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Abstract: For the lithium battery management system and real-time safety monitoring, two issues are of great 

significance, namely the ability to accurately update the model parameters in real time and to accurately estimate 

the state of charge and health. In this context, this thesis adopts the second-order RC equivalent circuit model and 

the forgetting factor recursive least squares - double extended Kalman filtering (FFRLS-DEKF) algorithm with 

multi-time scales and low-pass filter. forgetting factor recursive least squares is applied to conduct online 

parameter identification, and the traditional double extended Kalman filtering algorithm is optimized to evaluate 

the state of charge and model parameters in the micro-scale and macro-scale. In this way, the error caused by two 

different characteristics is reduced, and a low-pass filter is added to optimize the fluctuation problem of the 

estimated value of the model parameters. According to the experiment results, the maximum error between the 

model simulation value and the actual value of the terminal voltage is 0.0459 V. If the initial value of the state of 

charge deviates from the actual value, the maximum errors under BBDST and HPPC conditions record 0.0235 

and 0.0048, respectively, the forgetting factor recursive least squares - double extended Kalman filtering algorithm 

with multi-time scales and low-pass filter is able to track the true value within 40 seconds. Furthermore, the 

lithium-ion battery state of health both reaches 98% under the two conditions. In summary, the experimental 

analysis shows that the algorithm helps reduce the influence of initial values on the results, thereby reducing error 

accumulation and improving the robustness.

Key words: Low pass filter; Second-order RC model; forgetting factor recursive least squares; Collaborative state 

estimation; double extended Kalman ; multi-time scale
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1. Introduction

At present, new energy vehicles, aerospace, and many other emerging energy strategies are developing rapidly [1, 

2]. Lithium-ion battery management systems (BMS) and real-time reliable detection systems have been 

regarded as the core technology of new energy systems [3, 4]. Lithium-ion batteries' number of cycles, cost, 

reliability, and safety problems are becoming increasingly prominent. The demand for technological breakthrough 

and theoretical innovation of high-quality lithium-ion battery is rapidly expanding [5]. The requirement of 

accurately updating the model parameters in real-time and accurately estimating the state of charge and health are 

increasing. There are many applications around us. For example, EV wireless charging and Wireless sensor 

Networks field[6, 7]. Electric Vehicle Charging Study[8]. The research and development of a new generation of 

high-end lithium-ion battery energy and intelligent real-time detection system is the key breakthrough of the 

national new energy research and development industry [9]. The in-depth research on lithium-ion batteries' state of 

charge and health by many industry personnel will be introduced in detail below [10].

In the initial estimation of the state of charge of the lithium-ion battery, the discharge experiment method is 

adopted to carry out a constant discharge of the lithium-ion battery and stop it when it reaches the cut-off voltage. 

This method is relatively simple and the obtained results are relatively accurate [11]. Still, it takes a long time and 

can not calculate the lithium-ion battery under the working state in real time. In order to make up for the deficiency 

of discharge experiment method, the ampere hour method is proposed to estimate state of charge [12]. Its principle 

is to calculate the total amount of charge and discharge charge in a period of time by giving state of charge value at 

a particular time. The estimated value can be obtained by superimposing the given value and calculated value [13]. 

There are some problems with ampere hour method, for example, its estimation error will accumulate over time and 

estimation accuracy depends on the initial value [14]. In order to solve the error accumulation problem of the 

ampere-hour method, Kalman Filter algorithm was proposed based on the ampere-hour [15]. This algorithm 
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is mainly composed of prediction and update. It continuously iterates estimating state of charge, quickly tracks 

the real state of charge value and calculates the optimal estimate value [16]. However, Kalman Filter algorithm 

can only solve linear problems, and the estimation of state of charge is usually a nonlinear process, so it needs to 

linearize the nonlinear system [17]. When Kalman Filter can not solve the nonlinear problem, Extended Kalman 

Filter algorithm based on Kalman filter algorithm to solve the nonlinear system [18], by linearizing the 

nonlinear state space equation, Kalman filter algorithm to achieve state of charge estimation [19]. The authors 

propose a cubic Kalman filtering algorithm combining fuzzy adaptive and singular value decomposition in order 

to solve the problem of slow convergence time of cubic Kalman algorithm[20]. 

Four kind of algorithms based on Kalman filter extension are introduced in detail (extended Kalman filter, 

unscented Kalman filter, cubature Kalman filter and ensemble Kalman filter), the advantages and disadvantages, 

estimation accuracy and anti-interference ability of these four algorithms were compared in detail [21]. The author 

proposed a novel Adaptive Square root Extended Kalman filter based on extended Kalman filter algorithm, which 

solved the filtering divergence problem and ensured non-negative deterministic in [22]. In addition to the author 

proposed a correntropy - weighted least squares - extended Kalman filter algorithm to estimate state of charge, 

and the error can be effectively reduced under the condition of non-Gaussian noise in [23]. Aiming at the problem 

of battery parameter marginalization and ageing, the authors estimate state of charge accurately by volume 

Kalman filter combined with recursive least squares in [24]. The author focuses on the fractal-order adaptive 

extended Kalman filter, which can quickly track the unknown variance in [25]. An estimation method with an 

adaptive feedback compensator is proposed, which can improve state of charge estimation performance and fast 

convergence in [26].

With the rapid development of society, the use frequency of lithium-ion battery products is increasing [27], and 

the aging problem of lithium-ion battery is becoming increasingly apparent. In order to know the aging degree of 

battery in real time and accurately [28], we introduce the battery State of Health (SOH). The battery health status 
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is defined as the ratio of the capacity released by the power battery from the full charge state to the cut-off voltage 

at a certain rate to the standard capacity under standard conditions [29]. This ratio is a manifestation of the battery 

health status and conforms to most current lithium-ion batteries [30]. At present, there are several methods to 

estimate the health status of lithium-ion batteries: neural network algorithm. The abandon the traditional 

equivalent circuit method and independent of model, a method of state of health estimation based on incremental 

capacity and fusion of wavelet neural network and genetic algorithm is proposed in [31]. The authors developed 

a neural network that used more than 110,000 measurements to train and validate the model in [32]. The author 

proposes a new multi-scale state of health model to solve the capacity degradation problem, and finally constructs 

a prediction framework based on wavelet neural network and integrated learning network in [33]. Model 

estimation method, a model-based voltage construction method is proposed to eliminate unfavorable numerical 

conditions and reshape incremental capacity (IC) curves in [34]. The author proposes a novel state of health 

estimator based on fusion, which has a high estimate of intensive reading in [35]. The author proposed a battery 

health assessment framework based on fuzzy comprehensive evaluation (FCE) and improved multiple grey model 

(IMGM) to optimize multiple health indicators (MHIs) system to reduce the influence of Health indicator (HI) 

error on the overall prediction results in [36]. Data driven and Support vector machine [37-39]. The author 

proposes an improved sine-cosine algorithm based on the two-order RC model [40]. The author takes machine 

learning as the starting point, analyzes and compares five popular intelligent algorithms, and provides some 

enlightenment for maximum likelihood method to estimate state of health [41].

With the increasing accuracy requirements of the algorithm, this paper proposes a multi-time scale low-pass 

filter forgetting factor recursive least squares method - double extended Kalman filter (FFRLS-DEKF) co-

estimation algorithm for state of charge and state of health. Based on extended Kalman filter algorithm, a double 

extended Kalman filter is used. One Kalman filter is used to estimate the slow time-varying characteristics of 

parameters and the other Kalman filter is used to estimate the fast time-varying characteristics of system states, 
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which can effectively solve the problem of different time scales of system parameters and system states. In the 

parameter estimation, a low pass filter is introduced to optimize the parameter estimation result, which improves 

the accuracy of state of health estimation value. The advantage of the whole algorithm in terms of computational 

efforts is that it calculates two kinds of variables at different time scales, which meets the different requirements 

of system parameters and system states and improves the accuracy of estimation. However, the disadvantage is 

that it requires a large amount of calculation and has certain requirements for equipment performance.

2. Mathematical analysis

2.1  2-RC equivalent modeling

The equivalent circuit model is inseparable from the charge-discharge experiment, and the performance 

parameters of lithium-ion battery are studied by Hybrid Pulse Power Characterization Test (HPPC) [42]. In order 

to accurately estimate state of charge, state of health and other model parameters under lithium-ion battery 

operation, the second-order RC equivalent circuit model is selected in this paper [43]. Compared with the 

Thevenin equivalent circuit model [44], the second-order RC circuit model has an additional RC loop representing 

dynamic response, as shown in Fig. 1.

[Insert Figure 1]

Fig. 1  Second order RC equivalent circuit model

In this model, Ub represents the voltage source of the lithium-ion battery, which varies with state of charge, Ri 

represents the ohmic internal resistance of the battery [45], R1 and R2 both represent the polarization resistance of 

the battery, U represents the measured terminal voltage, and in the equivalent circuit, RC circuit composed of R1 

and C1 represents the process of rapid voltage change in the electrochemical reaction inside the battery [46]. The 

RC circuit composed of R2 and C2 represents the process in which the voltage of the electrochemical reaction 

inside the battery changes slowly, and I is the direction of the current circuit [47]. According to Kirchhoff's voltage 

Page 5 of 42

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



law, the KVL equation of the circuit can be obtained as shown in Equation (1).

{𝑈𝑏 = 𝑈 + 𝑈𝑖 + 𝑈1 + 𝑈2
𝑑𝑈1

𝑑𝑡
= ―

𝑈1

𝑅1𝐶1
+

𝐼
𝐶1

𝑑𝑈2

𝑑𝑡
= ―

𝑈2

𝑅2𝐶2
+

𝐼
𝐶2

(1)

In order to estimate the charged state, it is necessary to establish the system's state equation, observation equation 

and parameter estimation parameter equation, and equation (2) can be obtained by discretization Equation (1).

{x𝑘,𝑙 + 1 = 𝑓(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙) + 𝑤𝑘,𝑙
𝑌𝑘,𝑙 = 𝑔(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙) + 𝑣𝑘,𝑙

𝜃k + 1 = 𝜃k + 𝜌k

(2)

According to the second order RC equivalent circuit model,  was selected as the state variable, [𝑆𝑂𝐶 𝑈1 𝑈2]

and combined with equation (2) and state of charge definition discretization, the equation (3) was obtained as 

follows.

{[𝑆𝑂𝐶𝑘 + 1
𝑈1,𝑘 + 1
𝑈2,𝑘 + 1

] = [1 0 0
0 1 ― 𝑇 𝜏1 0
0 0 1 ― 𝑇 𝜏2

]##

𝑈𝑏,𝑘 + 1 = 𝑈(𝑆𝑂𝐶,𝑘 + 1) + 𝑈𝑖 + 𝑈1 + 𝑈2

(3)

In equation (3), T is sampling time,  and  equal to  and  respectively, the relation of  𝜏1 𝜏2 𝑅1𝐶1 𝑅2𝐶2

 can be obtained by polynomial fitting. Forgetting Factor Recursive Least Square method is used for 𝑆𝑂𝐶 ― 𝑂𝐶𝑉

polynomial fitting of data, the variation of parameters is not obvious, the order of polynomial is increasing, the 

more likely produce oscillations. In polynomial fitting of experimental data, it is found that the effect of 

polynomial fitting with sixth order is equivalent to that of polynomial fitting with seventh order due to the 

existence of oscillation phenomenon. Therefore, sixth-order polynomial is chosen as the fitting target. 

 can be expressed as shown in Equation (4).𝑈(𝑆𝑂𝐶,𝑘 + 1)

𝑈(𝑆𝑂𝐶,𝑘 + 1) = 𝐾0 + 𝐾1𝑆𝑂𝐶 + 𝐾2𝑆𝑂𝐶2 +𝐾3𝑆𝑂𝐶3 + 𝐾4𝑆𝑂𝐶4 +𝐾5𝑆𝑂𝐶5 + 𝐾6𝑆𝑂𝐶6 (4)

Where k and l represent the macroscopic system parameters and the microscopic system state indicators 

respectively, where xk.l is the state equation of the system, Uk,l is the input matrix, Yk,l is the observation equation 

at this moment, where wk,l and ρk are the process noise of the observation equation and parameter equation, vk,l is 
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the observation noise. Both system noise and observation noise are gaussian white noise, and their variances are 

expressed as Q and R. Where K is an undetermined coefficient, which can be obtained by fitting open circuit 

voltage (OCV) and state of charge.

2.2  FFRLS Parameter identification

Choosing 4.2V/70Ah term-power lithium-ion battery, which has the advantages of high energy density[48], 

good cycle performance and long battery life. In the lithium-ion battery management system (BMS), the Hybrid 

Pulse Power Characterization Test (HPPC) is carried out with ternary lithium-ion battery as the experimental 

object [49]. The principle is to discharge the battery every SOC=0.1 to get the variation rule of each parameter 

[50]. The voltage transformation curve is shown in Figure 2 (a), and the current curve is shown in Figure 2(b).

[Insert Figure 2 (a)]

(a) HPPC voltage curve

[Insert Figure 2 (b)]

(b) HPPC current curve

Fig. 2 Voltage and current curve under HPPC test

The variation curves of various parameters are obtained by Hybrid Pulse Power Characterization experiment 

and the parameters of the second-order RC model are identified by using the Forgetting Factor Recursive Least 

Square (FFRLS) [51]. In the identification process, the function of the forcing factor is to give a small weight to 

the data with a long running time, while the latest observation data occupy a large weight. The identification 

process is as follows:

The second-order RC equivalent circuit model is transformed into the mathematical form of the least square 

method, as shown in Equation (5).

𝑈𝑏 = ( 𝑅1

𝑅1𝐶1𝑠 + 1 +
𝑅2

𝑅2𝐶2𝑠 + 1 + 𝑅𝑖)I + 𝑈 (5)

As in equation (5), let  and , Substitute it into Equation (5) to obtain:𝜏1 = 𝑅1𝐶1 𝜏2 = 𝑅2𝐶2

𝜏1𝜏2𝑈𝑏𝑠2 + (𝜏1 + 𝜏2)𝑈𝑏𝑠 + 𝑈𝑏 = 𝑠2𝜏1𝜏2𝑅𝑖𝐼 + 𝑠[𝑅1𝜏2 + 𝑅2𝜏1 + 𝑅𝑖(𝜏1 + 𝜏2)]𝐼

+ (𝑅1 + 𝑅2 + 𝑅𝑖)𝐼 + 𝑠2𝜏1𝜏2𝑈 + 𝑠(𝜏1 + 𝜏2)𝑈 + 𝑈
(6)
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As in equation (6), let , , , , Then the above 𝑎 = 𝜏1𝜏2 𝑏 = 𝜏1 +𝜏2 𝑐 = 𝑅1 + 𝑅𝑖 + 𝑅2 𝑑 = 𝑅1𝜏2 + 𝑅2𝜏1 + 𝑅𝑖(𝜏1 +𝜏2)

equation can be simplified to equation (7).

𝑎𝑈𝑏𝑠2 + 𝑏𝑈𝑏𝑠 + 𝑈𝑏 = 𝑎𝑠2𝑅𝑖𝐼 + 𝑑 𝑠𝐼 + 𝑐𝐼 + 𝑎𝑠2𝑈 + 𝑏 𝑠𝑈 + 𝑈 (7)

Substitute into equation (7) for discretization, where 𝑠 =
[𝑥(𝑘) ― 𝑥(𝑘 ― 1)]

𝑇 , 𝑠2 = [𝑥(𝑘) ― 2𝑥(𝑘 ― 1) + 𝑥(𝑘 ― 2)]/𝑇

T is the sampling time, as shown below:

𝑈𝑏(𝑘) ― 𝑈(𝑘) =
―𝑏𝑇 ― 2𝑎

𝑇2 + 𝑏𝑇 + 𝑎
[𝑈(𝑘 ― 1) ― 𝑈𝑏(𝑘 ― 1)] +

𝑎

𝑇2 + 𝑏𝑇 + 𝑎
[𝑈(𝑘 ― 2) ― 𝑈𝑏(𝑘 ― 2)] +

𝑐𝑇2 + 𝑑𝑇 + 𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎
𝐼(𝑘) +

―𝑑𝑇 ― 2𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎
𝐼(𝑘 ― 1) +

𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎
𝐼(𝑘 ― 2)

(8)

Simplify (8), we can get Eq.(9) as follow.

𝑈𝑏(𝑘) ― 𝑈(𝑘) = 𝑘1[𝑈(𝑘 ― 1) ― 𝑈𝑏(𝑘 ― 1)] + 𝑘2[𝑈(𝑘 ― 2) ― 𝑈𝑏(𝑘 ― 2)] +
𝑘3𝐼(𝑘) + 𝑘4𝐼(𝑘 ― 1) + 𝑘5𝐼(𝑘 ― 2)

(9)

Each coefficient in equation (9) can be expressed as follows:

{ 𝑘1 =
―𝑏𝑇 ― 2𝑎

𝑇2 + 𝑏𝑇 + 𝑎

𝑘2 =
𝑎

𝑇2 + 𝑏𝑇 + 𝑎

𝑘3 =
𝑐𝑇2 + 𝑑𝑇 + 𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎

𝑘4 =
―𝑑𝑇 ― 2𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎

𝑘5 =
𝑎𝑅𝑖

𝑇2 + 𝑏𝑇 + 𝑎

(10)

As in equation (10), let θ= , bring it into the forgetting factor recursive least squares algorithm, [𝑘1,𝑘2,𝑘3,𝑘4,𝑘5]𝑇

and solve the parameter values of the second-order RC equivalent circuit from the identification results. The 

forgetting factor recursive least squares recurrence equation is as follows:

{ 𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝐾(𝑘 + 1)[𝑦(𝑘 + 1) ― 𝜙𝑇(𝑘 + 1)𝜃(𝑘)]
𝐾(𝑘 + 1) = 𝑃(𝑘 + 1)𝜙(𝑘 + 1)[𝜙𝑇(𝑘 + 1)𝑃(𝑘)𝜙(𝑘 + 1) + 𝜆] ―1

𝑃(𝑘 + 1) = 𝜆 ―1[𝐼 ― 𝐾(𝑘 + 1)𝜙𝑇(𝑘 + 1)]𝑃(𝑘)
(11)

Where P(k) is the covariance matrix, (k) = [ ], K is the gain, λ It is a genetic factor, 𝜙 𝑣𝑘 ― 1 𝑣𝑘 ― 1 𝐼𝑘 𝐼𝑘 ― 1 𝐼𝑘 ― 2

generally 0< λ< 1, when the λ gets smaller value, the better the tracking effect of the algorithm, but it will cause 
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the fluctuation of the algorithm λ, When l is taken, it is the standard least squares recursive method. Through 

continuous iterative calculation, the results of each time can be obtained θ. The value of Ri, R1, R2, C1 and C2 are 

calculated from equation (12).

{ 𝑅i =
𝑘3 ― 𝑘4 + 𝑘5

1 + 𝑘1 ― 𝑘2

𝜏1𝜏2 =
𝑇2(1 + 𝑘1 ― 𝑘2)
4(1 ― 𝑘1 ― 𝑘2)

𝜏1 +𝜏2 =
𝑇(1 + 𝑘2)

1 ― 𝑘1 ― 𝑘2

𝑅i𝜏1 + 𝑅i𝜏2 + 𝑅1𝜏2 + 𝑅2𝜏1 =
𝑇(𝑘3 ― 𝑘5)
1 ― 𝑘1 ― 𝑘2

𝑅i +𝑅1 + 𝑅2 =
𝑘3 + 𝑘4 + 𝑘5

1 ― 𝑘1 ― 𝑘2

（12）

2.3  Multi time scale double extended Kalman filter algorithm

The traditional dual extended Kalman filter (DEKF) is used to estimate the battery system parameters and system 

state at the same time [52]. In each iterative calculation, the state filter of extended Kalman filter uses parameter 

estimation  The parameter filter of extended Kalman filter uses the current state estimation value  estimate 𝜃 -
k xk

the system model parameters. Since the traditional double extended Kalman filter can only estimate parameters 

and states at the same time, a multi time scale double extended Kalman filter is proposed in this paper. From 

equation (2), it can predict the state value of the system at the micro scale, predict the parameter value of the 

model at the macro scale, and provide stable system parameters and state estimation. The recursive process of 

dual extended Kalman filter is as follows:

Step 1: initialize system status value and parameter value

, , , 𝜃0 = E[𝜃] 𝑃𝜃0 = E[(𝜃0 ― 𝜃0)(𝜃0 ― 𝜃0)𝑇]  𝑥0 = 𝐸[𝑥] 𝑃𝑥0 = E[(𝑥0 ― 𝑥0)(𝑥0 ― 𝑥0)𝑇 (13)

Step 2: parameter filter time update equation

,𝜃𝑙
― = 𝜃𝑙 ― 1  𝑃 ―

l = 𝑃l + 𝑄𝜃 (14)

Step 3: parameter filter measurement update equation
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{ Kl = 𝑃𝑙𝐶𝑇
𝑙 [𝐶𝑙𝑃𝑙𝐶𝑇

𝑙 + Rl]
―

𝜃l = 𝜃l
- + Kl𝑌𝑙 ― Kl𝑔(𝑥𝑘,𝜃𝑙

― ,𝑢𝑘)
𝑃𝜃𝑙 = (𝐼 ― Kl𝐶𝑙)𝑃 ―

l

(15)

Step 4: state filter time update equation

,𝑥𝑘
― = 𝑓(𝑥𝑘 ― 1,𝜃𝑘 ― 1,𝑢𝑘) 𝑃 ―

k = 𝐴𝑃𝑘 ― 1𝐴𝑇 + 𝑄𝑘 ― 1 (16)

Step 5: state filter measurement update equation

K𝑘 = 𝑃𝑘𝐶𝑇
𝑘[𝐶𝑘𝑃 ―

k 𝐶𝑇
𝑘 + R𝑘] ―

𝑥𝑘 = 𝑥𝑘 - + K𝑘𝑌𝑘 ― K𝑘𝑔(𝑥𝑘,𝜃𝑙
― ,𝑢𝑘)

𝑃𝑘 = (𝐼 ― K𝑘𝐶𝑘)𝑃 ―
𝑘

(17)

The calculation method of A,  and is as follows𝐶𝑘 𝐶𝑙 

A , , ≜
∂𝑓(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙)

∂x 𝐶𝑘 ≜
∂𝑔(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙)

∂𝑥 𝐶𝑙 ≜
∂𝑔(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙)

∂𝜃 (18)

Where:  is the initial value of the parameter value, which can be calculated according to the model,  is 𝜃0 P𝜃0

the parameter value of the parameter error covariance matrix,  is the initial value of state quantity,  the x0 Px0

initial value of the state error covariance matrix, all of which are the initial values in the algorithm,  is the 𝜃l

estimated value of the minimum variance of the parameter at time l,  is the minimum variance estimate of the xk

parameter at time k, and  is Kalman gain,  is the state transition matrix at time k. it should be noted that K𝑘 Kl 𝐶𝑘

 in parameter filtering refers to the total derivative of the measurement equation with respect to the parameters. 𝐶𝑘

We need to decompose the total derivative into partial derivatives and the process is as follows:

𝐶𝑙 ≜
∂𝑔(𝑥𝑘,𝑙,𝜃𝑘,𝑢𝑘,𝑙)

∂𝜃 =
∂𝑔(𝑥𝑘,𝑙,𝜃𝑙

― ,𝑢𝑘,𝑙)
∂𝜃𝑙

― +

∂𝑔(𝑥𝑘,𝑙,𝜃𝑙
―

𝑙,𝑢𝑘,𝑙)
∂𝑥k

×
d𝑥𝑘

𝑑𝜃𝑙
―

(19)

d𝑥𝑘

𝑑𝜃𝑙
― =

𝑑𝑓(𝑥𝑘 ― 1,𝑙,𝜃𝑙
― ,𝑢𝑘 ― 1,𝑙)

𝑑𝜃𝑙
― = (∂𝑓(𝑥𝑘 ― 1,𝑙,𝜃𝑙

― ,𝑢𝑘 ― 1,𝑙)
∂𝜃𝑘

― +
∂𝑓(𝑥𝑘 ― 1,𝑙,𝜃𝑙

― ,𝑢𝑘 ― 1,𝑙)
∂𝑥𝑘 ― 1

×
𝑑𝑥𝑘 ― 1

𝑑𝜃𝑙
― ) (20)

𝑑𝑥𝑘 ― 1

𝑑𝜃𝑙
― =

𝑑𝑥 ―
𝑘 ― 1

𝑑𝜃𝑙
― ― k𝑥

𝑘 ― 1

𝑑𝑔(𝑥𝑘 ― 1,𝑙,𝜃𝑙
― ,𝑢𝑘 ― 1,𝑙)

𝑑𝜃𝑙
―

(21)

The flowchart of the multi time scale double extended Kalman filter algorithm is shown in Fig.3 and the specific 

steps are as follows.

[Insert Figure 3]
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Fig.3 The flowchart of the multi time scale double extended Kalman filter

Step 1：Initialize the multi time scale dual extended Kalman filter algorithm and select the appropriate values 

of , ,  and  using Eq.(13).𝜃0 𝑃𝜃0 𝑥0 𝑃𝑥0

Step 2: Under macro scale, according to the slow time characteristic of the parameter, the parameter filter starts 

to update,  and  are calculated from Eq.(14).𝜃𝑙
― 𝑃 ―

𝑙

Step 3: The obtained parameter value  and  is brought into Eq. (15) for parameter filter measurement 𝜃𝑙
― 𝑃 ―

𝑙

update to complete a parameter filtering process. After l return to the second step to continue the parameter 

iterative calculation.

Step 4: Under micro scale, From the obtained ,  and , calculate  and  according to Eq.(16).𝜃𝑘
―  𝑥0 𝑃𝑥0 𝑥𝑘

― 𝑃 ―
𝑘

Step 5: Based on the obtained status update value  and , calculate the status measurement update value 𝑥𝑘
― 𝑃 ―

𝑘

by Eq.(17). After k return to step four to start a new round of system status update.

The whole process of multi-time scale dual extended Kalman filter algorithm can be realized through the five-

step iterative calculation process.

2.4  Low pass filtering combined iterative calculation

The loss of lithium-ion will lead to the attenuation of lithium-ion battery capacity and the further aging of 

lithium-ion battery state. In order to capture this attenuation, the state of health (SOH) is introduced, SOH of 

lithium-ion battery represents the capacity of the current battery to store electric energy relative to the new battery, 

and usually represents the state of the battery from the beginning to the end of its life in the form of percentage, 

which is used to quantitatively describe the performance state of the current battery. When the battery is produced, 

the state of health is 100%, which means 1. In this part, which is defined as the ratio of the actual maximum 

available capacity Qmax to the rated capacity QN. In this paper, the multi-time scale dual extended Kalman filter 

algorithm is used to continuously estimate the battery capacity parameters in real time in view of the time-varying 
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characteristics of lithium-ion battery parameters at the macro scale, so as to reduce the estimation error of SOH. 

The calculation equation of SOH is shown in Eq.(22).

SOH =
Qmax

QN
× 100% (22)

During the estimation of the parameter filter, the estimated capacity occasionally fluctuates greatly. In order to 

obtain the accurate state of health estimation value, a low-pass filter is added to the parameter estimation part of 

the algorithm. The low-pass filtering method uses the sampling value and the output value of the last filtering to 

get the effective filtering value, so that the output has a feedback effect on the input, reducing the amplitude of 

the result fluctuation, and its frequency value will not change, nor will it change its real value. As shown in Eq. 

(23).

𝑌(𝑛) = 𝛼𝑋(𝑛) + (1 ― 𝛼)𝑌(𝑛 ― 1) (23)

In Eq.(23),  is the filter output value,  is Last filter output value,  is sample value,  is 𝑌(𝑛) 𝑌(𝑛 ―1) 𝑋(𝑛)  𝛼

Filter coefficients.

 In order to better demonstrate the running process of the multi-time scale low-pass filter forgetting factor 

recursive least squares - double extended Kalman filtering algorithm, the flow chart of the multi-time scale low-

pass filter forgetting factor recursive least squares - double extended Kalman filtering algorithm is shown in Fig.4.

[Insert Figure 4]

Fig.4 Flow chart of the multi-time scale low-pass filter FFRLS - DEKF algorithm

The algorithm starts with initialization of the program. In the first step the data obtained through experiments 

are imported into the forgetting factor recursive least squares algorithm for online parameter identification. In the 

second step, the obtained data for each parameter are applied to the multi-time scale double extended Kalman 

filtering algorithm for continuous iterative computation. Final output state of charge estimate, before outputting 

state of health, low-pass filtering optimizes the output for the estimated value.
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3. Experimental analysis

3.1  System platform design

In this study, a ternary lithium-ion battery with a standard capacity of 70Ah was used as the research object. To 

verify the accuracy of the proposed algorithm, a small-scale test platform was built through the existing conditions 

in the laboratory. Fig.5 depicts the structure of the experimental platform and Tab.1 describes the specifications 

of the BMS and lithium-ion battery.

[Insert Figure 5]

Fig.5 Experimental lithium-ion battery test platform

As shown in Fig.5, the structure of test platform includes: (a) Programable constant temperature test box, it is 

used to control the ambient temperature and prevent changes in ambient temperature from affecting the results 

of the experiment. (b) Ternary lithium-ion battery. (c) High-rate power battery charge-discharge tester (CT-

4016-5 V100A-NTFA), it is used for charge and discharge experiments. (d) BMS performance control systems. 

(e) PC serves as the control hub.

Tab.1 Lithium-ion battery and BMS specifications

[Insert Table 1]

3.2  FFRLS algorithm verification

Through the above theoretical analysis, the experimental data obtained from HPPC test was brought into the 

forgetting factor recursive least square method (FFRLS) to obtain the real-time data of each parameter. Each result 

was plotted by Origin, and the estimated voltage value was compared with the real voltage value to verify the 

accuracy of the algorithm.

[Insert Figure 6 (a)]

(a) Ri identification result curve

[Insert Figure 6 (b)]

(b) R1 identification result curve

Page 13 of 42

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



[Insert Figure 6 (c)]

(c) R2 identification result curve

[Insert Figure 6 (d)]

(d) C1 identification result curve

Fig. 6 Estimated values of FFRLS parameters under Second RC model

Fig.6 shows the four parameter results of forgetting factor recursive least squares algorithm edge identification, 

(a) - (c) are the identification results of ohmic internal resistance and two polarization resistances of the battery

respectively, (d) is the identification result of polarization capacitance. At the initial stage of battery discharge, 

the parameters fluctuate greatly. With the continuous decrease of SOC, the parameters gradually tend to be stable 

under the estimation of forgetting factor recursive least squares algorithm.

[Insert Figure 7 (a)] [Insert Figure 7 (b)]

(a) Comparison between simulated voltage and the actual
voltage

(b) FFRLS simulation voltage error result curve

Fig. 7 Second order RC model voltage validation and error curve

Fig. 7 (a) shows the comparison between the simulated voltage and the actual voltage obtained by the forgetting 

factor recursive least squares algorithm. It can be seen from the figure that the results obtained by the forgetting 

factor recursive least squares algorithm are basically consistent with the real results. At the end, the error is largely 

due to the large voltage fluctuation of the lithium-ion battery. It can be seen from (b) that the maximum voltage 

error of forgetting factor recursive least squares algorithm in verifying the model is 0.0459V, and the error is 

within the allowable range. Through the result analysis, forgetting factor recursive least squares has good accuracy 

in the process of parameter identification.

Page 14 of 42

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3.2  HPPC condition verification

Through the above theoretical analysis, this section will verify whether the multi time scale forgetting factor 

recursive least squares - double extended Kalman filtering algorithm based on low-pass filter is accurate when the 

initial SOC value is equal to 0.6, the fast time scale l is equal to 1s and the slow time scale k is equal to 80s under 

( Hybrid Pulse Power Characteristic) HPPC working conditions, and whether the capacity value estimated by 

parameter filter is stable and reliable through low-pass filter. In order to intuitively see the accuracy of the 

algorithm, extended Kalman filter (EKF) and double extended Kalman filter (DEKF) will be verified under the 

same conditions to compare whether the three algorithms are better than the other two algorithms at 25 degrees 

ambient temperature.

[Insert Figure 8 (a)]

(a) Estimated SOC and true SOC curve under HPPC

[Insert Figure 8 (b)]

(b) SOC error curve under HPPC condition

condition

[Insert Figure 8 (c)]

(c) Estimated capacity and low-pass filter capacity under

[Insert Figure 8 (d)]

(d) SOH curve under HPPC working condition

HPPC condition

Fig. 8 Three different algorithms SOC estimation, low pass filtering and SOH results under HPPC 

When the initial value is equal to 0.6, by verifying the extended Kalman filter ( ekf ), double extended Kalman 

filter ( dekf ), and comparing the multi time scale forgetting factor recursive least squares - double extended 

Kalman filtering algorithm based on the low-pass filter ( The algorithm is represented in the legend as r-dekf ) 

with the real SOC, it can be seen from Fig. 8 (b) that the maximum error of forgetting factor recursive least squares 

- double extended Kalman filtering algorithm is 0.0048, the maximum error of double extended Kalman filtering

algorithm is 0.0225, and the maximum error of extended Kalman filtering algorithm is 0.0867 under Hybrid Pulse 

Power Characteristic working condition. In addition, forgetting factor recursive least squares - double extended 

Kalman filtering algorithm can quickly converge to the accurate value in 40 seconds. On the contrary, the 
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convergence speed of the other two algorithms is slower than that forgetting factor recursive least squares - double 

extended Kalman filtering algorithm. In Fig.8 (c) f – C denotes the curve after estimation by low-pass filtering. It 

can be seen from Fig.8 (c) that the capacity estimated by forgetting factor recursive least squares - double extended 

Kalman filtering algorithm fluctuates greatly, but after the low-pass filtering algorithm, the capacity estimation 

tends to be stable, and the battery state of health (SOH) is determined by the estimated filter value Fig.8 (d) shows 

that the state of health lithium-ion battery is at 98%. In order to further verify the multi time scale reliability of 

the algorithm, it will be verified when the slow time scale k becomes 20s.

[Insert Figure 9 (a)]

(a) Estimated SOC and true SOC curve under HPPC

condition

[Insert Figure 9 (b)]

(b) SOC error curve under HPPC condition

Fig. 9 Comparison diagram of real SOC and estimated SOC, estimation error diagram.

(a) Estimated SOC and true SOC curve under HPPC

It can be seen from Fig. 9 (a) and (b) that the convergence of the algorithm is worse than that when the slow 

time scale is 80s. Before SOC = 0.4, the algorithm error under Hybrid Pulse Power Characteristic working 

condition has reached 0.0068, the maximum error when the full scale is 80s is 0.0048, and the error continues to 

accumulate. The analysis shows that when the time k of the slow time scale is small, the algorithm will also 

produce large errors. Therefore, it shows that a reasonable time is particularly important when selecting the slow 

time scale.

To further verify the stability and accuracy of the multi-time scale low-pass filter forgetting factor recursive 

least squares - double extended Kalman filtering algorithm under different temperature environments, the 

battery was placed in an environment of 35 degrees celsius for the same Hybrid Pulse Power Characteristic 

experiments. The obtained results are shown below.

[Insert Figure 10 (a)] [Insert Figure 10 (b)]

(b) SOC error curve under HPPC condition
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condition

[Insert Figure 10 (c)]

(c) SOH curve under HPPC working condition

[Insert Figure 10 (d)]

(d) Low-pass filtering effect

Fig.10 SOC and SOH curves output by the algorithm at 35 degrees ambient temperature

The data obtained from the Hybrid Pulse Power Characteristic test at an ambient temperature of 35 degrees and 

the results obtained after the algorithm can be seen that the multi time scale low-pass filter forgetting factor 

recursive least squares - double extended Kalman filtering algorithm has a maximum error of 0.0172 in estimating 

the SOC, which is within the allowable error range. the difference between the SOH output curve in the SOH 

output curve and the SOH curve in Figure 8 is within 0.01. The stability of the algorithm under different 

temperature environments is demonstrated. Since zero SOC is a nonexistent quantity in reality, the experimental 

SOC less than 0.2 is used here only as a reference.

3.3  BBDST condition verification

In order to verify the accuracy of multi time scale forgetting factor recursive least squares - double extended 

Kalman filtering algorithm based on low-pass filter under different working conditions, this section verifies the 

algorithm under Beijing bus dynamic stress test (BBDST) at 25 degrees ambient temperature. When the initial 

SOC value is equal to 0.6, the slow time scale k is equal to 80s, and the fast time scale l is equal to 1s, calculate 

the system state value, estimate the capacity value through the parameter filter, and optimize through the low-pass 

filter, then estimate the SOH value. The results are shown in the figure below.

[Insert Figure 11 (a)] [Insert Figure 11 (b)]

(a) Estimated SOC and true SOC curve

[Insert Figure 11 (c)]

(c) Estimated capacity and low-pass filter capacity

diagram 

(b) SOC error curve 

[Insert Figure 11 (d)]

(d) SOH curve
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Fig. 11 Three different algorithms SOC estimation, low pass filtering and SOH results under BBDST

It can be seen from Fig.11 that under Beijing bus dynamic stress test working condition, the multi time scale 

forgetting factor recursive least squares - double extended Kalman filtering algorithm based on low-pass filter 

(The algorithm is represented in the legend as r-dekf ) is the closest to the real value, and its maximum error is 

0.0235, the maximum error of double extended Kalman filtering algorithm is 0.0335, and the maximum error of 

extended Kalman filtering algorithm is 0.0762. It can be seen that forgetting factor recursive least squares - double 

extended Kalman filtering algorithm has the best effect in estimating state of charge. As can be seen from Fig.11 

(c), the estimation of the algorithm fluctuates greatly before the low-pass filter algorithm is added, and the 

estimation capacity is more gentle and less fluctuated after the low-pass filter algorithm is added. Its health state 

is about 98%, which is consistent with the estimated state of health under Hybrid Pulse Power Characteristic 

working conditions. It also shows the new reliability of the algorithm in jointly estimating state of charge and 

state of health under two working conditions. At the same time, the change of state of charge estimation value 

when state of charge slow time scale k = 20s is also verified under Beijing bus dynamic stress test working 

conditions.

[Insert Figure 12 (a)]

(a) Estimated SOC and true SOC curve

[Insert Figure 12 (b)]

(b) SOC error curve

Fig. 12 Result of FFRLS-DEKF method deviating from the correct initial SOC. Result of battery health status

As can be seen from Fig. 12, when the slow time scale is 20 seconds, the algorithm will accumulate and increase 

the error when SOC = 0.6, and the error has reached 0.03 when SOC = 0.2. Therefore, through the analysis of two 

working conditions, the multi time scale forgetting factor recursive least squares - double extended Kalman 

filtering algorithm based on low-pass filter can reflect a good state of charge estimation accuracy.

Similarly to verify the accuracy and stability of the multi-time scale low-pass filter forgetting factor recursive 

least squares - double extended Kalman filtering algorithm estimation under Beijing bus dynamic stress test 
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(a) Estimated SOC and true SOC curve

(BBDST）working condition. Two ambient temperature experiments were conducted on the battery again, one at 

35 degrees ambient temperature and the other at 15 degrees ambient temperature. The algorithm will estimate 

the SOC and SOH under the obtained experimental data, the estimated results are as follows.

[Insert Figure 13 (a)] [Insert Figure 13 (b)]

(b) SOC error curve

[Insert Figure 13 (c)]

(c) SOH estimation curve

[Insert Figure 13 (d)]

(d) Estimated capacity and low-pass filter capacity diagram

Fig.13 Algorithm SOC and SOH results for different ambient temperature BBDST conditions

In Figure 13, r-dekf-15, SOH-15 and f-C-15 denotes the estimated curve of the algorithm at 15 degrees. r-dekf-35, 

SOH-35 and f-C-15 denotes the estimated curve of the algorithm at 35 degrees. The algorithm has a maximum 

error of 0.0355 at an ambient temperature of 15 deg. with a maximum error of 0.0115 at an ambient temperature 

of 35 deg. In the SOH estimation, both ambient temperature estimates result in values with an error no greater 

than 0.02 compared to the error at 25 deg. The results show that the algorithm is able to have good stability at 

different ambient temperatures. Since zero SOC is a nonexistent quantity in reality, the experimental SOC less 

than 0.2 is used here only as a reference.

4. Conclusions

Considering the continuous improvement of the requirements for real-time condition monitoring and reliability 

of lithium-ion batteries. In this paper, HPPC and BBDST experimental data are obtained through experiments. An 

innovative multi-time scale low-pass filter forgetting factor recursive least squares - double extended Kalman 

filtering algorithm is proposed to solve the multi-time scale and parameter identification problem, which cannot 

be solved by traditional double extended Kalman filtering and extended Kalman filtering algorithm. forgetting 

factor recursive least squares algorithm is used to online identify the parameters of the second-order RC equivalent 

circuit model, which effectively solves the problem of real-time parameter updating, it is verified by MATLAB 
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simulation. The multi-time scale double extended Kalman filtering algorithm performs state estimation and 

parameter estimation at macro and micro scales respectively, it effectively solves the multi-time scale 

problem. The low pass filter solves the problem of capacitance fluctuation in parameter estimation and is used as 

a representation of the state of health. Experimental results show that the low-pass filter multi-time scale forgetting 

factor recursive least squares - double extended Kalman filtering algorithm has good performance in joint 

estimation of SOC and SOH.
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Tab.1 Lithium-ion battery and BMS specifications

Battery type Ternary lithium-ion battery BMS type BMS-HIL-1005

Size 149mm*98mm*40mm Size 1800mm*700mm*1500mm

Standard capacity 70Ah Input voltage 220V
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Nominal voltage 3.7V Max power 1500W

Internal resistance 5Ωm

Maximum continuous discharge 3C

Charging upper voltage 4.2V

Discharge lower limit voltage 2.75V
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Fig. 1 Second order RC equivalent circuit model 
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Fig. 2 (a) HPPC voltage curve 
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Fig. 2 (b) HPPC current curve 
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Fig.3 The flowchart of the multi time scale double extended Kalman filter 
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Fig.4 Flow chart of the multi-time scale low-pass filter FFRLS - DEKF algorithm 
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Fig.5 Experimental lithium-ion battery test platform 
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Fig. 6 (a) Ri identification result curve 
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Fig. 6 (b) R1 identification result curve 

179x97mm (300 x 300 DPI) 



Page 31 of 42

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Fig. 6 (c) R2 identification result curve 
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Fig. 6 (d) C1 identification result curve 
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Fig. 7 (a) Comparison between simulated voltage and the actual voltage 
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Fig. 7 (b) FFRLS simulation voltage error result curve 

169x99mm (300 x 300 DPI) 



Page 33 of 42

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Fig. 8 (a) Estimated SOC and true SOC curve under HPPC condition 
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Fig. 8 (b) SOC error curve under HPPC condition 
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Fig. 8 (c) Estimated capacity and low-pass filter capacity under HPPC condition 
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Fig. 8 (d) SOH curve under HPPC working condition 
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Fig. 9 (a) Estimated SOC and true SOC curve under HPPC condition 
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Fig. 9 (b) SOC error curve under HPPC condition 
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Fig.10 (a) Estimated SOC and true SOC curve under HPPC condition 
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Fig.10 (b) SOC error curve under HPPC condition 
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Fig.10 (c) SOH curve under HPPC working condition 
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Fig.10 (d) Low-pass filtering effect 
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Fig. 11 (a) Estimated SOC and true SOC curve 
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Fig. 11 (b) SOC error curve 
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Fig. 11 (c) Estimated capacity and low-pass filter capacity diagram 
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Fig. 11 (d) SOH curve 
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Fig. 12 (a) Estimated SOC and true SOC curve 
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Fig. 12 (b) SOC error curve 
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Fig.13 (a) Estimated SOC and true SOC curve 
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Fig.13 (b) SOC error curve 
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Fig.13 (c) SOH estimation curve 
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Fig.13 (d) Estimated capacity and low-pass filter capacity diagram 
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