
Acceleration and energy consumption optimization in cascading classifiers
for face detection on low-cost ARM big.LITTLE asymmetric architectures

A. Corpas 1, L. Costero 2, G. Botella 2, F. D. Igual 2, C. García 2, M. Rodríguez 1
1 Dept. of Architecture and Computer Technology, ETSIIT, University of Granada, 18071, Granada, Spain.

{albertocorpas@correo.ugr.es, manolo@ugr.es}

2 Dept. Computer Architecture and Automation, Complutense University of Madrid, 28040, Madrid, Spain.
{lcostero, gbotella, figual, garsanca} @ucm.es

Abstract:

This paper proposes a mechanism to accelerate and optimize the energy consumption of a face detection
software based on Haar-like cascading classifiers, taking advantage of the features of low-cost Asymmetric
Multicore Processors (AMPs) with limited power budget. A modelling and task scheduling/allocation is proposed
in order to efficiently make use of the existing features on big.LITTLE ARM processors, including: (I) source-code
adaptation for parallel computing, which enables code acceleration by applying the OmpSs programming model,
a task-based programming model that handles data-dependencies between tasks in a transparent fashion; (II)
different OmpSs task allocation policies which take into account the processor asymmetry and can dynamically
set processing resources in a more efficient way based on their particular features.
The proposed mechanism can be efficiently applied to take advantage of the processing elements existing on
low-cost and low-energy multi-core embedded devices executing object detection algorithms based on
cascading classifiers. Although these classifiers yield the best results for detection algorithms in the field of
computer vision, their high computational requirements prevent them from being used on these devices under
real-time requirements. Finally, we compare the energy efficiency of a heterogeneous architecture based on
asymmetric multicore processors with a suitable task scheduling, with that of a homogeneous symmetric
architecture.

Keywords: OpenMP, OmpSs, AMP, Odroid XU4, Raspberry Pi, Viola-Jones algorithm, big.LITTLE ARM
asymmetric architecture, face detection, task parallelization, energy efficiency.

1.- Introduction

Face detection [1] constitutes a significant part of computer vision, and is especially related to communication
and human-computer interaction. However, given that the human face is a dynamic object with a high degree of
variability in its appearance, its detection becomes a challenging task to deal with in computer vision. Due to the
complexity of the algorithms related to face detection, a large amount of computational resources and memory is
required. Hence, the software implementations of these algorithms become quite inefficient when they are
required to be executed on low-cost and low-energy embedded systems due to their limited resources and low
performance. In these cases, optimization techniques based on software parallelization can be applied to
accelerate the parts which require more computational resources in detection processes.

In this context, the most successful algorithms for face detection are usually executed on real-time systems on
high-end CPUs in order to leverage their high processing power [2,3]. However, similar implementations
executed on low-power CPUs (e.g. those present on mobile devices) will not work fast enough to meet real-time
restrictions. This gap in performance is caused by the diversity of features existing on the processors used in
mobile devices, which are optimized to be low-cost and provide low energy consumption, and therefore their
performance is behind that of server-level processors.

Currently, mobile devices are evolving from single-core CPUs to multi-core CPUs, following a similar progression
to that observed in general-purpose architectures over the last decade. As of today, smartphones and handheld
devices commonly feature multi-core processors with up to eight processing cores, and there is no doubt that the
number will increase in forthcoming products. This same trend applies to embedded microcontrollers.

This trend implies changes in the way software developers deal with performance improvement. Thus, improving
the execution performance of a sequential application, initially written to be executed on traditional single-core
CPUs, implies dramatic changes in the implementations to be able to exploit the potential parallelism of multi-
core CPUs. In this sense, the OpenMP API [4] is one of the best options in parallel programming for shared
memory architectures, since it is supported on different operating systems, compilers and hardware devices,
even being able to work on mobile devices nowadays.

The OpenMP standard supports task-based parallelism since its third release. This functionality relies on task
and data dependencies annotations in the source code provided by the developer, and then exploited at runtime

by a task scheduler to exploit out-of-order execution without user's intervention. These kind of extensions were
inspired, among others, by the efforts introduced in OmpSs [5], which is a portable and scalable programming
model that provides programmers with an easy and flexible interface to develop parallel applications with minimal
code modifications from sequential implementations. The OmpSs API uses a programming paradigm based on
directives which make it possible to expose parallelism of an already existing sequential program. Once the
application is compiled with Mercurium [6], which is the OmpSs compiler, it can be executed through Nanox [7],
the OmpSs runtime, which consists of a set of libraries in charge of controlling the program’s execution and
making sure this is completed in the most efficient way.

In asymmetric multi-core architectures, the so-called big.LITTLE [8] ARM processors are especially relevant.
Big.LITTLE processors include powerful cores (big) together with other low-energy and low-performance cores
(LITTLE), both sharing the same instruction set (ISA). In this work, the chosen asymmetric architecture is the
Odroid XU4 [9, 10, 11], as shown Figure 1. This board consists of a Samsung Exynos 5422 SoC (System-On-
Chip) built on 28nm, which includes an 8-core big.LITTLE ARM processor. The eight cores are grouped into two
clusters with four cores in each one; the big cluster features 4 high-performance Cortex A15 cores, while the
LITTLE cluster includes low-power Cortex A7 cores. For comparison purposes, we also use a Raspberry PI 3 B+
[12,13]; this board features a 4-core CPU based on ARM Cortex-A53 and represents a good example of an
affordable embedded device which, together with the Odroid XU4, is comparable to CPUs existing in current
smartphones (Android, iPhone and Windows Mobile) since their processors also include several ARM cores [14].
Furthermore, any improvement made to this platform is easily portable to smartphones and tablets.

Figure 1: Odroid XU4 (left) and Raspberry Pi 3 Model B+ (right) boards.

2.- Method used and testing environment

Face detection consists in determining whether there is a face in an arbitrary image, and if this is the case,
identifying the position of the face. Therefore, a reliable face detector must be able to find all the existing faces in
an image. The traditional methods for face recognition can be split into two groups: (I) holistic methods, which
are based on image correlation and use comparison models for the recognition process; (II) geometric methods,
which compare different geometric characteristics of the faces. Thus, there are several algorithms for face
detection, each one based on any of the known techniques for this purpose, such as neural networks, closest
neighbor, etc. Among them, one of the most frequently implemented and with the greater advantages is the
algorithm proposed in 2003 by Viola-Jones [15]. This method was the first one to offer robust detection in real
time, allowing fast image processing and a high detection rate. It is also worth mentioning that the algorithm can
also be trained to detect any kind of object. In this context, the Viola-Jones algorithm [15] has been chosen for its

Exynos 5422 hosting eight processors, 4 cluster Big and 4 cluster

LITTLE

Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit 1.4GHz

Exynos 5422 Processor

CPU

Cluster Big (2 GHz) Cluster LITTLE (1,4 GHZ)

2MB L2 -Cache

Cortex-A5
32KB I/D -

Cache

Cortex-A5
32KB I/D -

Cache

Cortex-A5
32KB I/D -

Cache

Cortex-A7
32KB I/D -

Cache

Cortex-A5
32KB I/D -

Cache

Cortex-A7
32KB I/D -

Cache

Cortex-A7
32KB I/D -

Cache

Cortex-A7
32KB I/D -

Cache

512KB L2 -Cache

Broadcom BCM2837B0 Processor

CPU

(1,4 GHz)

Cortex – A53
32KB I/D - Cache

512KB L2 - Cache

Cortex – A53
32KB I/D - Cache

Cortex – A53
32KB I/D - Cache

Cortex – A53
32KB I/D - Cache

implementation in the proposed system for face detection. For this purpose, a C++ simplified implementation of
the algorithm will be used, which has fixed training parameters and provides a high detection rate for a broad
range of input images.

Our main goal is to adapt, evaluate and tune a sequential C++ implementation targeting asymmetric
architectures. At this point, the steps followed to accomplish this goal are:

1. Initial measurement of the execution time of the application in sequential mode, and analysis of the

results through the profiling tool Gperftools, provided by Google which works using time-based
sampling, which allows an accurate analysis of applications based on multiple sub-processes. For this
aforementioned reason, it is a suitable tool for collecting the necessary information for the latter
software acceleration step using OmpSs.

2. Parallelism extraction at task level using the OmpSs programming model [5]. For this, a directed acyclic
graph (DAG) is created in order to represent the task parallelism existing in the algorithm, which will
allow the optimization of the computational resources.

3. Development of techniques for energy consumption reduction and to exploit, in an efficient way, the

computational resources offered by the asymmetric architectures [16,17].

4. Measurement of energy consumption in the testing environment created for the ODROID XU4 and

Raspberry Pi 3 B+ boards.

5. Experimental analysis of the attained results.

3.- Viola-Jones face detection algorithm

The Viola-Jones algorithm [15] for face detection consists of two main stages: a training phase, and the actual
detection phase. The training stage is based on the AdaBoost [15] boosting algorithm, and it is the most time-
consuming part. In the second stage, the previously trained detector is applied to each of the images to be
analyzed. This phase is faster, and can be executed in real-time to detect the trained objects.

In this study, the starting point is a trained system for face detection where the size and location of the features
that will indicate the existence of a face inside a detection window is already known. To obtain this information,
an exhaustive exploration of the image is performed, evaluating features in distinct positions and scales in order
to take into account different face sizes. This results in a large volume of data processing for each analyzed
image.

The Viola-Jones detection method uses groups of simple and common face features. The use of these features
leads to a higher speed at detecting faces than methods based on pixels. The features used to detect faces are
similar to the Haar-like ones proposed by Papageorgiou et al. [18]. Viola-Jones uses five types of features in its
detection system, two of them based on two rectangles, two based on three rectangles and another one based
on four rectangles, as can be seen in Figure 2.

Figure 2: Haar-like features of 2, 3 and 4 rectangles as defined by Viola-Jones work.

The features are not only characterized by their form, but also by their size and position inside the detection
window, as well as their contribution to face detection. For this reason, it is necessary to calculate the value of
the feature, that is, the difference between the intensities of the points in the white area and the intensities in the
black area as shown in Figure 2. If the value of a feature is above a specific threshold (classification threshold), it
is considered that the feature contributes with a specific ‘alpha’ value to the detection of a face.

Thus, the scalar value of a feature is obtained by the sum of the pixel values of each rectangle according to the
following formula:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = ∑ 𝑤 · 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟_𝑠𝑢𝑚(𝑟) (1) ,

where {r1, ... , rN} is the vector of rectangles that constitute the feature, and wi is the weight of each one.
Furthermore, rectangular_sum indicates the addition of the pixel value. Viola-Jones establishes a minimum
detection window for an image of 24x24 pixels. In a window of these characteristics it is possible to find up to

45,396 different features (a number that is higher than the number of pixels in the window). However, it is not
necessary calculate the value of every single feature in order to detect a face, as a small portion of these
features, when adequately selected, can be enough to discern, with a low error rate, whether a region is a face
or not.
In order to select the best features to classify faces, we use a boosting algorithm called AdaBoost, which is
based on the combination of several simple or weak classifiers (in this case, based on Haar-like features, see
Figure 2). This combination creates a more complex classifier (strong classifier) with a lower error rate than each
of the individual weak classifiers. This means that each weak classifier is related to a single feature and the
combination of all the weak classifiers creates a strong one. Formally, a classifier based on a single feature j is
represented as in Formula 2.

ℎ (𝑥) =
 1 𝑖𝑓 𝑝 𝑓 (𝑥) < 𝑝 𝜃

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Where fj(x) is the value obtained when feature j is applied over image x, θj is the threshold of the feature and pj is
its polarity. This last value could be 1 or −1 and allows the inversion of the feature, turning positive rectangles
into negative ones, and vice versa.
Next, the learning algorithm Adaboost is defined both for the selection of characteristics and for the training of
each one of the stages of the cascade classifier [15].

Figure 3: Adaboost learning algorithm. T hypotheses are constructed each one using a single feature. The final
hypothesis is a weighted linear combination of the T hypotheses where the weights are inversely proportional to

the training errors.

The feature calculation would be a costly computational process if it was not possible to calculate the integral
image. The value of all the points inside any rectangle in the image can be calculated quickly. The integral image
facilitates the calculation of the value of any feature. The formula for the integral image is shown in Equation 3,
and is obtained from the grey-scale representation of the image:

𝐼𝐼(𝑥, 𝑦) = 𝐼(𝑥 , 𝑦)

 , 1 ≤ 𝑥 ≤ 𝑛, 1 ≤ 𝑛 ≤ 𝑚 (3)

 Given a set of images (x1, y1),…,(xn, yn) where yi = 0, 1 for negative and positive
examples respectively.

 Initialize weights wi = , for yi= 0, 1 respectively, where m and l are the number of

negatives and positives respectively.
 For t= 1,…,T:

1. Normalize the weights, wt,i ←
,

∑ ,

2. Select the best weak classifier w.r.t the weighted error

𝜖 = 𝑚𝑖𝑛 , , 𝑤 |ℎ(𝑥 , 𝑓, 𝑝, 𝜃) − 𝑦 |

3. Define ht(x) = h(x, ft, pt, θt) where ft, pt, and θt are the minimizer of ϵt.
4. Update the weights

𝑤 , = 𝑤 , 𝛽

Where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and 𝛽 =

∈

 ∈
.

5. The final strong classifier becomes:

𝑐(𝑥) = 1 𝛼 ℎ (𝑥) ≥
1

2
𝛼

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝛼 = log

Using the integral image, any sum inside a rectangle can be calculated with four references to the table, as
indicated in Figure 4.

Figure 4: As an example, the sum of pixels inside rectangle D can be easily calculated as 4+1-2-3, where 4 is the result
of the integral image at that point. Thanks to this representation, it is possible to calculate the sum of pixels inside a
rectangle of any size by means of only 4 memory accesses.

The only disadvantage of the integral image is that it uses four times more memory than the original image. As
the integral image is the sum of the pixels of the image, it cannot be defined as a matrix of bytes as is usually
done with grey-scale images, so it is necessary to use an integer matrix. This is the reason for the larger memory
size, since integer type occupies 4 bytes in most systems.

The integral image makes it possible to easily calculate the value of a weak classifier. These weak classifiers are
combined to build strong ones by means of AdaBoost learning algorithm and a set of selection parameters.
Those parameters contain low values which make it possible to quickly discard regions with no faces in order to
focus on those regions with a higher probability of containing a face. Strong classifiers designed in this way are
grouped into the so-called cascading classifiers, setting up decision steps, where it is decided whether there is a
face in the region or not. An example of these steps can be seen in Figure 5.

Figure 5: Cascading classifiers distributed in four stages.

In the example above, Stage 1 has a strong classifier which consists of 3 weak classifiers. This means that in
this stage, three features are evaluated in the detection window. If the evaluation of these three features is above
the threshold established during the training phase of the strong classifier, there is a high probability that in the
region considered there is a face, and then it can be evaluated in the following stage (Stage 2 in Figure 5). In the
new stage, more features are evaluated in the region, and again, if the threshold is not exceeded, the region is
discarded and the algorithm evaluates another region.

The first stages have evaluated a large number of images, so the strong classifiers associated to them must be
designed to have a much lower computational cost than the ones in the later stages. This leads to spending less
time on areas with no faces, and more time on those which include faces. If a window is not discarded in any of
the stages, the window is annotated as a possible face. The process continues sliding the window (in a
horizontal or vertical direction, Figure 6) according to a specific scanning factor. Once the entire image has been
considered with a specific window size, the window size or the image size increases according to a particular
scaling factor, and the entry process is repeated. The values for the scanning factor and the scaling factor are
also obtained during the training stage.

In addition, the face detector is applied to images of different sizes and the faces included in a particular image
can also have different sizes. The system must be able to extract sub-windows from an image in order to analyze
them. This is shown in Figure 6. The detector also scans an image in several locations, which means that the
sub-window moves across the image by a specific number of pixels, Δ. The selection of this number will affect
the detector’s speed, as well as its performance. In Viola-Jones’ work, the results are shown for Δ = 1 and Δ =
1.5, using scaling factors of 1 and 1.25, respectively.

 Windows

candidate

3 9

 No face

 No face

 No face
No face

16 25
Possible

face

Candidates discarded

Stage 1 Stage 2 Stage 3 Stage 4

Figure 6: Slide of the detection window across the image [19].

4.- Sequential implementation of the Viola-Jones algorithm

For the sequential implementation, a simplified version of the Viola-Jones algorithm has been used, specifically a
version developed for low-cost embedded systems with low-power and slow processing speed requirements,
together with a pre-trained file containing all the parameters involved in the cascading classifiers for face
detection. This file provides a reasonable detection ratio for a large number of images.

The pre-trained file that contains the parameters of each stage of the cascade classifiers is obtained from
previous training of the detection system [15]. Image sample resolution selected is 24x24 pixels.
The number of stages of the cascade classifier is obtained from the detection and performance objectives to be
achieved by the system. The more features used, the higher detection rate and a lower rate of false positives will
be reached up. Meanwhile, classifiers with more features will need more time to determine whether a sub-
window contains a face or not. When training the classifier, the number of stages, the number of characteristics
and the threshold of each stage must be optimized.

The detection rate (DR) and the false positive rate (FPR) are defined as indicated below:

DR = d FPR = f (4)

Where fi and di is the FPR and the DR of stage i respectively, and k the number of stages of the cascade
classifier. In this context, each stage of the cascade classifier is trained using Adaboost increasing the number of
characteristics of the stage until the desired false-positive and detection rate is obtained. In this case for the
system a detection rate of 95% was fixed and a low false positives rate of the order of 10-5, which is a very
reasonable ratio for the system. To achieve these design indices, the number of stages of the detection system
is set to 25 in total, each with a different and unique feature number.

The algorithm implementation can be carried out in two different ways depending on how faces are scaled in the
image. The first way is scaling the classifiers and thus the detection window in order to cover different sizes in
the image. The second consists in keeping the detection window at the same size during the entire process,
scaling the image only through interpolation until a predefined minimum size is reached. In this work, the second
approach is used, keeping the size of the detection window and scaling the image by different moments, building
what it is known as a pyramid (Figure 7). The pyramid is a multi-scale representation of an image, so that face
detection can be scale invariant, i.e. the detection of big and small faces uses the same detection window. The
implementation of this pyramid is performed by reducing the image resolution by means of the algorithm based
on pixel neighborhoods.

Figure 7: Pyramid. Multi-scale representation of an image [20].

Once the image has been scaled, the integral image and the quadratic integral image (normal=∑x,
quadratic=∑x2) are calculated in order to obtain the statistical typical deviation. All the examples of sub-windows
used in the training stage were obtained with a normalized variance, thus the impact of different light conditions
is minimized. Then, the normalization through typical deviation is also necessary during image detection. The
expression used in the algorithm implementation is given by the Equation 5, where N=W·H is the dimension of
the detection window.

𝜎

𝑁
= 𝑁 𝑥 − 𝑥 (5)

Finally, note that in the implementation a 24x24 pixel detection window and a scale factor of 1.2 have been
considered. The final development consists of 25 stages, each one with a specific number of weak classifiers
[21], which form the strong classifier of each stage. The first stages are the ones with lower computational
complexity in order to discard the largest number of windows in the shortest time. Among all the stages there are
2913 weak classifiers, each one requiring 18 parameters previously obtained during the training process and
stored in a text file. This means that to detect one single face in an image, going through any single stage of the
cascading classifier, it is necessary to calculate 2913 features; each one being defined in the detection window
by 18 parameters. Once the calculation process has finished, a comparison in each stage is made with the
threshold values obtained during the training process.
Figure 8 addresses the algorithm pseudo-code with its main stages; meanwhile Figure 9 shows an example of
face detection.

Figure 8: Pseudocode for Viola-Jones algorithm.

for each scaled image (pyramid) do
 Reduce the image scale
 Get the integral image of the current scale
 for each step of the sliding detection window do
 for each stage in the cascading classifier do
 for each feature in the stage do
 evaluate the detection window
 end
 get the accumulated value for the feature in the

stage
 if accumulated value is below the threshold of the

stage do
 break the loop and reject the window as a face
 end
 end
 if the detection window is above the threshold

value for the stage do
 accept the window as a face
 else
 reject the window as a face
 end
 end
end

Input Output

Figure 9: Input and output images, showing the detected faces [22].

5.- Performance analysis of a sequential execution

The execution time of the software developed for face recognition clearly depends on: (I) the scale factor, set to
1.2 as optimum value; (II) the value for the slide of the recognition window across the entire image; (III) and the
image resolution, since the higher the resolution is, the longer the time spent on image analysis will be.
In this context, in each one of the existing testing environments for the ODROID XU4 and Raspberry Pi boards,
the execution time has been measured on a sample of 10 images with the same format and resolution, a scale
factor of 1.2, the same slide factor for the detection window (1 pixel per iteration), and no software parallelization,
i.e. sequential execution. Furthermore, each of the images considered has a different number and size of faces,
which allows us to see the way the execution time evolves depending on the number of faces in the image. The
results can be seen in Figure 10.

Figure 10: Results for Odroid X4U (left) and Raspberry Pi 3 B+ (right) boards.

From the analysis, it might be expected that the more faces there are in the image, the longer the execution time
is, since each detected face needs to go through every existing stage in the cascading classifier. However, as
can be seen in the figure, it does not always behave like that, which means that there must be other factors
besides the number of faces that impact on the execution time and explain the variation.
After performing different tests on the sample images, a meaningful difference was detected between the images
whose execution time increases when the number of faces increases, and the ones that do not follow this rule.
The difference is the value of the integral image, which is higher in the ones that do not follow the rule, that is,
the higher the integral image value, the shorter the execution time. The integral value is the sum of all the pixels
in an image, i.e. the value of the right-most bottom pixel in the integral image of the analyzed image.
To test this observation, another sample of 10 images with the same resolution and requirements as before was
chosen, but this time containing a single face per image. The results of comparing the execution time and
integral value for each image are shown in Figure 11.

Figure 11: Results for Odroid X4U (left) and Raspberry Pi 3 B+ (right) boards.

As can be seen, as the value of the integral image increases, the execution time decreases, so there is a direct
relationship between the number of faces, the value of the integral image and the execution time (RIT), as

0,0

1,0

2,0

3,0

4,0

5,0

6,0

1 2 3 4 5 6 7 11 13 19

Ex
ec

ut
io

n
tim

e
(s

)

Number of faces in the image

Relationship between execution time and
number of faces in the image

0
10
20
30
40
50
60
70

In
te

gr
al

 im
ag

e
va

lu
e

(m
ill

io
ns

)

Execution time (s)

Relationship between execution time and
integral image value for single-face images

0
10
20
30
40
50
60
70

In
te

gr
al

 im
ag

e
va

lu
e

(m
ill

io
ns

)

Execution time (s)

Relationship between execution time and
integral image value for single-face images

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0

1 2 3 4 5 6 7 11 13 19

Ex
ec

ut
io

n
tim

e
(s

)

Number of faces in the image

Relationship between execution time and
number of faces in the image

indicated in Formula 6. Returning to the initial sample with different face numbers, the relationship is shown in
Figure 12.

𝑅𝐼𝑇 =
(𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 · 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍 𝒊𝒎𝒂𝒈𝒆 𝒗𝒂𝒍𝒖𝒆)

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐟𝐚𝐜𝐞𝐬 𝐢𝐧 𝐭𝐡𝐞 𝐢𝐦𝐚𝐠𝐞
 (6)

Figure 12: Results for Odroid X4U (left) and Raspberry Pi 3 B+ (right) boards.

It can be concluded that the execution time is usually affected by the number of faces and the value of the
integral image of each specific image. In this case study, images with a lower value for the integral image are
usually the ones with higher grey tones.

6.- Accelerating the execution through parallelization

Given the above results and, since both case study boards are multi-core, a way to accelerate the program’s
execution is by parallelizing the program and performing an optimal task scheduling among the existing cores on
each board.
For this purpose, we make use of OmpSs, which provides an easy task-based programming model for the
parallelization of new and existing C++ codes on multicore platforms with shared memory. Furthermore, it is
currently one of the most widely used task-level parallel programming models [5, 6, 7]. Basically, this
programming model is based on including directives (#pragmas), as in other parallel programming models, such
as OpenMP. These directives are mostly used to annotate certain code blocks in order to inform that those
blocks are tasks; that is, basic scheduling units to be used by the available computational resources [23].

With the aim of detecting the most consuming part of the algorithm, profiling tools reports a general overview of
any application in a easy way. Profiling tools are often specific for certain compiler toolchains, and sometimes
even included with the compiler toolkit itself. Several free alternatives are available for C++ software profiling in
GNU environment such as:

1. gperftools – Lightweight and easy-to use tools that report correct results also for multi-threaded parallel
algorithms. Clearly the tool of choice for the related OpenMP parallel optimization exercise.

2. gprof – GNU classic that is it’s available with gcc compiler tools. Gprof is useful for usual single-
core algorithm execution analysis, but it is not thread-safe in embedded system so it reports
corrupted results for multi-threaded parallel algorithms. Gprof might yet be used for initial detection of hot-
spot routines prior to parallel optimization where other tools are not available.

3. valgrind – In-depth execution analysis tool that works by simulating virtual processor. This approach makes
it however very slow in embedded system. The virtual simulation is also done for a single-core processor,
therefore Valgrind does not produce realistic profiling figures for multi-thread parallel algorithms.

At this point, we proceed to perform a software profiling to analyze the most time-consuming stages during the
sequential execution of the program.

Figure 13 shows the profiling results obtained during the execution of the sequential code on both platforms. For
the profiling, the Gperftools software, a profiling tool provided by Google, has been used. Gperftools works by
performing time-based sampling, which enables a correct analysis of applications with multiple sub-processes,
thus being a suitable tool to obtain the necessary information of which part of the code consumes most of the
time, being these parts the first candidates to accelerate.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 11 13 19

RI
T

(m
ill

io
ns

)

Number of faces in the image

Relationship between number of faces,
execution time and integral image value

0

50

100

150

200

1 2 3 4 5 6 7 11 13 19

RI
T

 (m
ill

io
ns

)

Number of faces in the image

Relationship between number of faces,
execution time and integral image value

Figure 13: Profiling results for Odroid X4U (left) and Raspberry Pi 3 B+ (right).

By studying the results, it can be seen that the largest computational cost in the CPU arises when features are
being calculated in each stage (evalWeakClassifier function). In the list, the first three functions are the ones
which consume more than 96% of the execution time. It is clear that the effort must be focused on optimizing
these three functions, since reducing the time for these functions will have a large impact on the execution time
of the entire program. The remaining functions represent less than 5% of the total execution time, so are not
considered for optimization.

The OmpSs programming model provides simple and non-invasive mechanisms to parallelize programs. It is
based on a runtime and a scheduler, which split the code into a set of tasks, identifying the dependencies among
them and throwing for execution only ready tasks, that is, those tasks whose dependencies have been satisfied
in the different computational cores of the system [24,25].
Once the annotated code has been compiled by Mercurium [6] (the OmpSs compiler), it can be executed using
Nanox [16], the OmpSs runtime which consists of a set of libraries to manage the program execution in order to
execute it in the most efficient way. Accordingly, OmpSs is suitable for those problems where the same function
or instruction set needs to be applied to a different (disjoint) data collection. This is the most frequent problem
when it is necessary to execute repetitive instructions or enumerated lists, such as:

for (i=start;i<end;i++)
 x[i] = function(a[i])

Given that the number of elements to use is known and the operations are usually inside a “for” loop, the OmpSs
designers implemented a special operation to be used in the “for” loop, so programmers do not have to change
their programs. It is OmpSs that splits indexes and assigns them to the different existing threads.
In the proposed system, the most time-consuming function is "evalWeakclassifier", which finds the value of the
weak features which make up the strong classifier. This function is called from "runCascadeClassifier", which is
in charge of throwing the cascading classifiers for each one of the 24x24 detection windows that are moving
across the entire image, as seen in Figure 14.

Figure 14: Source code calling to runCascadeClassifier function.

After code analysis, and having seen that cascading classifiers are executed every time the detection window is
moved across the image, we can conclude that there is an opportunity to optimize the code by parallelizing it
using OmpSs. Given the parallelization directives existing in OmpSs that are especially designed for “for” loops,
where in each iteration similar tasks are executed that are not independent of each other, that is, each iteration
represents a different detection window, it is possible to have several execution threads in parallel. This allows

// step indicates pixel number displacement of filter window by the image
// x2 = margin in width to where the filter window can be moved
// y2 = margin in height up to where the filter window can be moved
for(x = 0; x <= x2; x += step) //detection window shifting by column
 for(y = y1; y <= y2; y += step) //detection window shifting by row
 {
 p.x = x; //starting coordinates x and y for a 24x24-pixel filter window
 p.y = y;

 result = runCascadeClassifier(cascade, p, 0);
 }

Using local file ./vj.
Using local file vj.prof.
Total: 1018 samples
Time(s) %Execution %Total Calls Function
 6.50 63.9% 63.9% 13857361 evalWeakClassifier
 1.98 19.4% 83.3% 862119 runCascadeClassifier
 1.36 13.4% 96.7% 862119 int_sqrt
 0.18 1.8% 98.4% 17 integralImages
 0.06 0.6% 99.0% 17 ScaleImage_Invoker
 0.06 0.6% 99.6% 17 nearestNeighbor
 0.01 0.1% 99.7% 1 munmap
 0.01 0.1% 99.8% 1 partition
 0.01 0.1% 99.9% 1 predicate
 0.01 0.1% 100.0% 17 setImageForCascadeClassifier

Using local file ./vj.
Using local file vj.prof.
Total: 1940 samples
Time(s) %Execution %Total Calls Function
 12.88 66.4% 66.4% 13857361 evalWeakClassifier
 3.64 18.8% 85.2% 862119 runCascadeClassifier
 2.18 11.2% 96.4% 862119 int_sqrt
 0.36 1.9% 98.2% 17 integralImages
 0.14 0.7% 99.0% 17 ScaleImage_Invoker
 0.11 0.6% 99.5% 17 nearestNeighbor
 0.06 0.3% 99.8% 17 setImageForCascadeClassifier
 0.01 0.1% 99.9% 1 munmap
 0.01 0.1% 99.9% 1 partition
 0.01 0.1% 100.0% 1 predicate

the evaluation of several detection windows at the same time, which improves the execution time compared with
the sequential version of the code.

In this study, to optimize the code it is only necessary to use two #pragma directives existing in OmpSs, namely
”#pragma omp for schedule(static)” and “#pragma omp task”. The first one indicates to the compiler that the
execution of the loop can be split into several parallel threads, so each thread can be executed on a different
CPU core. The second one marks the declaration of a “for” loop as a task, which means that the loop is the only
fragment of the code that will be executed in parallel, and once the loop concludes, the remaining code will
continue to be executed on a single thread. In Figure 15 we can see the code once the OmpSs directives have
been added.

Figure 15: Source code for included #pragma directives.

The cascade classifier can reduce the computational workload by rejecting a region in initial stages, but on the
other hand it introduces dependencies between stages that make it difficult to parallelize the program. It is
possible to break the dependency between stages by delaying the rejection of a region until the last stage, but
that can considerably increase the computational workload. In this context, a balance between parallelism and
the optimal computational workload can be achieved, if a static programming model is chosen in which blocks of
the same size are processed in parallel (#pragma omp for schedule (static)), together with parallelizable tasks
(#pragma omp task), which correspond to each of the features that make up a stage.

After adding these directives, the code is executed again in the same testing environment, under the same
conditions. The results obtained are shown in Figure 16, which gives an execution time comparison between the
code with and without the OmpSs directives. The execution time is reduced proportionally to the number of cores
used in the test.

Figure 16: Sequential and parallel execution time for Odroid X4U (left) and Raspberry Pi 3 B+ (right).

By studying the above results, and to the contrary of what might be expected, it can be observed that when using
the Raspberry Pi 3 B+, with 4 CPU cores, the execution time improvement is nearly 50%, which means that the
reduction is not proportional to the number of cores. The reason for this deviation is that executing a division
algorithm across four parallel threads leads to an overhead for synchronization tasks, which means that not all
the cores can be devoted to the parallel execution of the threads.
In the Odroid XU4 board, the improvements obtained are even worse than expected, if they are compared with
the fact that the parallel version is using 8 cores instead of 4. Nevertheless, previous works have proved that
using LITTLE cores has not a high impact over the performance when compared with the big ones, even
increasing the execution time in some cases [23].

0

1

2

3

4

5

6

1 2 3 4 5 6 7 11 13 19

E
x
e
c
u

ti
o

n
 t
im

e
 (

s
)

Number of faces in the image

Sequential execution versus parallel

Parallel

Sequential

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 11 13 19

E
x
e
c
u

ti
o

n
 t

im
e
 (

S
)

Number of faces in the image

Sequential execution versus parallel

Parallel

Sequential

#pragma omp for schedule(static)
for(x = 0; x <= x2; x += step)
#pragma omp task
 for(y = y1; y <= y2; y += step)
 {
 p.x = x;
 p.y = y;
 result = runCascadeClassifier(cascade, p, 0);
 }

Raspberry Pi Odroid XU4

Figure 17: Energy consumption of sequential and parallel executions before applying any optimization techniques on
Raspberry PI 3 B+ platform.

Figure 18: Energy consumption of sequential and parallel executions before applying any optimization techniques on
the Odroid platform.

The satisfactory results obtained by accelerating the code have one disadvantage, namely the energy
consumption.

On the one hand, the power consumption on the Raspberry Pi3B+ platform releases a value of 2.5 Watts and 5.5
Watts for Sequential and Parallel implementations respectively. On the other hand, the power consumption on
the Odroid platform shows that the total amount of instant power needed in the sequential execution increases
from 3.0 Watts (executed on a big core) up to 6.85 Watts in a parallel execution using all the cores.
This increase in power makes, despite the improvements on the execution time, that the total amount of power
(Joules) consumed during the execution increases as shown in the figures 17,18. However, this disadvantage
can be overcome by using different optimization techniques described in the next section, as the ones included
in the OmpSs runtime (Nanox), generic DVFS (Dynamic voltage and frequency scaling) techniques, or specific
techniques for asymmetric architectures.

7.- Energy consumption optimization

Asymmetric multicore processors with a regular instruction set (ISA) have recently been proposed as a low-cost
alternative to conventional symmetric multicore processors since fast and high-performance cores are present
together with slower and low-power cores on the same chip, making it possible to optimize the energy
consumption in the processor. In this case, as indicated above, the Odroid XU4 [9] board will be used to perform
energy consumption optimizations.
 Asymmetric architectures allow a reduction in energy consumption by allocating tasks to cores with different
characteristics depending on the specific performance and energy consumption requirements of each task.
Furthermore, the architecture enables adjustment of performance and consumption on each cluster (that means
all the big cores at the same time or all the LITTLE ones) by means of applying Dynamic Voltage and Frequency
Scaling (DVFS) mechanisms, which are now available on processors [26].

Next we will see different applicable techniques to improve the performance of the implemented algorithm.

0

2

4

6

Sequential
(big)

Parallel

W
at

ts

Power consumption: sequential versus
parallel execution

LITTLE

big
0

5

10

15

1 2 3 4 5 6 7 11 13 19

E
n

e
rg

y
(J

)

Number of faces in the image

Sequential (BIG core) versus Parallel
execution

Seq.

Parall.

0

5

10

15

1 2 3 4 5 6 7 11 13 19

E
n

e
rg

y
(J

)

Number of faces in the image

Sequential versus Parallel execution

Seq.

Parall.

0

2

4

6

Sequential Parallel

W
at

ts

Power consumption: sequential versus
parallel execution

7.1.- Optimization of energy efficiency over asymmetric architectures

The OmpSs runtime: Nanox, is in charge of controlling the execution of the program and trying to finish the
execution of it in the most efficient way possible. But with the current growth in asymmetric architectures, OmpSs
has recently introduced a new scheduler, namely the bottom level-aware scheduler (Botlev) [27], which is
specific to this type of architectures. Botlev is based on traditional schedulers for heterogeneous architectures
[28], distinguishing only two kinds of computing nodes (a fast one consisting of Big-type cores, and a slow node
for LITTLE-type cores) and removing the cost related to data transferences. One technique used to boost the
performance of task-based parallel programs is ensuring that critical tasks end as soon as possible. Given a
directed acyclic graph (DAG), a critical task is the one whose delay impacts negatively on the execution time of
the entire application. The Botlev scheduler pursues this goal by trying to dynamically determine which tasks
belong to the critical path of the DAG associated with the problem, and execute these tasks on fast cores in
order to complete its execution as soon as possible.

In order to determine whether a task belongs to a critical path, Botlev sets a priority to each task at the moment
of being inserted in the dependency graph, and this is updated when new tasks are created. When a Big core
finishes the execution of a task, it will begin with the next critical one in the queue, whereas a LITTLE core will
execute the first task in the non-critical task queue [27].

The main difference between the Botlev and the others Nanox´s schedulers, is that Botlev is a scheduler aware
of the asymmetry of the architecture which allows it to make dynamic decisions based on the critical path that
makes the execution of the program more efficient than with the Nanox conventional scheduler, which is not
aware of such asymmetry. For this reason, this scheduler is suitable to be applied to the Odroid XU4 board.

The impact on the energy consumption of task planning will depend on the critical path of the program, and
therefore on the critical tasks and the dependences between them. In Figure 19, it can be seen the DAG
developed to find restrictions and dependencies in order to optimize the source code for an adequate
parallelization and energy consumption.

Each stage is dependent on each other because an image can be rejected in one stage and it would not be
necessary to calculate the next pending stages of the cascade classifier. That is, if each stage is executed in
parallel tasks, steps that are not necessary could be calculated. However, examining the calculation of
characteristics of a stage, at first glance it could be considered to be independent.
However, there is a shared variable so-called "stage_sum" that gathers the values of the output classifier
features to be compared with the aforementioned threshold that determines the chance of being a face.

This share variable produces dependence since it is calculated sequentially to obtain the accumulated sum of
each one of the characteristics of the stage that is being evaluated. To avoid this dependency and in order to
limit the parallelization of the software, this variable can be split into parts by using an array that contains both
elements and threads.

7.2.- DVFS on big-LITTLE architecture

Another type of technique for improving energy consumption corresponds to those based on the DVFS (dynamic
voltage frequency scaling) techniques [29], which are characterized by dynamically varying the processor’s
frequency and voltage at execution time in order to improve energy consumption or reduce the instant power
consumed. Big.LITTLE ARM processors support frequency scaling, although only at cluster level, not at core
level, so every core in a cluster will execute tasks at the same frequency [17].

Access to this feature of the processors in Linux kernel is done through the subsystem "cpufreq", which provides
the library libcpufreq and executables cpufreq-set and cpufreq-info that allow to obtain and modify the frequency
of each kernel in execution time. This frequency management will allow us to contain the energy expenditure and
therefore we will save energy during the execution of the program.

A plausible solution to save energy is to take advantage of the periods of time in which the workload on the slow
core diminishes in order to reduce the energy consumption of them, forcing a reduction in frequency over the
LITTLE cluster. Reducing the frequency in the LITTLE cluster implies that the instantaneous power dissipated
decreases. Although it is true that by reducing the frequency of the cluster, the time spent executing a task
increases, this technique can be applied in those phases of parallel execution in which the execution is limited by
a large number of critical tasks and a low number of non-critical tasks; therefore, it is expected that the final
impact on performance will not be high, and so will the reduction in energy consumption [17].

Figure 19: Directed Acyclic Graph (DAG) of the face detection program.

7.3.- Optimization of consumption based on the parameters step and scaleFactor

Finally, as indicated above, there are two configurable software parameters whose variation can reduce the
execution time and the energy consumption, at the cost of reducing the face detection rate. These parameters
are the scale factor (which determines how the image resolution decreases in each iteration), and the step factor,
(which determines how the detection window slides across the image in each iteration).

The "Step" and "scaleFactor" parameters can greatly influence the accuracy of detection. For this reason, and in
order to find the optimal parameters for facial detection, it has been analyzed the effect of these two parameters
on the ability to detect faces (measured in the number of faces detected, the number of false positives, and the
number of false negatives). In Figure 20, it can be seen the evolution of the total detection error (false negatives
+ false positives) based on the different values of each parameter.
Regarding experimental stimuli, two public databases were used, Base-750 [30], and Base-450 [31]. The first
one contains 750 images (480x640 resolution) whereas the second one has 450 images (896x592 resolution).
Both have one face per image.

Directed Acyclic Graph (DAG)

Task DAG processes of the face detection program:

1. Start, image processing.
2. Image scaling
3. Integral image calculation
4. Scrolling window detection by the image
5. Analysis stages cascade classifier
6. Stage feature Calculation
7. Stage threshold comparison
8. Analysis result

 6 6 6 ..

 4

 1

 2

 3

 5

 4 .. 4

 5 .. 5

 7

 8

stage_sum

Critical Path

Figure 20: Evolution Total error based on the parameters Step and ScaleFactor in the two bases of public faces: Base-

450, Base-750.

From the results obtained we can highlight the following conclusions:
 The “step” parameter is more sensitive than "scaleFactor", on the accuracy of the program, any value greater

than 2 produces a large increase in detection errors, being the optimal value for detection 1. However, it
occurs a considerable improvement of the program performance since it considerably reduces the execution
time and energy consumption by considerably reducing the number of operations. Therefore, for a step equal
to 2, although some accuracy is lost due to the increase of the total error, its consideration may be of interest
when the objective is to increase the performance and the decrease of the energy consumption.

 The "scaleFactor" parameter, in contrast to the "step" parameter, is less sensitive in terms of accuracy. The

total error increases slowly as the value of this parameter increases. It also increases the performance of the
program but on a smaller scale than with the "step" parameter. In this context, the value that provides the
best performance and causes lower energy consumption could be evaluated as the optimal value for this
parameter.

7.4.- Evaluation of energy Improvements

In this context, taking into account the scheduler provided by OmpSs, the scaling of frequencies, and the
variation of the scale and step factors, a study has been carried out for the Odroid XU4 board in order to optimize
the energy consumption considering different scenarios. For the experiments, only the frequency of the big
cluster has been modified, because modifying the frequency of the LITTLE cluster has not a meaningful impact
on the energy consumption, but a big impact on the execution time as shown in [17]. Figures 21-24, show the
obtained results for different frequency values on cluster BIG (Odroid XU4 board) after processing 1200 images
included in both databases (Base-450 and Base-750).

0

100

200

300

400

500

600

700

1 2 3 4 5

To
ta

l e
rr

or

Step parameter

Total Error versus Step parameter

Base 450

Base 750

0

20

40

60

80

100

120

140

1,1 1,15 1,2 1,25 1,3 1,35 1,4 1,5

To
ta

l e
rr

or

ScaleFactor parameter

Total Error versus ScaleFactor parameter

Base 450

Base 750

Figure 21: Execution time, energy consumption, and detection error according to the parameters "scaleFactor" and

"step", and the impact of execution energy consumption vs Execution time, “scaleFactor” and “step” parameters, for the

cluster frequencies: Big = 2000 MHz, LITTLE = 1400 MHz.

Cluster big of 4 cores: Cortex A15 (High in performance, power)

Cluster LITTLE of 4 cores: Cortex A7 (low in performance, power)

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A7

Cortex
A7

Cortex
A7

Cortex
A7

CPU ODROID XU4

2.000 MHZ

1.400 MHZ

Figure 22: Execution time, energy consumption, and detection error according to the parameters "scaleFactor" and

"step", and the impact of execution energy consumption vs Execution time, “scaleFactor” and “step”, parameters for the

cluster frequencies: Big = 1500 MHz, LITTLE = 1400MHz.

Cluster big of 4 cores: Cortex A15 (High in performance, power)

Cluster LITTLE of 4 cores: Cortex A7 (low in performance, power)

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A7

Cortex
A7

Cortex
A7

Cortex
A7

CPU ODROID XU4

1.500 MHZ

1.400 MHZ

1,3
1,6
1,9
2,2
2,5
2,8
3,1
3,4

26
46

14
90

11
35 97

2

85
1

47
8

36
9

31
5

56
7

32
1

24
0

20
5

45
5

25
3

19
5

16
9

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

E
n

er
gy

 c
on

su
m

p
ti

on
 (

W
)

Execution time(s), scaleFactor, Step

Energy consumption vs Time, ScaleFactor, Step

Time (s)

ScaleFactor

Step

Figure 23: Execution time, energy consumption, and detection error according to the parameters "scaleFactor" and

"step", and the impact of execution energy consumption vs Execution time, “scaleFactor” and “step”, parameters for the

cluster frequencies: Big = 1000 MHz, LITTLE = 1400MHz.

Cluster big of 4 cores: Cortex A15 (High in performance, power)

Cluster LITTLE of 4 cores: Cortex A7 (low in performance, power)

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A7

Cortex
A7

Cortex
A7

Cortex
A7

CPU ODROID XU4

1.000 MHZ

1.400 MHZ

1
1,15

1,3
1,45

1,6
1,75

1,9
2,05

35
34

20
27

15
30

13
07

11
65 66

4

50
6

42
8

74
9

42
0

32
1

27
3

56
8

32
7

24
7

21
0

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

E
n

er
gy

 c
on

su
m

p
ti

on
 (

W
)

Execution time(s), scaleFactor, Step

Energy consumption vs Time, ScaleFactor, Step

Time (s)

ScaleFactor

Step

Figure 24: Execution time, energy consumption, and detection error according to the parameters "scaleFactor" and

"step", and the impact of execution energy consumption vs Execution time, “scaleFactor” and “step”, parameters for the

cluster frequencies: Big = 800 MHz, LITTLE = 1400MHz.

As shown in all the plots, the “step” parameter has a high impact on the energy consumption, but also in the
number of faces detected as shown previously. When dealing with embedded and mobile systems, not only the
execution time nor the energy consumption is important on their own, but the trade-off between them. Whit this
purpose, Table I shows the optimal values found in order to tolerate an error constraint less than 10% of the total
faces with the best detection time and the lowest possible energy consumption.
The application of these parameters to the face detection program produces an improvement in the execution
time of around 50% in the Raspberry Pi 3 B+ board and 65% for the Odroid XU4 board, with respect to the
sequential execution time.

 Table I. Optimal values to reduce energy consumption and accelerate execution time for a 90% detection ratio.

Cluster Big Frequency
(Odroid XU4)

Cluster LITTLE
Frequency (Odroid XU4)

Step Parameter
ScaleFactor
Parameter

1500 MHz 1400 MHz 1 1,2

Cluster big of 4 cores: Cortex A15 (High in performance, power)

Cluster LITTLE of 4 cores: Cortex A7 (low in performance, power)

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A7

Cortex
A7

Cortex
A7

Cortex
A7

CPU ODROID XU4

 800 MHZ

1.400 MHZ

0,9
1

1,1
1,2
1,3
1,4
1,5
1,6

42
44

24
05

18
17

15
43

14
09 80

1

61
1

51
6

87
9

50
2

38
2

32
3

68
9

38
4

29
3

24
8

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

E
n

er
gy

 c
on

su
m

p
ti

on
 (

W
)

Execution time(s), scaleFactor, Step

Energy consumption vs Time, ScaleFactor, Step

Time (s)

ScaleFactor

Step

Regarding the optimization of energy consumption, an environmental reduction of 22.3% is achieved with
respect to the sequential execution of the Odroid XU4 board. This is due to the frequency scaling and the use of
the resources provided by the asymmetric architecture and exposed through the OmpSs task scheduler. In this
case, setting the frequency of the big cluster to 1500 MHz and that of the LITTLE cluster to 1400 MHz.

For the sake of generality and clarity, we have compared the performance obtained against other well-known
developments for face detection (based on OpenCV), which use the function "detectMultiScale", based again on
the algorithm of Viola-Jones. In Table II, we can see the result of applying both developments to the two
databases used in the current work.

Table II. Results of applying the OpenCV function: detectMultiScale, and the detection system with selected
parameters, to the two databases: Base-450, Base-750.

OpenCV detectmultiScale Function Our Detection System with selected parameters
Base-450 Base-450

False
Positive

False
Negative

Execution
time (min)

Total
Error

False
Positive

False
Negative

Execution
time (min)

Total
Error

151 3 29.18 154 9 29 18.28 38
Base-750 Base-750

33 3 24.23 36 13 17 13.48 30

From the results it can be seen how the detection system proposed in the present work improves both the
execution time and the total number of errors that occur in the detection of faces with respect to those obtained
by the OpenCV function: detectMultiScale.

In pattern recognition, precision (also so-called positive predictive value) is the fraction of relevant instances
among the retrieved ones, while recall (or sensitivity) is the fraction of relevant instances that are detected. Both
precision and recall are based on an understanding and measure of relevance as shown at Equation 7.

Precision =

 Recall =

 (7)

Table III. Results of precision and recall for the OpenCV detectMultiScale function and the detection system in the
experimental bases: base 450 and base 750.

OpenCV detectMultiScale function Our Detection System

Base-450 Base-750 Base-450 Base-750

Precision 74,71% 95,76% 97,91% 98,26%

Recall 99,33% 99,60% 93,56% 97,73%

From the results it can also be concluded the detection system holds a higher accuracy rate than its counterpart
on OpenCV (function detectMultiScale).

8.- Conclusions

In the present work it has been developed a facial detection system based on the Viola-Jones algorithm, 37%
faster and more energy efficient than other algorithms of the same type currently available, such as the one
provided by the OpenCV library through the function "detectMultiScale", widely used by developers for face
detection. It has also been adapted to low-cost embedded devices such as the Raspberry Pi 3 B+ and the
ODROID boards, whose characteristics are similar to nowadays smartphone.

For this, a thorough study of the Viola-Jones algorithm has been carried out, analyzing each of its parts in order
to find out possible improvements. In this context, it has been possible to obtain a direct relationship between the
integral image of an image and the detection speed, which allows us to determine which are the best resolution
and the tone of the images to be processed, so that the performance of the face detection system is optimal.

For the acceleration of the detection program, the multi-core architectures of the two experimental boards were
used, adapting the program to an efficient parallelization through OmpSs in the first instance. As a result, a
reduction in the execution time of the program has been obtained, which ranges from 50% for the Raspberry PI 3
B+ board, and 65% for the ODROID XU4 board.

Due to the increase in the energy consumption associated with the parallelization of the program, different
options have been studied to optimize this consumption: (1) take advantage of the resources provided by the

asymmetric architecture of the ODROID XU4 board, based on the OmpSs task scheduler and aware of the
asymmetry; (2) make use of frequency scaling techniques applied to that board; (3) optimal selection of "Step"
and "ScaleFactor" system parameters. With all this, a reduction in consumption of around 24.3% has been
achieved with respect to the sequential execution. With this fact, it has also been possible to leverage the
capabilities of asymmetric multi-core architectures (ODROID XU4) versus symmetric architectures (Raspberry Pi
3 B+) for the optimization of energy consumption. The parallel execution of our system, using the optimal
parameters, achieves a reduction of energy consumption of 21.3% in the Odroid XU4 board with respect to the
Raspberry PI 3 B +.

As future work, carrying out a detailed analysis of the characteristics of the cascade classifiers used in face
detection can be extremely interesting to improve the execution time and energy consumption in any device. This
can be done through the inclusion of new more defining features in the detection process, or by improving
Adaboost, the learning method used in the Viola-Jones algorithm.

9.- Acknowledgments

This work has been partially funded by EU FEDER and Spanish MINECO research projects TIN 2015-65277-R,
FPU15/02050, as well as the UCM-Banco Santander Grant PR26-16/20B-1.

10.- Bibliography

[1] E. Hjelmas and B. Kee Low, “Face detection: A survey”. Computer Vision and Image Understanding. Volume
8, Issue-3, pages 236-274. 2001.

[2] P. E. Hadjidoukas, V. V. Dimakopoulos, M. Delakis, and C. Garcia. “A high-performance face detection
system using OpenMP”. Concurrency and Computation: Practice and Experience, 2009

[3] Castrillón, M., Déniz, O., Guerra, C., & Hernández, M. (2007). ENCARA2: Real-time detection of multiple
faces at different resolutions in video streams. Journal of visual communication and image representation, 18(2),
130-140.

[4] [online] OpenMP. https://www.openmp.org/ Last visit: July 2018.

[5] [online] OmpSs project home page. http://pm.bsc.es/ompss. Last visit: February 2018.

[6] [online] Mercurium. https://pm.bsc.es/mcxx. Last visit: February 2018.

[7] [online] Nanos++. https://pm.bsc.es/nanox. Last visit: February 2018.

[8] Brian Jeff. “big.LITTLE Technology Moves Towards Fully Heterogeneous Global Task Scheduling. Improving
Energy Efficiency and Performance in Mobile Devices”, ARM white paper. November 2013

[9] ODROID-XU4 Beginner’s Guide. 2016

[10] [online] ODROID Forum: http://forum.odroid.com. Last visit: March 2017

[11] [online] ODROID Magazine: http://magazine.odroid.com. Last visit: March 2017

[12] Matt Richardson & Shawn Wallace, “Getting started with Raspberry Pi”, O’Reilly. 2012.

[13] Eben Upton & Gareth halfacree, “Raspberry Pi User’s Guide”. 2012.

[14] [online] ARM Cortex-A Series Programmer’s Guide for ARMv8-A.
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf.
Last visit: March 2017.

[15] P. Viola, M.J. Jones, “Robust Real-Time Face Detection”, International Journal of Computer Vision, v.57 n.2,
pp.137-154, May 2004.

[16] S. Mittal. “A survey of techniques for architecting and managing asymmetric multicore processors”. ACM
Comput. Surv., 48(3):45:1–45:38, Feb. 2016.

[17] Luis Costero, Francisco D. Igual, Katzalin Olcoz, and Francisco Tirado. “Energy efficiency optimization of
task-parallel codes on asymmetric architectures”. In HPCS17: The 2017 International Conference on High
Performance Computing & Simulation, pages 402–409, July 2017.

[18] C.P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection”. Computer Vision,
1998. Sixth International Conference on, pages 555–562, Jan 1998.

[19] [online] 5KK73 GPU Assignment 2012, https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-
face-detection. Last visit: March 2017.

[20] [online] http://iipimage.sourceforge.net/documentation/images/. Last visit: March 2018.

[21] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object detection”. volume 1, pages
I–900–I–903 vol.1, 2002.

[22] [online] https://news.nationalgeographic.com/news/2014/09/140916-faces-evolution-cognition-social-
recognition-genetics/. Last visit: March 2018.

[23] L. Costero, F. D. Igual, S. Catalán, K. Olcoz, R. Rodríguez-Sánchez, and E. Quintana-Ortí. Refactoring
conventional task schedulers to exploit asymmetric ARM big.LITTLE architectures in dense linear algebra.
AsHES, The Sixth International Workshop on Accelerators and Hybrid Exascale Systems, 2016.

[24] E. Ayguade, R. Badia, P. Bellens, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez-Gonzalez, J.
Labarta, L. Martinell, X. Martorell, R. Mayo, J. Perez, J. Planas, and E. Quintana-Ort´ı, “Extending OpenMP to
Survive the Heterogeneous Multi-core Era,” International Journal of Parallel Programming, vol. 38, no. 5-6, pp.
440–459, June 2010.

[25] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas. “OmpSs: a proposal
for programming heterogeneous multi-core architectures”. Parallel Processing Letters, 21(02):173–193, 2011.

[26] S. Holmbacka, F. Hällis, W. Lund, S. Lafond, and J. Lilius. “Energy and power management, measurement
and analysis for multi-core processors”. Technical Report 1117, 2014.

[27] Chronaki, Kallia, et al. “Criticality-aware dynamic task scheduling for heterogeneous architectures”.
Proceedings of the 29th ACM on International Conference on Supercomputing. ACM, 2015. p. 329-338

[28] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous multiprocessors with
adaptive mapping,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 42, 2009, pp. 45–55.

[29] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. “Evaluation of cpu frequency transition latency”. Comput.
Sci., 29(3-4), Aug. 2014.

[30] [online] https://github.com/StephenMilb orrow/muct/blob/master/muct-a- jpg-v1.tar.gz. Last visit: jun 2017.

[31] [online] http://www.vision.caltech.edu/ html-files/archive.html. Last visit: jun 2017.

