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SUMMARY

Non-linear multiport resistors are the main ingredients in the synthesis of non-linear circuits. Recently,
a particular PWL representation has been proposed as a generic design platform (IEEE Trans. Circuits
Syst.-I 2002; 49:1138–1149). In this paper, we present a mixed-signal circuit architecture, based on
standard modules, that allows the electronic integration of non-linear multiport resistors using the men-
tioned PWL structure. The proposed architecture is fully programmable so that the unit can implement
any user-de�ned non-linearity. Moreover, it is modular: an increment in the number of input variables
can be accommodated through the addition of an equal number of input modules. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent papers [1–3] the PWL approximation technique proposed by Juli�an et al. [4, 5] has
been applied to the approximate synthesis of non-linear circuits. The basic idea of the synthesis
methodology is to approximate each constitutive equation y=f(x) of a non-linear resistive
element of a circuit (where y is a generic dependent descriptive variable and x is the vector
of independent descriptive variables) using a canonical PWL representation. It is well known
that non-linear multiport resistors play a fundamental role in non-linear network synthesis [6].
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On the other hand, canonical representations describe a function with the minimum number of
parameters. This e�ciency is fundamental for the approximation of large systems, or systems
of moderate size where high accuracy is needed. In particular, the canonical representation
proposed in Reference [4] can be developed systematically using samples of the system to
be approximated, and—under very mild conditions—permits to obtain arbitrary accuracy, by
adjusting the grid that subdivides the domain. In this formulation, the PWL function, namely
fPWL, is obtained as a linear combination of a set of N basis functions over an n-dimensional
compact domain S ⊂Rn, i.e. fPWL : S→Rn, where S is a hyperrectangle (rectangle, if n=2)
in the form of

S= {x∈Rn: ai6xi6bi; i=1; : : : ; n} (1)

Every dimensional component xi of the domain S is subdivided into mi subintervals of
length (bi − ai)=mi, producing a boundary con�guration H [4]. The resulting hyperrectangles
contain n! non-overlapping hypertriangular (triangular, if n=2) regions called simplices. As
a result, S is partitioned (simplicial partition) into

∏n
i=1 mi hyperrectangles and contains

N =
∏n
i=1(mi + 1) vertices vi. A characteristic of this subdivision is that the domain and

its boundary con�guration H can be completely described by the triplets (ai, bi, mi), i=
1; : : : ; n.
As shown in References [4, 5], the class of continuous PWL functions fPWL de�ned over

a �xed boundary con�guration of the domain constitutes an N -dimensional Hilbert space
PWL[SH ], which is de�ned by the domain S, its simplicial partition H , and a proper inner
product (see Reference [2] for details). Each function belonging to PWL[SH ] can be repre-
sented as a sum of N basis functions (arbitrarily organized into a vector), weighted by an
N -length coe�cient vector c. The coe�cient vector c determines the shape of fPWL uniquely.
As shown in Reference [1], such a vector can be systematically found by applying optimiza-
tion techniques (e.g. a least-squares criterion) to a set of properly distributed samples of f
over the domain S.
There are many possible choices for the PWL basis functions, each of which is made up of

N (linearly independent) functions belonging to PWL[SH ]. Some bases are more convenient
for function interpolation and some others for function approximation. In addition, from an
implementation viewpoint, some bases are computationally attractive whereas others are attrac-
tive because they lead to convenient circuit topologies. In particular, for the circuit synthesis
we shall refer to the so-called �-basis and �-basis [1, 2].
The �-basis seems to be more suitable for completely analog implementations, via architec-

tures commonly used in CMOS analog design, in particular current-mode and sub-threshold
techniques (see References [7–10]). Indeed, if a current mode con�guration is used, then the
outputs of the di�erent circuit blocks implementing the basis functions can be weighted and
added over a single node providing a straightforward architecture. The drawback, however,
is that in the � formulation, di�erent functions, implementing di�erent nestings of absolute
values, are needed. In addition, functions with the same number of nestings require di�erent
bias voltages or currents. This lack of uniformity is not convenient if large arrays of PWL
basis functions are to be integrated.
The �-basis, on the contrary, is particularly well suited for a synthesis based on a mixed

analog=digital architecture. The �-basis is composed of N PWL functions �1(x); : : : ; �N (x)
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satisfying (for k; j=1; : : : ; N )

�k(vj)=

{
1 for k= j

0 for k �= j
(2)

When regarded as a multidimensional surface, each function �k(x) can be seen as a hyper-
pyramid with value 1 at the vertex vk and value 0 at all other vertices. In other words, each
�-function is of a local nature, since it is di�erent from 0 only over a reduced number of sim-
plices of the domain. As a consequence, the value of the approximate function fPWL(x) can
be obtained, for any x, by combining a limited subset of the basis functions weighted by the
corresponding coe�cients. This architecture is much more convenient to be integrated in an
electronic fashion. The reason is that all basis functions perform basically the same operation.
The di�erence between two basis functions is that they operate over two di�erent regions of
the domain. Therefore, the evaluation can be done using only one function circuit block and
an algorithm to shift the inputs. For every evaluation point, all non-zero basis functions need
to be evaluated, weighted and added, but they are at most n+1 (that is, linear with respect to
the domain dimension), so that the implementation is still remarkably e�cient. This principle
has been exploited in References [11, 12] to derive an electronic implementation for an image
processing CNN based on PWL coupled elements. In this paper, we generalize the solution
proposed in Reference [11] in the framework of PWL multiport resistor implementations. The
proposed solution exploits the technique proposed in Reference [13] to automatically �nd
the simplex containing a given input x. The circuit has been validated by implementing a
four-dimensional domain prototype. The main advantage of the proposed solution is its mod-
ularity and �exibility: incrementing the input dimension requires the addition of an element
to the main board, whereas changing the PWL function requires a change in the contents of
a memory.
The paper is organized as follows. In Section 2 we shall introduce some basic de�nitions.

Section 3 describes a three-step method yielding a principle implementation scheme for a
given PWL approximation. Section 4 proposes a simpler analog=digital circuit approximation
scheme. In Section 5 we shall provide a prototype and some experimental results. Some
concluding remarks are given in Section 6.

2. BASIC DEFINITIONS

The input arguments to the function are assumed to belong to the hyperrectangular domain
S. The length of the ith side of this hyperrectangle is (bi − ai), and is divided into mi equal
segments. The (invertible) transformation

z=T(x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
b1 − a1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0
mn

bn − an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(x− a) (3)
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maps the domain S into the scaled domain {z ∈Rn : 06z6m}.‡ By assuming that all axes
have the same number of segments m=2p − 1 (p is a positive integer), each component of
m can be encoded into a binary number of p bits and the scaled domain is an (hypercube)
and will be henceforth denoted as Cp.
The hardware realization of the block implementing transformation T(x) is rather direct

(e.g. through op-amps). Moreover, it can be viewed as a ‘boundary’ operation with respect
to the PWL processing of the normalized scaled vector z. For this reason, our hardware
implementation only deals with the PWL block, which is the ‘core’ of the realization.
The domain Cp is partitioned into

∏n
i=1 mi=m

n hypercubes. The set of N =
∏n
i=1 (mi +

1)= (m+1)n=2np hypercube vertices contained in Cp is de�ned as Vp= {I ∈Nn : 06I6m},
where every component of I is 0 or a positive integer 6m. Each hypercube is in turn parti-
tioned into n! simplices, and every simplex is identi�ed by its n+1 vertices. The subdivision
of hypercubes of Cp into non-overlapping simplices is done by properly arranging the vertices
of Vp in a �xed order [13]. Then, a generic point z ∈Cp can be uniquely expressed as

z=
q∑
j=0
�jIj (4)

where �j¿0, Ij ∈Vp, q6n,
∑q

j=0 �j=1 and I06I16 : : :6Iq6I0 +1. If q= n, then no vector
Ij has a weighting coe�cient �j equal to zero. In this case, z lies within the simplex de�ned by
the vertices {I0; I1; : : : ; In}. Otherwise, z lies on the boundary given by the convex combination
of those q vertices with associated coe�cients �j¿0. If q=0, then the point z coincides with
the vertex I0 (and �0 = 1). Then, index j de�nes a local (i.e. related to the simplex or to
the boundary where z lies) labelling. For the sake of compactness, we shall de�ne the set
�z= {0; 1; : : : ; q}.

3. CIRCUIT ARCHITECTURE

Our aim is to obtain a circuit synthesis for multiport resistors described by piecewise-linear
(PWL) constitutive equations. Every individual function is in the form of f(z)=

∑N
k=1 ck�k

(z), where �k(z) denotes the kth component of a basis of PWL functions such that �k(Ij)= �kj
(i.e. each basis function �k is a hyperpyramid with compact support and the ck’s are proper
weighting coe�cients [1]).
With this in mind, the generic value f(z) can be expressed as follows:

f(z)=
N∑
k=1
ck�k

( ∑
j∈�z

�jIj

)
=

N∑
k=1
ck
∑
j∈�z

�j�k(Ij)=
∑
j∈�z

cj�j (5)

‡Henceforth, according to Reference [13], we shall use the following notations (with x, y n-length vectors and �
scalar):
x6y means xi6yi (i=1; : : : ; n)
x+ � means the vector whose components are xi + � (i=1; : : : ; n).
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As a consequence, f(z) can be calculated once the local set �z and the corresponding
coe�cients �j and weights cj have been found. As a matter of fact, a circuit realization of a
PWL approximation requires three steps:

(S1) a method to �nd, for any given z, the set �z and the corresponding coe�cients �j;
(S2) a memory where the ck coe�cients are stored;
(S3) a circuit block performing operation (5).

Step (S1): The procedure used to �nd the �j coe�cients is formulated in such a way that
it always produces n+ 1 values. When q¡n, (n − q) coe�cients �j are equal to zero. This
helps in doing a fully parallel implementation.
Following the ideas found in Reference [13], we de�ne

z=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

...

zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

I0 = �z�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�z1�
�z2�
...

�zn�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

The de�nition of I0 is the �rst operation to be performed by the circuit. Then, we de�ne

�z= z − I0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�z1

�z2

...

�zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

�ẑ=

⎡
⎢⎢⎢⎣
�zMAX

...

�zMIN

⎤
⎥⎥⎥⎦ (9)

where �zMAX = maxi {�zi}, �zMIN = mini{�zi}, and the remaining components of �ẑ are orga-
nized in decreasing order of magnitude. It must be stressed that, owing to the de�nition of
the Cp domain, �zi¿0 for any i.
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Each of operations (8) and (9) needs a proper circuit block. As explained in Reference [13],
we can calculate the �j coe�cients as follows:

�0 = 1− �zMAX =1− �ẑ1
�1 = �ẑ1 − �ẑ2

· · ·
�n−1 = �ẑn−1 − �ẑn= �ẑn−1 − �zMIN
�n = �ẑn= �zMIN

(10)

When z lies on the boundary of a simplex, the number q is smaller than n. Correspondingly,
(n− q) elements calculated by Equations (10) are null. By de�nition, the indices j for which
�j¿0 are those belonging to �z.
Operations (10) also need a proper circuit block.
Step (S2): Now, we need to retrieve from a memory the coe�cients corresponding to the

�j’s (i.e. to the set �z). To do that, we have to associate a binary address (made up of n×p
bits, i.e. p bits for each dimensional component of the domain) to each vertex belonging to
Vp. These addresses are obtained as follows. The binary vector B(I0) obtained by applying to
the I0’s co-ordinates the binarizing operator B(·) gives the address of I0. The other addresses
are obtained by adding B(I0) to the binary ‘di�erential’ vectors dj (j=1; : : : ; n), which derive
from the following procedure.
First of all, we de�ne the unitary step function:

u(x)=

{
0 x¡0

1 x¿0
(11)

The vectors dj (j=1; : : : ; n) are obtained as

dj=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(�z1 − �ẑj)
u(�z2 − �ẑj)

...

u(�zn − �ẑj)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Then, the parallel calculation of these vectors requires n circuit blocks. Each of them takes
the vector �z and one of the �ẑ components (from �zMAX to �zMIN) and applies the binary
function u to each of the n di�erence terms. The complete addresses aj for the needed cj
coe�cients are obtained by �rst calculating the binary vectors aj=B(I0) + dj and then by
applying to each aj the ‘string’ operator, which juxtaposes the components of the vector aj:

aj=string(aj)=[aj(n)|aj(n− 1)| · · · |aj(1)] (13)
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This amounts to say that B(I0) and the n sums aj=B(I0) + dj need n+ 1 further circuit
blocks (the �rst yields B(I0), and the others provide the vector sums). The binary string
generated by expression (13) corresponds to a number which labels a vertex according to the
arrangement chosen in Reference [13].
Step (S3): This is the �nal step. The addressed cj coe�cients and the �j terms must be

multiplied and then added, according to f(z)=
∑

j∈�z
cj�j.

Figure 1 shows a scheme for steps (S1) and (S2), whereas Figure 2 shows a scheme for
step (S3).

Figure 1. Principle scheme for steps (S1) and (S2).

Figure 2. Principle scheme for step (S3).
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Example
We shall consider a two-dimensional domain Cp with m=24 − 1=15 (then N =256). If we
assume z=

[
5:2
9:5

]
, then

I0 = �z�=
⎡
⎣5
9

⎤
⎦ =⇒ B(I0)=

⎡
⎣0101
1001

⎤
⎦

�z=

⎡
⎣0:2
0:5

⎤
⎦ ; �ẑ=

⎡
⎣0:5
0:2

⎤
⎦=

⎡
⎣�zMAX
�zMIN

⎤
⎦

�0 = 1− �zMAX =0:5

�1 = �zMAX − �ẑ2 = 0:5− 0:2=0:3

�2 = �zMIN = �ẑ2 = 0:2

Furthermore, we have

�z − �ẑ1 =
⎡
⎣0:2
0:5

⎤
⎦− 0:5=

⎡
⎣−0:3

0

⎤
⎦ =⇒ d1 = u(�z − �ẑ1)=

⎡
⎣0
1

⎤
⎦

=⇒ a1 =B(I0) + d1 =

⎡
⎣0101
1001

⎤
⎦+

⎡
⎣0
1

⎤
⎦=

⎡
⎣0101
1010

⎤
⎦

�z − �ẑ2 =
⎡
⎣0:2
0:5

⎤
⎦− 0:2=

⎡
⎣ 0
0:3

⎤
⎦ =⇒ d2 = u(�z − �ẑ2)=

⎡
⎣1
1

⎤
⎦

=⇒ a2 =B(I0) + d2 =

⎡
⎣0101
1001

⎤
⎦+

⎡
⎣1
1

⎤
⎦=

⎡
⎣0110
1010

⎤
⎦

Finally,

a1 = string(a1)=10100101

a2 = string(a2)=10100110

4. A PRACTICAL CALCULATION SCHEME

The simpler scheme shown in Figure 3 can be obtained by generalizing the ideas proposed
in Reference [12]. The central idea is that the sorting of the �z components is obtained se-
quentially through a voltage ramp r(t) associated with a set of n voltage comparators (the
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Figure 3. A simpler calculation scheme.

ramp r(t) is de�ned for t ∈ [0; T ], where T is such that r(T )=V0 = 1V ). Each output bit
Ai (initially set to 1) switches from 1 to 0 as the voltage ramp at the input side of its
voltage comparator reaches the value �zi. The time-varying binary sequence A1; : : : ; An and
the binary vector B(I0) represent the complete information necessary to address the n + 1
memory positions corresponding to the simplex containing the point z. In particular, each
component aj(i) (i=1; : : : ; n) of the vector aj giving the coe�cient cj in the memory is a
binary string obtained by simply summing the string B(�zi�) and the actual value of the bit
Ai= u(�zi − r(t)) in the less signi�cant position. Thus, the sequence of the n binary strings
aj(1); : : : ; aj(n) de�ne the memory address aj. The output of the D=A converter in cascade
with the memory is the coe�cient cj addressed by aj. Each address aj holds its value on
until the ramp r(t) sets to 0 the output of a further voltage comparator. It is rather easy
to verify that by integrating the analog output of the D=A converter over the time interval
[0; T ] the output voltage is proportional to cn�n + cn−1�n−1 + · · · + c0�0 =f(z), as each of
the cj coe�cients at the input of the integrator holds on for a time interval proportional
to �j.
We point out the modularity of the proposed scheme, as, for each dimensional component

of the input vector z, we only have to add to the circuit scheme a basic block of the kind
shown in the dashed box in Figure 3.
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Example
We consider the same example as before. Following the scheme shown in Figure 3, we have:

B(�z1�) = 0101; B(�z2�)=1001

�z1 = 0:2V; �z2 = 0:5V

r(t) = V0
t
T
; V0 = 1V

v1(t) = �z1 − r(t) =⇒ A1(t)= u(v1(t))=

⎧⎨
⎩
1 for 06t6t1

0 for t¿t1

with

t1 = T
�z1
V0
= 0:2T =�2T

v2(t) = �z2 − r(t) =⇒ A2(t)= u(v2(t))=

{
1 for 06t6t2

0 for t¿t2

with

t2 =T
�z2
V0
= 0:5T =(�1 + �2)T

In the interval [0; t1], A1(t)=A2(t)=1 and

B(�z1�) + A1 = 0110= a2(1); B(�z2�) + A2 = 1010= a2(2) =⇒ a2 = 10100110

The addressed coe�cient c2 is integrated in the same time interval. At t= t1, the resulting
value is c2�2T .
In the interval [t1; t2], A1(t)=0 and A2(t)=1. Then,

B(�z1�) + A1 = 0101= a1(1); B(�z2�) + A2 = 1010= a1(2) =⇒ a1 = 10100101

The addressed coe�cient c1 is integrated in the same time interval, thus giving c1(t2 −
t1)= c1(T=V0)(�z2 − �z1)= c1(0:3T )= c1�1T . At t= t2, the resulting value is (c2�2 + c1�1)T .
In the interval [t2; T ], A1(t)=0 and A2(t)=0. Then,

B(�z1�) + A1=0101=a0(1); B(�z2�) + A2=1001=a0(2) =⇒ a0=10010101=string(B(I0))

The addressed coe�cient c0 is integrated in the same time interval, thus giving
c0(T − t2)= c0T (1 − (�z2=V0))= c0(0:5T )= c0�0T . Finally, at t=T , the resulting value
is (c2�2 + c1�1 + c0�0)T =f(z)T .

5. ILLUSTRATIVE EXAMPLE: A VALIDATION PROTOTYPE

The architecture proposed in Section 4 must be regarded as a reference scheme, where the
analog parts should ensure a good performance in terms of processing speed and accuracy.
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The purpose of this section is to illustrate the presented approach. With this idea in mind, an
experimental prototype was built. Given that the objective was the validation and illustration
of the algorithm, rather than speed or accuracy, the architecture was simpli�ed by working
with digital signals only. The advantage of realizing a prototype on a completely digital basis
is an easier validation of the algorithm due to the robustness o�ered by digital processing
circuits. Following this line of reasoning, in our prototype the analog part has been greatly
reduced. In particular:

• the D=A converter in the input blocks is eliminated;
• the ramp generator is replaced by a digital ramp;
• digital comparators substitute the analog comparators;
• the output block (D=A converter plus integrator) is replaced by a properly controlled
logic circuit which sums the outputs of the EPROM and performs the D=A conversion
of the result.

Figure 4 shows the results obtained by using a clock frequency of 2:5 MHz for the digital
counter implementing the ramp generator and an input sampling rate of 10 kHz. Then, the
maximum allowed frequency component in the spectrum of the input signal is less than 5kHz.
Actually, this upper limit is merely theoretical, since, due to non-linearity, both y(t)=f(x(t))
and its PWL approximation fPWL(x(t)) can have a frequency spectrum widely larger than that
of the input signal x(t).

Figure 4. Matlab ‘peaks’ function (smooth surface) and circuit samples
of its PWL approximation (black dots).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2005; 33:307–319



318 M. PARODI, M. STORACE AND P. JULI �AN

The circuit allows an input dimension n=4. As an example, we propose the PWL approx-
imation of a function de�ned over a two-dimensional domain. The normalized domain Cp is
de�ned with m=15 (i.e. p=4). As a consequence, each address aj is a string of n×p=16
bits. The N =256 coe�cients ck are stored in a small fraction of the 1Mb EPROM necessary
in the more general four-dimensional case.

6. CONCLUDING REMARKS

In this work, we have described in detail a synthesis procedure that, starting from the simplicial
subdivision (1) and the consequent PWL approximation fPWL, yields a complete A=D circuit
architecture.
A remarkable aspect of this work is the modularity and �exibility of the architecture:

an increase of a unit in the domain dimension simply corresponds to the addition of an
input module, and the function to be implemented can be changed by re-programming the
memory. Other advantages with respect to fully analog implementations (see Reference [7])
concern the higher accuracy and controllability provided by mixed-signal and fully digital
implementations. Generally speaking, the higher accuracy is payed in terms of speed. In the
fully digital implementation proposed in Section 5, this depends in primis on the relationship
between the clock frequency fc, the output sampling period T (see Section 4) and the number
nb of bits used to represent the �z components: T =2nb=fc. In a mixed-signal implementation,
some parts of the proposed architecture can be implemented in analogic technology, thus
increasing the processing speed at the cost of a lower accuracy.
The overall accuracy of the PWL approximation depends also on both the number N of

basis functions (and coe�cients) and the bit size for each coe�cient stored in the memory,
i.e. on the available memory size. On the other side, the maximum allowed working speed
of the overall circuit depends also on the frequency spectrum of the signal y(t)=f(x(t)).
A �rst prototype of the proposed architecture has been implemented on a fully digital

fashion. This was made for the sake of simplicity, as we aimed to validate the proposed syn-
thesis procedure. However, since the proposed circuit is based on standard electronic blocks,
a CMOS implementation, whether it is mixed-signal or fully digital, follows immediately
from the principles described. An implementation of this kind could be tailored depending on
the application to achieve di�erent functional speci�cations, for instance high speed or high
density for cases of high precision or high dimensionality of the input space.
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