = (xi, pi) · (cosφ, sinφ) = xi cosφ+ pi sinφ, (16)

where xi, pi are the position and momentum components that identify a
slice of the partial mutual information function IMφ

(A:B) at a given φ. At
a fixed φ, the collection of n parameters of (16) each belong to a given slice
µ (xi, pi) is referred by ρφ.

The partial and full mutual information functions (conveyed in the raw
data) are evaluated by the Radon transform of unknown functions µφ (ρφ, φ)
and

∫
φ µφ (ρφ, φ) dφ as follows:

R (µφ (ρφ, φ)) = E (µφ (x, p))

=

∫
Mφ,1

. . .

∫
Mφ,n

µ (x, p)dxdp
(17)

8



and

R
(∫

φ
µφ (ρφ, φ) dφ

)
= E

(∫
φ
µφ (x, p) dφ

)
=

∫
φ

∫
Mφ,1

. . .

∫
Mφ,n

µ (x, p)dxdpdφ.
(18)

As one can readily conclude, the results of coincidence detections in (11),
(12) and (13) can be reformulated as a Radon transform shown in (14), (17)
and (18). For (15), a function δ can be introduced along with the Cartesian
equation ρ−xcosφ+psinφ= 0. This function is referred to as

δ (ρ−xcosφ−psinφ) , (19)

and is called the line impulse in the standard interpretation [31, 32].
The schematic view of the measurement setup for the Radon transform-

based high-dimensional quantum imaging is summarized in Fig. 1. The
source is assumed to be a collimated laser beam that has undergone a spon-
taneous parametric down-conversion (SPDC) at a nonlinear crystal. The
outputs of the BS are sent to micro-mirror devices, at the Fourier plane
and the image plane. The unitary phase rotation of φ is implemented by
a phase modulator (PM) in the image plane path. Other supplementary
devices (focusing lens, quarter wave plates, polarizing beam splitters) of the
experimental setting are not depicted in the figure and are not part of our
discussion, these can be found in the literature [1-7]. The detectors are
characterized by their dimension (measurement space), d, and the capacity
of the quantum system is measured in bits/photon, which is quantified by
the joint detection events in the coincidence measurement. (Note: A gen-
eral setup [1, 7] contains no PM, i.e., φ= 0, this setup is referred to as the
standard model throughout.)

Theorem 1 (Projection-slice theorem for quantum imaging). The R (µφ)
Radon transform of µφ (ρ, φ) leads to the two-dimensional Fourier transform
F of µφ. Taking the two-dimensional inverse Fourier transform of R (µφ)
results in the partial mutual information function F−1 (R (µφ)) = µφ =
IMφ

(A : B). Evaluating the two-dimensional inverse Fourier transform for

the full domain of φ leads to the mutual information as F−10≤φ<π (R (µ0≤φ<π)) =
IR (A : B).

Proof. Using (19), the Radon transform of the partial mutual information
function in (17) can be evaluated as

R (µφ (ρφ, φ)) =

∫ ∞
−∞

∫ ∞
−∞

µ (x, p)δ (ρφ−xcosφ−psinφ) dxdp . (20)
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Figure 1: The measurement setup for the Radon transform-based quantum
imaging. The output of the nonlinear crystal is fed into a beamsplitter (BS).
The outputs of the BS are measured in the Fourier plane and in the image
plane. The image plane path also contains a phase modulator (PM) for the
unitary phase rotation. The measurements are taken for 0≤φ<π. In the
post-processing phase only the coincident photon detections are taken into
account to derive the mutual information.

First we show that the Fourier transform of R (µφ) with respect to variable
ρφ at a φ fixed value, denoted by Fρφ (R (µφ)), is in fact equal to the two-
dimensional Fourier transform of the partial mutual information function
µφ (x, p).

To evaluate it, we introduce the dual variable of ρφ, referred as the
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imaginary frequency variable r. Then,

Fρφ (R (µφ) (r, φ)) =

∫ ∞
−∞

e−2πirρφR (µ) (ρφ, φ) dρφ

=

∫ ∞
−∞

e−2πirρφ
∫ ∞
−∞

∫ ∞
−∞

µ (x, p) δ (ρφ − xcosφ− psinφ) dxdpdρφ

=

∫ ∞
−∞

∫ ∞
−∞

µ (x, p)

(∫ ∞
−∞

δ (ρφ − xcosφ− psinφ) e−2πirρφdρφ

)
dxdp

=

∫ ∞
−∞

∫ ∞
−∞

µ (x, p) e−2πir(xcosφ+psinφ)dxdp

=

∫ ∞
−∞

∫ ∞
−∞

µ (x, p) e−2πir(xrcosφ+prsinφ)dxdp.

(21)
In (21) we exploited the shifting property of the Radon transform function,
namely that

R (µ ((x, p)− (b1, b2)))

=

∫
R2

µ (x−b1, p−b2)δ
(
ρ−
(

(x−b1, p−b2)
+ (b1, b2)

)
· (cosφ, sinφ)

)
d (x−b1, p−b2)

=

∫
R2

µ (x−b1, p−b2)δ
(
ρ−
(

(x−b1, p−b2) · (cosφ, sinφ)
+ (b1, b2) · (cosφ, sinφ)

))
d (x−b1, p−b2)

= R (µ) (ρ− (b1, b2) · (cosφ, sinφ) , φ) .
(22)

Introducing variables λ1=rcosφ and λ2=rsinφ, with relations

r2=λ21+λ
2
2 (23)

and

tanφ=
λ2
λ1
, (24)

whose connections are justified by the fact that the parameters (r, φ) play
the role of polar coordinates for the plane of (λ1, λ2), the last line of (21)
can be rewritten precisely as

Fρφ (R (µφ) (r, φ))=

∫ ∞
−∞

∫ ∞
−∞

e−2πi(xλ1+pλ2)µ (x, p)dxdp

=

∫
R2

e−2πi(x,p)·(λ1,λ2)µ (x, p)d (x, p) ,

(25)

which is, in fact, the two-dimensional Fourier transform of the partial mutual
information function µφ (x, p) =IMφ

(A:B).
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The notations of our model are summarized in Fig. 2. All Mφ,i, i∈ [n] are
modeled as abstracted lines in the high-dimensional Hilbert space. The line
integral identifies an information slice that is obtained by a photon coinci-
dence measurement at a given φ. For each φ, n coincidence measurements
are performed that results in the partial mutual information IMφ

(A:B), it
is also referred to as µφ (x, p).

 

Figure 2: Abstract model of the Radon transform-based quantum imaging
of high-dimensional position-momentum entanglement. The integral of an
abstracted line represents the slice information about the partial mutual
information IMφ

(A:B). A line Mφ,i represents a coincidence measurement
at a given φ, and the n abstracted lines together formulate the IMφ

(A:B)
partial mutual information function. Gathering together these slices for
all φ indentify IR (A:B), the (full) mutual information function. (In this
level of abstraction, the first abstracted line Mφ,1 assigns an origin in the
position-momentum space at each φ.)
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An Mφ,i has a position component start point and momentum compo-
nent end point, which shows that each slice covers only a piece informa-
tion from the capabilities of the high-dimensional space. Each Mφ coin-
cidence measurement (modeled by the abstracted lines) reveals some infor-
mation about the mutual information that is carried by the high-dimensional
position-momentum space. The partial mutual information function IMφ

(A:B)
is defined by n slices or abstracted lines, while the full mutual information
IR (A:B) is defined by mn lines, where m stands for the discretized ranges
of 0≤φ<π (for further details see Section 4).

For our case, the projection-slice theorem [30-32] in the quantum imag-
ing of high-dimensional position-momentum entanglement can be precisely
formulated as

Fρφ (R (µφ) (r, φ)) =F (µφ (λ1, λ2)) . (26)

As the next step, we rewrite (26) as

F (µφ (λ1, λ2)) =χ (r, φ) , (27)

where χ (r, φ) encodes the same function as the Fourier transform of µφ (λ1, λ2).
Since parameters λ1 and λ2 can be exactly computed, the unknown par-

tial mutual information function µφ can be recovered from (26) by applying
the two-dimensional inverse Fourier transform. It leads to the decoded par-
tial mutual information function as follows:

F−1 (F (µφ (λ1, λ2)))=

∫
R2

e−2πi(x,p)·(λ1,λ2)F (µ (λ1, λ2)) d (λ1, λ2)

=µφ (x, p)

=IMφ
(A:B) .

(28)

Applying (28) for 0≤φ<π, the decoded full mutual information function can
be expressed as

F−1
(
F

(∫
φ
µφ (λ1, λ2) dφ

))
=

∫
φ

∫
R2

e−2πi(x,p)·(λ1,λ2)F (µ (λ1, λ2)) d (λ1, λ2) dφ

=

∫
φ
µφ (x, p)dφ

=IR (A:B) ,

(29)

which concludes the proof.
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3.1 Mutual Information of High-Dimensional Entanglement

In this section we characterize the mutual information function that can be
extracted from the Hilbert space by the application of the Radon transform.

Theorem 2 (Mutual information in a Radon transform.) The mutual in-
formation that can be obtained by Radon transform from a position-momentum
entangled photonic system |ψAB〉 is IR (A : B) =

∫
φ IMφ

(A : B) dφ =∫
φ µφ (x, p) dφ, where IMφ

(A : B) is the partial mutual information function
at a given φ.

Proof. The mutual information in the standard model can be expressed as

I0 (A:B) =IM0 (A:B) , (30)

where I0 (A:B) stands for the mutual information that can be obtained
in a standard quantum imaging scenario, at φ= 0. Assuming a position-
momentum entangled photonic bipartite system |ψAB〉 , the partial mutual
information function IMφ

(A : B) at 0≤φ<π in the position basis is precisely
evaluated as follows [1, 7]:

IMφ
(A : B) = −

∫
p (xA, xB)log2

(
p (xA, xB)

p (xA) p (xB)

)
dxAdxB, (31)

where

p (xA, xB) =|f (xA, xB)|2=

∣∣∣∣∣Ne
−(xA−xB)2

4w2
1 e

−(xA+xB)2

16w2
2

∣∣∣∣∣
2

, (32)

and

p (xA) =

∫
|f (xA, xB)|2dxB=

∣∣∣∣∣Ne
−(xA−xB)2

4w2
1 e

−(xA+xB)2

16w2
2

∣∣∣∣∣
2

dxB, (33)

while

p (xB) =

∫
|f (xA, xB)|2dxA=

∣∣∣∣∣Ne
−(xA−xB)2

4w2
1 e

−(xA+xB)2

16w2
2

∣∣∣∣∣
2

dxA, (34)

and where

N=
1

2πw1w2
. (35)
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The same relations hold for the momentum basis (for simplicity we do not
repeat here these equations), i.e.,

IMφ
(A : B) = −

∫
p (pA, pB)log2

(
p (pA, pB)

p (pA) p (pB)

)
dpAdpB. (36)

One can readily see that (36) is, in fact, the mutual information that can
be extracted from a standard coincidence detection at a fixed φ – i.e., the
partial mutual information function (Note: “partial”, in terms of the Radon
transform-based approach means “full” in terms of the standard model at
φ= 0) represents the full mutual information that can be reached in a stan-
dard quantum imaging scenario. The reason behind this: First, in the stan-
dard model, there is no phase modulation φ in any path, which allows no
distinction to be made with respect to φ in the data processing. Second,
the Radon transform-based post-processing allows one to extract more in-
formation from these information slices than the standard scenario without
Radon transform.

From (32) and (36), the partial mutual information function IMφ
(A : B)

of a position-momentum entangled photonic system |ψAB〉 is evaluated as

IMφ
(A : B) = log2

(
σs
σC

)2

= log2

(
4w2

2 + w2
1

4w2
1w

2
2

)2

, (37)

where the noise parameter σC (see (4) and (5)) is not an additive noise, in
contrast to the standard Shannon model [1, 7]. However, by introducing

N=
σ2s

1−σ2
C
σ2
s

≈σC , (38)

which is satisfied if σC�σs, the result is a purely additive noise [1, 7], i.e.,
the partial information function picks up the standard Shannon formula

IMφ
(A : B) = log2

(
1 +

σ2s
N2

)
. (39)

In the Radon transform-based setting, the mutual information function of a
position-momentum entangled photonic system |ψAB〉 for 0≤φ<π is

IR (A:B)=

∫
φ
IMφ

(A:B)dφ

= −
∫
φ

∫
p (xA, xB)log2

(
p (xA, xB)

p (xA) p (xB)

)
dxAdxBdφ

=

∫
φ
µφ (x, p)dφ,

(40)

15



which is the theoretical maximum that can be reached in our setting, not
taking into account the parameters of the measurement apparatus.

In terms of coincidence detection events MA
φ,i and MB

φ,i at the two paths
A and B, at a given φ the correlations can be exactly quantified. Let
MA
φ =

∑
aM

A
φ,i and MB

φ =
∑

bM
B
φ,i, a, b> 0, a6=b.

Then, for the position basis the joint detection probability is as

Pr
(
MA
φ ,M

B
φ

)
=

∫
MA
φ

dxA

∫
MB
φ

dxB|f (xA, xB)|2, (41)

and for the momentum basis it is precisely evaluated as

Pr
(
MA
φ ,M

B
φ

)
=

∫
MA
φ

dpA

∫
MB
φ

dpB|f (pA, pB)|2, (42)

hence the partial mutual information function can be expressed as

IMφ
(A : B) =

∑
MA
φ

Pr
(
MA
φ

)
log2Pr

(
MA
φ

)
+
∑
MB
φ

Pr
(
MB
φ

)
log2Pr

(
MB
φ

)
−

∑
MA
φ ,M

B
φ

Pr
(
MA
φ ,M

B
φ

)
log2Pr

(
MA
φ ,M

B
φ

)
,

(43)
where

Pr
(
MA
φ

)
=
∑
MB
φ

Pr
(
MA
φ ,M

B
φ

)
, (44)

and
Pr
(
MB
φ

)
=
∑
MA
φ

Pr
(
MA
φ ,M

B
φ

)
. (45)

In terms of the joint detection probability, the mutual information under
the Radon transform leads to

IR (A : B) =
∑
φ

∑
MA
φ

Pr
(
MA
φ

)
log2Pr

(
MA
φ

)
+
∑
MB
φ

Pr
(
MB
φ

)
log2Pr

(
MB
φ

)
−

∑
MA
φ ,M

B
φ

Pr
(
MA
φ ,M

B
φ

)
log2 Pr

(
MA
φ ,M

B
φ

))
,

(46)
which indeed quantifies the same amount of information as (40), which con-
cludes the proof.
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3.2 Stronger Violation of Entropic Separability Bound

In this section we reveal that under Radon transform, the separability bound
is violated more significantly than in a standard quantum imaging scenario,
which indicates lower conditional entropy and the higher information trans-
mission capability of a photonic position-momentum entangled state.

Theorem 3 The IR (A : B) mutual information obtained from the Radon
transform is closer to the theoretical maximum max∀ρiI (A : B) = log2 (d)
than the mutual information I0 (A : B) of the standard photon coincidence
detection, where d is the dimension of the detector. At a given d, the entropic
separability bound is violated by more standard deviations in comparison to
the standard model.

Proof. According to the entropic separability bound (SB), the measure-
ment data obtained in the x position and p momentum bases can be used
to quantify the information transmission capability of a photonic entangled
state. The conditional entropy H (A|B) =H (AB)−H (B) in terms of po-
sition and momentum measurements can be rephrased as

H(A|B)x+H(A|B)p= (H(AB)x−H(B)x) +
(
H(AB)p−H(B)p

)
. (47)

From (47), the entropic separability bound can be stated as follows. Any
bipartite position-momentum quantum system can be entangled if only the
following inequality of the entropic uncertainty holds [1, 7]:

SB:H(A|B)x+H(A|B)p< 6.18. (48)

As the detector dimension d increases, one can readily find the following.
The sum of conditional entropiesH(A|B)x+H(A|B)p, H(B|A)x+H(B|A)p
starts to converge to zero, which means that as d increases a deeper and
more appropriate description of the information conveying the capability of
the position-momentum entangled system becomes available. The depth of
the quantum imaging process is limited by the measurement apparatus, i.e.,
the amount of detectable mutual information that is also upper bounded by
precisely max∀ρiI (A : B) = log2 (d).

In a standard model, at a given d, the violation (denoted by SB0) can
be rephrased in terms of the σ standard deviation, as follows [1, 7]:

SB0=H(A|B)x+H(A|B)p=SB· 1

τσ
, (49)
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and

SB0=H(B|A)x+H(B|A)p=SB· 1

τσ
. (50)

If (49) and (50) hold, then the separability bound is violated by τ standard
deviations.

Assuming that in the standard model the violation is τ , for the Radon
transform-based quantum imaging from (46) the violation is κ standard
deviations, as

κ>τ, (51)

and for the entropic separability bound (denoted by SBR) one obtains

SBR=H(A|B)x+H(A|B)p=SB· 1

κσ
<SB0 (52)

and

SBR=H(B|A)x+H(B|A)p=SB· 1

κσ
<SB0, (53)

hence, the violation of the separability bound is stronger at the given di-
mension. This result indicates more significantly the presence of quantum
influences than the standard model, and also reveals that the analyzed space
cannot be simulated (replicated) in a classical framework. These statements
are summarized in Fig. 3.

To demonstrate these statements, we present a numerical analysis. We
use the system parameterization of [1, 7], i.e., the position-momentum entan-
glement is characterized as follows. The input laser source has a wavelength
of 325 nm, and σs= 1500 µm and σC= 40 µm. Based on these parameters,
the optimal mutual information function I0 (A:B) of the standard model in
the position basis at φ= 0 can be exactly evaluated by the joint detection
events (43) at d→∞ as I0 (A : B) ≈ 10 bits/photon.

In the Radon transform the optimum is different; the correct formula
at d→∞ is (46), which leads to IR (A:B)≈13 bits/photon, for the range of
0≤φ<π. Hence, the optimal amount of the extractable mutual information
can be increased in the asymptotic limit of the measurement space. The
same connections hold for the momentum basis.

Using this input system parameterization, the mutual information of
(43) and (46) are shown in Fig. 4. Using the position basis, these quantities
are first depicted in Fig. 4(a) for a fixed dimension, d= 900. In Fig. 4(b),
the quantities are depicted as a function of the dimension, 0≤d≤1000.

The results show that the Radon transform-based model offers higher
extractable mutual information at an arbitrary dimension. The quantity

18



 

Figure 3: The violation of the separability bound (SB). In the stan-
dard model (SB0), the violation is τ standard deviations. In the Radon
transform-based setting (SBR), the violation is stronger, κ>τ standard de-
viations.

IR (A:B) of the Radon transform approximates more precisely the theo-
retical upper bound log2 (d) than the mutual information of the standard
model I0 (A : B). The Radon transform-based measurement setup enhances
the accuracy of the tomography process, and reveals those hidden fractions
that are not sampled and are not processed in the standard model. These
results conclude the proof.

The analysis revealed that for any d, the mutual information obtained
in the Radon transform-based model is closer to the theoretical maximum
than that of the standard model.

3.3 Application in Continuous-Variable Quantum Key Dis-
tribution

In Continuous-Variable Quantum Key Distribution (CVQKD), the infor-
mation is conveyed by Gaussian random distributed coherent states. Let
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Figure 4: (a): The partial mutual information (dashed green) and the full
mutual information obtained by Radon transform (single red) at a fixed
dimension. (b): The mutual information of the standard model and the
Radon transform as a function of the dimension. The theoretical maximum,
log2 (d), is depicted by the dash-dotted purple line. The curves are obtained
from (43) and (46), respectively.

ψ (x, p) be a Gaussian random state in the phase space

ψ (x, p) =
1

2πσ2
e

−(x2+p2)
2σ2 , (54)

with zero mean, i.i.d. Gaussian random position and momentum quadra-
tures x, p ∈ N

(
0, σ2

)
.

The Radon transform for this Gaussian random distribution can be cal-
culated as follows:

R (µ (ρ, φ)) =

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
e

−(x2+p2)
2σ2 δ (ρ−xcosφ−psinφ) dxdp. (55)

Introducing u1=xcosφ+psinφ, u2= −xsinφ+pcosφ, with u21+u
2
2=x

2+p2 [30-
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32], (55) can be rewritten as

R (µ (ρ, φ))=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
e

−(u21+u22)
2σ2 δ (ρ−u1) du1du2

=

∫ ∞
−∞

1

2πσ2

(∫ ∞
−∞

1

2πσ2
e

−u21
2σ2 δ (ρ−u1) du1

)
e

−u22
2σ2 du2

=

∫ ∞
−∞

1

4πσ4
e

−ρ2

2σ2 e
−u22
2σ2 du2

=
1

4πσ4
e

−ρ2

2σ2

∫ ∞
−∞

e
−u22
2σ2 du2

=
1

4πσ4
e

−ρ2

2σ2 ,

(56)

where the last line is justified by the normalization of the Gaussian [30-32].
Using r=x2+p2, one gets the polar form of the Radon-transformed Gaus-

sian as

R (µ (ρ, φ)) = R
(

1

2πσ2
e

−r
2σ2

)
=

1

4πσ4
e

−ρ2

2σ2 , (57)

where ρ=xcosφ+psinφ.

4 Numerical Post-Processing

In this section we reformulate the Radon transform-based quantum imaging
in the language of data processing and interpret it as a numerical post-
processing task.

Lemma 1 Radon transform-based quantum imaging can be implemented by
numerical post-processing on the raw data.

Proof. In (23) and (24) we have seen that parameters (r, φ) can be viewed
as polar coordinates for the (λ1, λ2) plane. We step forward from this point.
Let assume that from the photon coincidence detections, the encoded partial
mutual information function E (µφ (ρφ, φ)) is obtained. First, the values
of φ are discretized as φj=jπ/m, j= 1, . . . ,m. After a normalization of
0≤ρφ< 1, the (λ1, λ2) plane can be restricted to the complex unit circle,
and if n coincidence measurements are performed for each φj , then ρl=l/n,
l= 1 . . .n, which represent mn measurements in overall.

Let µljmn=µ (ρl, φj), then the resulting function can be expressed as

µmn=
n∑
l=1

m∑
j=1

µljmn=IR (A:B) , (58)
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i.e., it contains all information from the mutual information function.
The frequency variable r can also be discretized. From the sampling

theorem follows that in the computation of F
(
µljmn (r, φj)

)
parameter r has

to be parameterized as rf=f/2, f= 1 . . .n.
Applying the results of Theorem 1, one obtains

F
(
µljmn (r, φj)

)
=

∫ 1

0
e−2πirρφµljmndρφ. (59)

This function can be easily evaluated at ρl=l/n by the trapezoidal rule
[30-32]. Using ρl=l/n, φj=jπ/m, and rf=f/2, at a given f the Fourier
transform is evaluated as

F (µ (rf , φj))= 2· 1
n

∑
l

e−2πirfρlµljmn (ρl, φj)

= 2· 1
n

∑
l

e
−2πiml

n µljmn (ρl, φj)

= 2· 1
n
F
(
µljmn (ρl, φj) [f ]

)
,

(60)

where factor 2 is a corollary from the trapezoidal rule.
From (60), a given slice identified with indices i,j can be rewritten as

χ (rf , φj) =F
(
µljmn (ρl, φj) [f ]

)
, (61)

while computing (60) for all ρl=l/n, l= 1 . . .n at a fixed φj results in (27).
The information that is contained in χ (rf , φj) can be represented by a

polar coordinate grid in the frequency domain, and each χ (rf , φj) is a data
point in the grid.

The polar grid point can be rewritten as Cartesian grid points by using
the weighted average of the polar grid points [30-32], as

C (χ) =w1 (χ1) +w2 (χ2) +w3 (χ3) +w4 (χ4) , (62)

where χi are the nearest neighbors, while wi are the weights of the polar
grid data points.

In terms of the Cartesian data points, the function of (61) that is re-
sulted from the photon coincidence detections leads to the inverse Fourier
transformed Cartesian

F−1 (C (χ)) , (63)

22



which, in fact, encodes an information slice (see (10)) of the partial mutual
information function IMφ

(A:B).
Extending the process for l= 1 . . .n, j= 1, . . . ,m, and f= 1 . . .n, the full

mutual information from the Cartesian data points can be recovered as∑
f

∑
j

F−1 (C (χ (rf , φj)))

=
∑
l

∑
j

∑
f

F−1
(
C
(
F
(
µljmn (ρl, φj) [f ]

)))
=
∑
m

IMφ
(A:B)

=IR (A:B) .

(64)

The proof is therefore concluded here.

5 Conclusions

The exact characterization of the information coding and transmission ca-
pabilities that lie in high-dimensional Hilbert spaces is a crucial cornerstone
from the viewpoint of the performance analysis of quantum communication
protocols. Quantum entanglement has several important consequences in
practical engineering. In particular, the high-dimensional entangled quan-
tum systems offer several advantages and benefits in communication sce-
narios, and represent an essential ingredient in high-performance quantum
protocols. Since the possibilities in the physical layer manipulations of quan-
tum imaging are strongly limited, we had to find a different answer for
the sharpening. We introduced a Radon transform-based quantum imag-
ing technique for high-dimensional Hilbert spaces, which uses the raw data
of the measurements and a carefully constructed post-processing for the
enhancing. We showed that the theoretical upper bound of maximally ex-
tractable mutual information can be approached more closely, which allows
a clearer and sharper image to be drawn from the information transmission
capabilities of high-dimensional Hilbert spaces. We also revealed that the
Radon transform-based quantum imaging violates much more significantly
the entropic separability bound than the standard model, which indicates
the presence of stronger quantum influences.
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A Appendix

A.1 Notations

The notations of the manuscript are summarized in Table A.1.

Table A.1: Summary of notations.

Notation Description

µ (x, p) An unknown internal function, x stands for
the position basis, p is the momentum ba-
sis.∫

Mφ,i
µ (x, p)dxdp An abstracted line in the high-dimensional

Hilbert space. An encoded slice E (µ (x, p))
of the partial mutual information function
at a φ, x and p are the position and mo-
mentum components.∫

Mφ,1
. . .

. . .
∫
Mφ,n

µ (x, p)dxdp
Conveys the encoded partial mutual infor-
mation E (µφ (x, p)). Collection of n slices
at a fixed φ.∫

φ

∫
Mφ,1

. . .

. . .
∫
Mφ,n

µ (x, p) dxdpdφ
The encoded full mutual information func-
tion E

(∫
φ µφ (x, p)dφ

)
.

Mφ Collection of n abstracted lines that de-
fines the partial mutual information func-
tion IMφ

(A:B) at a given φ. Represents
n coincidence measurements, evaluated as
Mφ=

∑
nMφ,i.

I0 (A:B) Mutual information in the standard set-
ting. (i.e., φ= 0, with no Radon transform-
ing in the post-processing)

IMφ
(A:B) Partial mutual information, ex-

tracted at a given φ, evaluated as
IMφ

(A:B) =
∫
φ µφ (x, p)dxdpdφ.

IR (A:B) Full mutual information function in Radon
transform, taken at 0≤φ<π.
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f (xA, xB) Biphoton wavefunction in the position ba-
sis.

ρ The difference of the components
from the abstracted origin ρ1.
For a given µ (x, p) at φ, it is
ρ= (x, p) · (cosφ, sinφ) =xcosφ+psinφ.

ρi The ρi parameter of the i -th abstracted
line. The first parameter, ρ1, identi-
fies the imaginary origin in the position-
momentum space.

ρφ The collection of n ρi-s each belong to a
given slice µ (xi, pi).

f (pA, pB) Biphoton wavefunction in the momentum
basis.

2w1 Gaussian width in the x1−x2 direction.

w2 Gaussian width in the x1+x2 direction.

σs Single photon width, σ2s=w
2
2+
(
w1
2

)2
.

σC Conditional width, σ2C=
4w2

1w
2
2

4w2
2+w

2
1
.

d Measurement dimension. Stands for the
measurement space of position and mo-
mentum bases. (Practically, it represents
the resolution of the measurement device
in pixels.)

R (µφ (ρφ, φ)) Radon transform of the function µφ (ρφ, φ).

F−1 Inverse Fourier transform.

φ, 0≤φ<π Phase rotation, used by the PM (Phase
Modulator.)

Fρ (R (µφ)) Fourier transform of R (µφ) with respect
to ρ.

28



Pr
(
MA
φ ,M

B
φ

)
Joint detection probability of measure-
ments MA

φ =
∑

aM
A
φ,i and MB

φ =
∑

bM
B
φ,i,

at a given φ, with respect to the position
basis, as

Pr
(
MA
φ ,M

B
φ

)
=
∫
MA
φ
dxA

∫
MB
φ
dxB|f (xA, xB)|2.

Pr
(
MA
φ ,M

B
φ

)
Joint detection probability of measure-
ments MA

φ =
∑

aM
A
φ,i and MB

φ =
∑

bM
B
φ,i,

at a given φ, with respect to the momen-
tum basis, as

Pr
(
MA
φ ,M

B
φ

)
=
∫
MA
φ
dpA

∫
MB
φ
dpB|f (pA, pB)|2.

Pr
(
MA
φ , φ

)
Detection probability for measurement
MA
φ =

∑
aM

A
φ,i, at a given φ, as

Pr
(
MA
φ , φ

)
=
∑

MB
φ

Pr
(
MA
φ ,M

B
φ

)
.

Pr
(
MB
φ

)
Detection probability for measurement
MB
φ =

∑
bM

B
φ,i, at a given φ, as

Pr
(
MB
φ

)
=
∑

MA
φ

Pr
(
MA
φ ,M

B
φ

)
.

SB Entropic separability bound.

SB0 Entropic separability bound in the stan-
dard model.

SBR Entropic separability bound under Radon
transform.

(r, φ) Polar coordinates in the (λ1, λ2) plane,
where λ1=rcosφ, λ2=rsinφ, and r is
the imaginary frequency parameter,
r2=λ21+λ

2
2.

C (·) Cartesian representation of a polar grid
point χ.
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C (χ) Cartesian data points calculated by the
weighted average of the χ polar grid points
as
C (χ) =w1 (χ1) +w2 (χ2) +w3 (χ3) +w4 (χ4),
where χ (rf , φj) is a data point in the grid.
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A.2 Abbreviations

The abbreviations of the manuscript are summarized as follows.

BS Beam Splitter

CV Continuous-Variable

CVQKD Continuous-Variable Quantum Key Distribution

PM Phase Modulator

SB Separability Bound

SPDC Spontaneous Parametric Down-Conversion
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