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Abstract 
 

We propose a robust control technique for regulation and synchronization of the Generalized 
Lorenz System (GLS) that covers the Lorenz system, Chen system and Lü system. The 
proposed control provides synergy through the combination of the backstepping control and 
time-delay estimation (TDE) technique. TDE is used to estimate and cancel nonlinearities and 
uncertainties, and the backstepping method is adopted to provide robustness against matched 
and mismatched uncertainties. As a result, we observe in numerical simulation that the 
proposed technique shows better performances in regulating and synchronizing the GLS with 
mismatched uncertainties, in comparison with existing schemes. The efficacy of the proposed 
technique is also validated with a circuit-implemented chaotic system.  

 
Keywords: Chaotic system; Robust control; Synchronization; Chaotic circuit; Time-delay 

estimation; Backstepping. 
 

 
1. Introduction 
 

Chaotic behaviors provide various applications based on their irregularity and unpredictability. 
These applications are shown in various fields, including physical, chemical and ecological systems, 
secure communications [1, 2, 45]. A variety of control theories have been applied to manage chaotic 
signals [3–12, 30–36]. Recently, for a faster response and enhanced robustness, hybrid methods have 
appeared in regulating and synchronizing chaotic systems. For example, adaptive control and 
backstepping technique are combined in [8, 13, 14], optimal control and sliding mode control are used 
together in [11], fuzzy logic, adaptive control and sliding mode control are merged in [9, 12, 15, 33]. 
These approaches, however, require a precise chaotic system model, and are vulnerable to parameter 
variations, modeling errors and external disturbances. Moreover, the hybrid methods are quite 
complicated.  
 

In 2008, Jin and Chang incorporated the time-delay estimation (TDE) technique to obtain 
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simplicity and robustness [17]. Jin and Chang’s technique comprises three parts: a TDE part to cancel 
the controlled system’s dynamics, an injection part to endow the desired master system’s dynamics, 
and a convergence part to shape the synchronization error dynamics. It provides fast, accurate and 
robust performance. With the TDE technique, Kim et al. also proposed a regulation and 
synchronization method using terminal sliding mode (TSM) [18]. Kim’s method achieves fast and 
powerful convergence. The aforementioned two methods based on the TDE technique [17], [18] have 
no device for suppressing mismatched uncertainties; they are vulnerable to uncertainties that do not 
satisfy the matching condition.  

 
Suppressing the effect of mismatched uncertainties is important in minimizing the number of 

control inputs and sensors. In this paper, we propose a simple robust technique that is able to care of 
mismatched uncertainties in a chaotic system as well as matched uncertainties, through the 
combination of combine the backstepping technique and TDE technique. The backstepping method 
enables a systematic and recursive procedure for the design of control laws for systems in strict 
feedback form, while TDE enables a simple effective compensation for uncertainties. Therefore, the 
proposed technique provides a single controller that can be applied to any systems in strict feedback 
form even if a precise system model is not identified. In addition of this benefit, uncertainties that 
reside on each equation of chaotic systems can be suppressed by TDE conducted on the equation, and 
all TDE on each equation are governed by the control input. The proposed technique is therefore 
expected to be superior in dealing with mismatched uncertainties.  

 
To verify the efficacy of the proposed technique, we apply the technique to the regulation and 

synchronization problems of the Generalized Lorenz System (GLS) introduced in [21, 22]. The GLS 
covers the well-known classical Lorenz system [23], Chen system [24] and Lü system [25] in one 
formulation. We perform a comparative study with the TDE-based controllers proposed in previous 
works [17, 18]. The proposed technique is experimentally validated with a circuit-implemented 
chaotic system.  

 
This paper is an extension of our previous work originally reported in our short proceeding [1]. In 

this paper, we additionally provide the stability analysis for the closed-loop system with the proposed 
technique, and present a real experimental data. Experimental implementation is crucial for practical 
applications of chaos [11, 26–29] because the signal is always contaminated by noise. Numerical 
differentiation of state variable is required to implement the proposed technique, and it can easily 
amplify the noise effect; thus, the proposed technique should be verified through experiment or, at 
least, computer simulation considering noise. In this paper, we will verify the proposed control 
through physical chaotic systems with analog circuit elements.  

 
This paper begins with the design procedures of controllers each of which is tailored to the 

regulation and synchronization problems, respectively, with a brief explanation of the GLS. In the 
following sections, the proposed controllers are validated through a simulation study and experimental 
study. We allocate subsections separately to the regulation and synchronization parts as well in these 
validation studies. Finally, we make remarks in the conclusion section.  

 
 
2. Controller development 
 
2.1 Regulation 
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 The Generalized Lorenz System (GLS) [2] is described as 
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where [ ]1 2 3 ,Tx x x=x  3 ,Rλ ∈  and matrix A has eigenvalues 1 2 2,3 1, , 0, 0Rλ λ λ λ∈ < > . 

The control objective is to regulate x  to a specific constant 
2
1

1 1
3

[ ]Td
d d d

xx x
λ

= −x . If 1( )x t  

converges to a specific point 1dx , state 2 ( )x t  converges to the specific point 1dx  as well from the 

fact that 1( ) 0x t = . Once 1( )x t  and 2 ( )x t  converge to specific a point 1dx , state 3( )x t  converges 
to a certain point based on the characteristic that the parameter (eigenvalue) 3 0λ <  (Eq. (1)).  
Considering this fact, we can separate the GLS into two parts as follows: 
 

 
1 11 1 12 2 1

2 21 1 22 2 1 3 2

3 3 3 1 2

,
First part:   

,
Second part: ,

x a x a x d
x a x a x x x d
x x x xλ

= + +
 = + − +

= +







 (2) 

 
where 1d  and 2d  denote unknown disturbances, which are assumed to be continuous and bounded. 
 
Now, it is required to control the first part of the generalized Lorenz system to achieve the control 
objective. The control of the first part can be achieved by adding a control input u  to the differential 
equation of state 2x . In order to design a robust backstepping technique, we transform the first part 
of Eqs. (2) as follows: 

 

 1 11 1 12 2 1 1 1 1 2 1 1 1 2

2 21 1 22 2 1 3 2 2 2 2 2 2 2

ˆ, , ,
         

ˆ, , ,
x a x a x d x f g x x h g x
x a x a x x x d u x f g u x h g u
= + + = + = +  

⇒ ⇒  = + − + + = + = + 

  

  

 (3) 

 
where 

1 11 1 1 1 12

2 21 1 22 2 1 3 2 2

, ,
, 1,

f a x d g a
f a x a x x x d g
= + =
= + − + =

             (4) 

 
and ( 1,2)ih i =  are terms that include all uncertainties: 
 

1 11 1 12 1 2 1

2 21 1 22 2 1 3 2 2

ˆ( ) ,
ˆ(1 ) ,

h a x a g x d
h a x a x x x d g u
= + − +
= + − + + −

 (5) 
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where 1ĝ  and 2ĝ  are constants. 
  
 
With a definition 1 1 1de x x− , a Lyapunov function 1V  can be designed as 
 

 2
1 1

1 .
2

V e  (6) 

 
The time derivative of 1V  is 
 
 1 1 1 1 1 1 1 2ˆ( ).dV e e e x h g x= = − −

   (7) 
 
From Eq. (7), treating 2x  as a virtual control effort, the ‘desired control effort value 2dx ’ for 2x  

is chosen so that the negative definiteness of 1V  is guaranteed. 
 

 
2

1 1 1
1

2 1 1 1 1 1

,
ˆ ( ),d d

V C e
x g x h C e−

= −

+ +






 (8) 

 
where 1C  is a design parameter.  
 
Since 1

2 1 1 1 1 1ˆ ( )d dx g x h C e−= − +  is a desired control effort and differs from the real state 2x , we 

denote this ‘desired control effort value’ as 2dx . It is then necessary to find a way to realize 2dx . The 

next step of the backstepping design is to make the error between 2x  and 2dx  as small as possible. 
 
The actual control effort u  is designed so that the error between 2x  and 2dx  converges to zero. 

The error between 2x  and 2dx  is defined as follows: 
 

 2 1 2 2ˆ ( )de g x x− . (9) 
 
We define a Lyapunov function candidate 2V  as  
 

 2
2 2

1
2

V e . (10) 

 
Differentiating 2V  with respect to time gives 
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 2
2 2 2 2 1 2 2 2 1 1 1 1 2 2 2ˆ ˆ ˆ ˆ( ) ( )d d 1 1 2V e e e g x x e x h C e g h g g u C e= = − = − + − − = −


     . (11) 
 
From Eq. (11), the actual control effort u  is chosen so that the negative definiteness of 2V  is 
guaranteed. 
 
 1

1 2 1 1 2 1 1 1 2 2ˆ ˆ ˆ( ) ( ),du g g x g h h C e C e−= + + + +

   (12) 
 
where 2C  is a design parameter. 
  
Now, we need to estimate the value of the term 1 2 1ĝ h h+  . Differentiating the first equation of Eqs. (3) 
with respect to time gives 
 
                1 1 1 2ˆ ˆ ˆ ,1 2x h g h g g u H Bu= + + = +

                                   (13) 
 

where 1 2 1 1 2ˆ ˆ ˆ, .H g h h B g g+  
                                                           

 
With the assumption that 1d  and 2d  are continuous, it is reasonable to regard H as a continuous 
function. It is obvious that the states of GLS are continuous (see Eq. (1)). Then, we could build an 
approximation ( ) ( )H t H t L≅ − , provided that the sampling period L  is sufficiently small.  This 
estimation, called TDE [37–44], is formally defined as  
 
 ˆ ( ) ( ).H t H t L= −  (14) 
 
For a practical use, the estimate of the term H can be obtained as, using Eq. (13), 
 
              1

1
ˆ ( ) ( ) ( ) ( ).H t H t L x t L B u t L−= − = − − −                              (15) 

 
 TDE is obtained by using the previous-step sensor reading and record of the previous-step input. If 
the time delay L is sufficiently small, the TDE can estimate and cancel out the system nonlinearities 
and uncertainties of the system dynamics [37–44]. Therefore, the TDE technique provides simplicity 
and robustness against uncertainties without substantial computation load. Substituting Eq. (15) into 
Eq. (12), with the relationship 2 1 1 1e e C e= + , leads to the final form of the actual control input as 
follows: 
 

1
1 1 1 2 1 1 2 1( ) ( ( ) ( ) ).du u t L B x x t L C C e C C e−= − + − − + + +    (16) 

 
The control gains 1C  and 2C  determine how fast the error 1e  converges. In Eq. (16), the 

delayed acceleration is calculated by numerical differentiation [37–44], as 
( ) 2

1 1 1 1( ) ( ) 2 ( ) ( ) /x t L x t x t L x t L− = − − +

.  
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2.2 Stability Analysis  

 
The stability analysis of the overall closed-loop system is performed and the sufficient condition for 

closed-loop stability is derived. If the exact value of H was able to be identified, the closed-loop 
system with the control input would be asymptotically stable, based on the Lyapunov stability 
theorem. However, since the value of H is estimated using TDE, stability is not guaranteed due to the 
difference between the real value of H and its estimate. Here, we analyze the stability of the closed-
loop system taking the difference into account, grounded on the proof presented in [19]. 

 
-1

( ) ( ) ( )[ - ],t t tu B v H=


                                                  (17) 
 
where ( ) 1 ( ) 1 2 1( ) 1 2 1( )( ) .t d t t tv x C C e C C e+ + + 

  
 
Differentiating the first equation of (3) with respect to time gives 

 
    1( ) ( ) ( ) .t t tx H Bu= +                                                     (18) 

 
Substituting Eq. (17) into Eq. (18) yields 
 
           1( ) ( ) ( ) ( )- - .t t t tx v H H=



                                                  (19) 
 
With TDE error ε(t) defined as 

 

( ) ( ) 1( ) ( ) ( )- - ,t t t t tv x H Hε =



                                            (20) 

 
we obtain the error dynamics of the proposed control:            
 
           1( ) 1 2 1( ) 1 2 1( ) ( )( ) .t t t te C C e C C e e+ + + =                                       (21) 
 
From the error dynamics, the tracking error e1(t) is influenced by TDE error ε(t). If ε(t) is asymptotically 
bounded, then the error dynamics is also asymptotically bounded [19], and consequently the overall 
closed-loop system is stable. Therefore, we focus on the boundedness of ε(t) from now on. To this end, 
a differential equation representing the dynamics of ε(t) is derived.  
 

1( )tx in Eq. (3) can be arranged as follows: 
 
           1( ) ( ) ( ) ( ) ,t t t tx a B u= +                                                   (22) 

 
where      ( ) 1( ) 2( )t t tB g g= ,                                                      (23) 
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( ) 1( ) 1( ) 2( ) 1( ) 2( ) .t t t t t ta f g x g f= + +

                                         (24) 

 
The combination of Eq. (18) with Eq. (22) gives 
 
             ( ) ( ) ( ) ( )[ ] .t t t tH a B B u= + −                                            (25)                                           

 
Using Eq. (20), we can arrange Eq. (25) as follows: 
 
        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )- [ - ] - ( [ - ] ).t t L t t L t L t L t t tH H a B B u a B B uε ----   = = + +                 (26) 
 
Substituting Eqs. (15) and (19) into Eq. (26) gives 
 
          1

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1( ) ( )- [ - ] -[ - ][ (- )].t t L t t L t L t t L t L ta a B B u B B u B x vε -
-----    = + + +         (27) 

 
From the above equations, we derive the following relationships: 
 
                -1

( ) ( ) ( )[ - ],t L t L tu B x a-- =                                            (28)                                           
and  
                1( ) ( ) ( )- .t L t L t Lx a ε---  =                                             (29) 

 
Finally, substituting Eqs. (28) and (29) into Eq. (27) and rearranging it give 
 
          -1 -1

( ) ( ) ( ) 1( ) ( ) 2( )[ - ] [ - ] ,t t t L t L t t LI B B I B Bε ε η η---  = + +                           (30) 
 
where    1 ( )

1( ) ( ) ( ) ( ) ( ) ( ) ( )[ - ][ - ] - ,n
t L t t L t L t t L tI B B x a a aη -
----   = +                               (31) 

         2( ) ( ) ( )- .t L t t Lv vη -- =                                                      (32)                           
 
                 

Taking the same approach presented in [19], the dynamics of ε(t) in Eq. (30) can be closely 
approximated by the dynamics behavior of the following sampled-data system (typically, control is 
carried out in the digital environment):  
 
         -1 -1

( ) ( ) ( 1) 1( 1) ( ) 2( 1)[ - ] [ - ] .k k k k k kI B B I B Bε ε η η---  = + +                           (33) 
 
Eq. (33) is a first order time-varying difference equation in which 1( 1)kη − and 2( 1)kη − , from the 
viewpoint of ε(k), are viewed as external inputs acting as disturbances. Next, we establish a sufficient 
condition for the convergence of ε(k) based on Eq. (33). We assume that the convergence of ε(k) implies 
the convergence of ε(t) [3]. We further assume that 1η  and 2η  are bounded, and if the eigenvalues 
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of -1
( )- kI B B  in Eq. (33), denoted by ξ(k), satisfy the condition that -1 < ξ(k) < 1, then ε(k) 

asymptotically converges to 0. For real systems, 1 2( )B g g 

 is dependent on target system parameters 

1 2,g g that are difficult and time-consuming to estimate exactly. In practice, -1B can be tuned without 
knowledge of the target system. We would recommend starting with a large positive initial value of 

to tune the system performance. 
 
 
2.3 Synchronization 
 
Synchronization between two chaotic systems is achieved when each state of a slave chaotic system 
follows its corresponding state of a master chaotic system. Now, we  apply the control technique to  
synchronization between two identical chaotic systems with the different initial values using one 
control input. 
The master generalized Lorenz system and slave generalized Lorenz system are given as, respectively, 
 

1 11 1 12 2

2 21 1 22 2 1 3

3 3 3 1 2

,
,

,

m m m

m m m m m

m m m m

x a x a x
x a x a x x x
x x x xλ

= +
= + −
= +







 (34) 

 

                       
1 11 1 12 2

2 21 1 22 2 1 3

3 3 3 1 2

,
,

,

s s s

s s s s s

s s s s

x a x a x
x a x a x x x
x x x xλ

= +

= + −

= +







 (35) 

 
where 3

1 2 3( , , )T
m m m mx x x R= ∈x denotes the state variables of the master system, and

3
1 2 3( , , )T

s s s sx x x R= ∈x denotes the state variables of the slave system. 
 
With the state errors between the slave system and the master system defined as 

 
 1 1 1 2 2 2 3 3 3, , ,s m s m s me x x e x x e x x− − −    (36) 
 
the error system can be derived as 
 

1 11 1 12 2

2 21 1 22 2 1 3 1 3 3 1

3 3 3 1 2 1 2 2 1

,
,

.
m m

m m

e a e a e
e a e a e e e e x e x
e e e e e x e xλ

= −
= + − − −
= + + +







 (37) 

 
When the error states converge to zero, synchronization between two systems is achieved. Note that 
the parameter (eigenvalue) 3λ  is below zero. With the fact that the differential equation of the state 

3 ( )e t converges to zero when 1( )e t  and 2 ( )e t converge to zero, the synchronization between two 

1B−
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systems can be achieved by adding a control input to the differential equation of the state 2e . That is, 

the control input is added to the differential equation of the state 2sx of the slave system. 
 

 
1 11 1 12 2

2 21 1 22 2 1 3 1 3 3 1

3 3 3 1 2 1 2 2 1

,
First part:   

,
Second part: .

m m

m m

e a e a e
e a e a e e e e x e x u
e e e e e x e xλ

= −
 = + − − − +

= + + +







 (38) 

 
The proposed control can be designed for the first part of Eqs. (38) with the same procedure of 
regulation in Section 2. The first part can be rewritten as 
 

 1 1 1 2

2 2 2

ˆ ,
ˆ .

e h g e
e h g u
= +
= +





 (39)                                                                                 

 
The first part is in the same form with Eq. (3). The control input can be derived as follows in the same 
way proposed in Section 2: 
 
 1

1 1 1 2 1 1 2 1( ) ( ) ( ( ) ( ) ).mu t u t L B x x t L C C e C C e−= − + − − + + +    (40) 
 
 
We emphasize that all uncertainty factors in the first part can be dealt with by TDE as long as they are 
included in 1h and 2h . 
 
 
3. Numerical simulation 
 
 3.1 Regulation of the Lorenz system 
 
As an example of the generalized Lorenz system to be controlled, the Lorenz system is chosen. The 
Lorenz system is simple but captures various features of the generalized Lorenz system. To show the 
robustness of the proposed controller, we take unstructured uncertainties (i.e., disturbances) as well as 
structured uncertainties (i.e., parameter variations) into account. Bounded continuous disturbances are 
considered in the differential equations of the state x  and state y  for more practical circumstances 
[4]. In addition, the variations of parameters σ , r , and b  are also considered. Then, the Lorenz 
system is described as 
 

 
1

2

( )( ) ,
( ) ,

( ) ,

x y x d
y r r x y xz d u
z xy b b z

σ dσ
d

d

= + − +
= + − − + +
= − +







 (41) 

 
where 1d  and 2d denote disturbances; u a control input; , ,r bδσ δδ   the corresponding variations 
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of the parameters , , ,r bσ  respectively. 
 

The parameters of the Lorenz system are selected as 10, 28, 8 / 3.r bσ = = =  The initial values of 
each system are set to be (x0, y0, z0) = (10, 0, -10). A fourth-order Runge–Kutta method is used to 
solve the systems with step size 0.0001 s. Parameter L is set to 0.001 s meaning sampling frequency = 
1 kHz in digital implementation. Note that the sampling frequency is sufficiently larger than the 
Nyquist frequency of the Lorenz system. The design parameters C1 and C2 are chosen as 15 to force 
the error dynamics of the controlled system 1 1 2 1 1 2 1( ) 0e C C e C C e+ + + =   to achieve critical 
damping. The control gain 𝑩𝑩� is tuned to 11. The control input is activated at t= 5 s and the regulation 
point is designed as ( , , ) (5,5,9.375), 5 .d d dx y z t s= ≥  The mismatched and matched disturbances 
are given as 1 cos(5 )d tπ=  and 2 cos(5 ).d tπ=  Parameter variations are set to be 0.1, 0.2rδσ δ= =  
and 0.1bδ = , respectively.  

 
The simulation results of the proposed controller are shown in Fig. 1. Figs. 1 (a) and (b) display the 

time responses of the states of the Lorenz system in the presence of the matched uncertainties alone 
and in the presence of the matched and mismatched uncertainties. The Lorenz system is regulated to 
the desired state fast and accurately even under the matched disturbance, mismatched disturbance and 
parameter variations. Fig. 1 (c) shows the errors between xd and x during the steady state fall down 
below ±0.0006. The steady error improves if the design parameters C1 and C2 are set to higher values. 
To meet the discontinuous shifts of the desired regulation points at t = 5 s, the control inputs 
drastically soar as shown in Fig. 1 (d). 

 
 
 
 
 
 
 
 
 
 
 
 

(b) (a) 
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Fig. 1 Responses of the Lorenz system in the presence of (a) a matched disturbance and (b) matched 
and mismatched disturbances. The time evolution of (c) error states e1 and (d) control inputs u for the 
two cases. The control input is exerted at time 5 s.  

 

 
Fig. 2 Time evolution of (a) states x and (b) control inputs u with the controllers proposed in [17] and 
[18], and with the proposed control. The control input is exerted at time 5 s.  
 

Additionally, we compare the proposed controller with two TDE-based controllers proposed in [17, 
18]. The gains are set as k1 = 10, k2 = 50 for Eq. (10) in [17]; α = 20, β = 10, γ = 0.6 for Eq. (13) in 
[18]. Both matched and mismatched uncertainties are considered. Fig. 2 shows the responses of the 
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state x of the Lorenz system and control input u, respectively. The proposed controller shows the 
smallest steady state error among the three.  

 
The two controllers proposed in [17, 18] use TDE for only the second equation of the controlled 

system; thus, mismatched uncertainties on the first equation cannot be suppressed. The proposed 
controller can compensate for the mismatched uncertainties by performing TDE on both the first and 
second equation.  
  
 
3.2 Synchronization of the Lorenz systems 
 
The Lorenz system is chosen as an example of the GLS as in the regulation case. The master and slave 
systems can be expressed as, respectively, 
 

    

( ),
( , , ) : ,

,

m m m

m m m m m m m m
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(43) 

where , ,m m mx y z ∈ℜ  denote the state variables of the master system; , ,s s sx y z ∈ℜ  denote the 
state variables of the slave system; , ,b rσ ∈ℜ  are parameters. 

 
The initial values of the master system ((xm, ym, zm) in Eq. (42)) are (xm0, ym0, zm0) = (10, 0, -10). The 
initial values of the slave system ((xs, ys, zs) in Eq. (43)) to be controlled are set as (xs0, ys0, zs0) = (-10, 
0, 10). The state variables of the two Lorenz chaotic systems with the different initial values are 
shown in Fig. 3. The parameters of both Lorenz systems were selected as 10, 28, 8 / 3.r bσ = = =  
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Fig. 3 Time evolution of states of (a) the master Lorenz system and (b) slave Lorenz system. 

 
 

The error system between the master and slave systems can be written as 
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where x m se x x− , y m se y y− , .z m se z z−  
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Fig. 4 Time evolution of the master and slave systems: (a) xm and xs, (b) ym and ys, (c) zm and zs. (d) 
Synchronization errors. 
Bounded disturbances and parameter variations are accommodated as shown in Eq. (44). We assume 
disturbances as 1 sin(100 )d z=  and 2 cos(100 ).d x=  Parameter variations 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿 are given as 
0.1, 0.2, and 0, respectively. The mismatched parameter variation 𝛿𝛿𝛿𝛿 is not considered since it is 
irrelevant to control performances. Both C1 and C2 in Eq. (40) are given as 100 to achieve critical 
damping when the first error state converses. The larger absolute values of C1 and C2 result in the 
smaller errors. The control input is activated at 3 s, and the control gain 𝐵𝐵�  is tuned to 50.   
 

The simulation results of synchronization between the two systems are shown in Fig. 4. Fig. 4 
exhibits that the state variables of the slave Lorenz system, which is synchronized from t = 3 s with 
the master system. The trajectories of the states of the master system and slave system tightly overlap 
each other, respectively. The error states converge to zero fast and accurately even under the matched, 
mismatched disturbances and parameter variations as shown in Fig. 4(d). The control input suddenly 
fluctuates at t = 3 s due to the shifts of the slave system’s states toward the desired states at t = 3 s.  

  
We have compared the performance of the proposed controller for the synchronization case with 

that of Kim’s controller in [18]. Both of the techniques provide a single controller, which is applied to 
the second equation of the slave system. The gains are α = 200, β = 100, γ = 0.6 for Eq. (31) in [18]. 
Fig. 5 presents the time trajectories of error states and control inputs.  

The proposed controller exhibits the better performance in comparison with Kim’s controller for 
error state ex. This proves the efficacy of the proposed controller in dealing with mismatched 
uncertainties. Meanwhile, the proposed controller shows the larger synchronization error ey. This 
result comes from the fact that the proposed control is originally designed to suppress the first error 
state, while Kim’s controller is designed to suppress only the second error state, assuming that the first 
and third error equations are internally stable.  
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Fig. 5 Time evolution of (a) error state ex, (b) error state ey, (c) error state ez, and (d) control inputs 
under the control in [18] and the proposed control. The controllers are activated at 3 s. 
4. Experiment 
 
4.1 Regulation of the Lorenz system 
 

In this section, we validate the proposed technique in controlling a circuit-implemented chaotic 
system. The Lorenz system is chosen as an example of the generalized Lorenz system. Considering 
the fact that the state variables of the system occupy a wide dynamic range with values that exceed the 
reasonable power supply limits of electric elements, we scale variables in a similar way as proposed in 
[11]. 

With the state scaling factors /10, /10, /10.x x y y z z′ ′ ′= = = , the Lorenz system is scaled down to 
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(45)

                     
 

The state variables have similar dynamic ranges and circuit voltages remain well within the range 
of typical power supply limits. A time scaling factor should be introduced as Tt G t= , where TG
denotes a time scaling factor. Then, the scaled system is expressed as
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Four operational amplifiers (LF412, National Semiconductor) and associated circuitry perform 

operations of sum, multiplication, and integration. Two analog multipliers (AD633, Analog Devices) 
implement the quadratic terms in the circuit equations. A set of state equations that govern the 
dynamical behavior of the circuit is obtained as 
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For setting 10, 28, 8 / 3,r bσ = = =  the resistors are selected as: 

1 2 3 4 5 6 7100, 36, 10, 1000, 10, 374 ( ).R R R R R R R k= = = = = = = Ω  
 
The capacitors are selected as 
 1 2 3 47p p pC C C= = = (nF). 
 
The Lorenz circuit has a bandwidth of signal x′ in about 0 – 120Hz. The time scaling factor TG  

of this circuit is estimated as 22. A digital signal processor (DSP, TMS320F2812, Texas Instruments) 
and TMS320F28X EVM (Texas Instruments) are used for signal processing. Signal conditioning 
circuits are also considered for ADC input to remain in the range of 0~3V and DAC input to remain in 
the range of 0~4.096V. A schematic and picture of the experiment settings are shown in Figs. 6 and 7. 
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Fig.6 Schematic diagram of control with a DSP EVM. 

 

 
Fig.7 Overall implementation for control of a chaotic circuit. 

 
The control objective is to regulate x′ to 1 V. In the control law (16), the control gain 𝐵𝐵�  is tuned 

to 90000, and 1C  and 2C  are both set as 350. The sampling frequency is set as 2 kHz to be 
sufficiently larger than the Nyquist frequency 240Hz, which is an upper bound on the highest 
frequency the signal .x′  

Figs.8 (a) and (b) show the waveform of the state x′ and the corresponding control input  from 
the Lorenz circuit, which are measured by an oscilloscope, respectively. The control input is activated 
at t = 0.4. It is observed that the state x′ intends to converge to 1V. However, the vibration of the 
signal x′ is displayed during the steady state. The reasons that lead to the vibrations at steady state 
include unstable power supply to the DSP, ADC resolutions, and the external noise. 

u′
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Fig.8 Experiment results: time evolution of (a) the state x′ and (b) control input u′ . 

 
 
 
4.2 Synchronization of the Lorenz systems 
 

Next, we conduct synchronization between two identical Lorenz circuits. Firstly, for the control 
input (40), the gain 𝐵𝐵�  is tuned to 250000. And, both 1C  and 2C  are set as 550. And the sampling 
frequency is set as 3.33kHz. The experiment results show that the state x′ of the slave system well 
follows the state dx′ of the master system, as shown in Figs.9 (a) and (b). Fig. 10 displays the control 
input measured by an oscilloscope. 

Uncertainties in the experiments result from external noise, unstable power supply to the DSP, and 
tolerances of the electronic elements including resistors and capacitors. In particular, in the case of 
synchronization, the two chaotic circuits are not exactly identical due to the tolerances that give 
parameter variations. The synchronization error is measured as -33mV ~ 66mV while the magnitude 
of the desired trajectory rises up to 2.32V. Even in the presence of those uncertainties, we observe that 
the proposed control achieves synchronization between the two Lorenz circuits. 
  
  
 

 (a) (b) 

(a) (b) 

This article is protected by copyright. All rights reserved.



            
Fig.10 Time evolution of states mx′  and sx′  (a) before and (b) after synchronization. 

     

 
Fig.11 Time evolution of control input u′ for synchronization. 

 
 
5. Conclusion 
 
We have proposed a robust backstepping technique using time-delay estimation (TDE) to regulate and 
synchronize the Generalized Lorenz System (GLS) that contains the Lorenz system, Chen system and 
Lü system. The control technique provides a single controller that can be applied to any chaotic 
system in strict feedback form for regulation and synchronization, even if a precise model is 
unavailable. Mismatched uncertainties are managed by multiple TDEs. Numerical simulation results 
demonstrate fast, accurate and robust performance of the proposed technique in the presence of 
matched, mismatched disturbances and parameter variations. The proposed technique is 
experimentally verified with physical chaotic systems constructed by analog circuit elements. The 
experimental results show satisfactory performances.  
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Fig.6 Schematic diagram of control with a DSP EVM.
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Fig.7 Overall implementation for control of a chaotic circuit.

Fig.8 Experimental results: time evolution of (a) state x¢ and (b) control input u¢ .

       

Fig.10 Time evolution of states mx¢  and sx¢  (a) before synchronization and (b) 

after synchronization.
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Fig.11 Time evolution of control input u¢ for synchronization.
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The proposed control provides synergy through the combination of the backstepping control and 
time-delay estimation (TDE) technique. TDE is used to estimate and cancel nonlinearities and 
uncertainties, and the backstepping method is adopted to provide robustness against matched 
and mismatched uncertainties. 
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