
ar
X

iv
:2

10
5.

07
78

4v
1

 [
cs

.A
R

]
 1

7
M

ay
 2

02
1

ARTICLE TEMPLATE

Multi-output, multi-level, multi-gate design using non-linear

programming

A. C. Dimopoulosa, C. Pavlatosb and G. Papakonstantinouc

aHellenic Naval Academy, Piraeus, Greece; bHellenic Air Force Academy, Dekelia Air base,
Greece; cNational Technical University of Athens, Athens,Greece

ARTICLE HISTORY

Compiled May 18, 2021

ABSTRACT

Using logic gates is the traditional way of designing logic circuits. However, most of
the minimization algorithms concern a limited set of gates (complete sets), like sum
of products, exclusive-or sum of products, NAND gates, NOR gates e.t.c.. In this
paper, a method is proposed for minimizing multi-output Boolean functions using
any kind of two-input gates although it can easily be extended to multi-input gates.
The method is based on non-linear mixed integer programming. The experimental
results show that the method gives the same or better results compared to other
methods available in the literature. However, other methods do not ensure that they
produce the minimal solution, while the main advantages of the proposed method
are that it does guarantee minimality and it can also handle Boolean functions for
incompletely specified functions. The method is general enough and can easily be
extended to more complicated design modules than just basic gates.

KEYWORDS

Boolean functions; minimization; incompletely specified functions; non-linear
integer optimization; logic circuits

1. Introduction

The conventional method of designing a logic circuit is via using logic gates. Nonethe-
less, the vast majority of the minimization algorithms involve a limited set of
gates (complete sets), e.g. sum of products (SOPs), Exclusive-Or-Sum-Of-Products
(ESOPs), NAND gates, NOR gates etc. In the literature there is a very limited
number of publications that permit the combination of any kind of gates, such
as Refs.Sasao (1999), Anjomshoa et al. (2011), Karakatic et al. (2013), Rajaei et al.
(2011), Coello et al. (2000). Moreover, most of them are using genetic algorithms
which cannot guarantee minimality. However, in previous approaches that guar-
antee minimality, presented by our team, methods were proposed that can also
handle incompletely specified Boolean functions by using as modules Multiplexers
(MUXs) or Reed–Muller universal blocks (RMs) Pavlatos et al. (2020) and NAND
gates Pavlatos et al. (2021). Nevertheless, the methodology presented in references
Pavlatos et al. (2020); Pavlatos et al. (2021) was restricted to specific gates. In this

CONTACT A. C. Dimopoulos. Email: adimopoulos@hna.gr
0A. C. Dimopoulos and C. Pavlatos have equally contributed to this work

http://arxiv.org/abs/2105.07784v1

Figure 1. General form of a gate

output

paper a method is proposed for minimizing multi-output Boolean functions using any
kind of two-input gates (Fig. 1), although it can easily be extended to multi-input
gates. The method allows the user to select the kind of gates to be used e.g. AND,
OR, NAND, NOR, XOR, NOT, etc., as well as the architecture of the desired circuit.
This architecture can have for example the structure of an p × q grid of gates for at
most q functions (multi-output function) or a tree structure (Fig. 2) for a single-output
function. The inputs of each gate can be connected to the outputs of the gates at any
previous level of gates in the grid or they can be variables or constants.
The method is based on non-linear mixed integer optimization methods, with the goal
of minimizing the number of gates used in the structure or the number of transis-
tors within the circuits. For this goal, any suitable optimizer can be utilized. In our
case, we choose to run all the experimental examples on the free access NEOS server
Czyzyk et al. (1998); Dolan (2001); Gropp and Moré (1997); NeosServer and largely
the BARON solver Zhou et al. (2018). BARON implements deterministic global al-
gorithms of the branch-and-bound type, that guarantee global optima under fairly
general assumptions. These assumptions are fulfilled in our case. Therefore we can lo-
cate an exact solution, which provided the minimum number of gates. For facilitating
the creation of the required by the NEOS server GAMS nomenclature, a FORTRAN
program has been implemented for the automatic translation of the problem descrip-
tion to GAMS. The experimental results show that the method gives the same or
better results compared to other methods available in the literature. However, other
methods do not ensure that they produce the minimal solution, while the main advan-
tages of the proposed method are that it does guarantee minimality and it can also
handle Boolean functions for incompletely specified functions. The method is general
enough and can easily be extended to basic design modules more complicated than
gates.
The remainder of the paper is organized as follows. In Section 2 some definitions and
preliminaries are provided, to satisfy the purpose of a self-contained paper and for
reader’s ease. In Section 3 the basic idea is described, while in Section 4 an illustrative
example is given. In Section 5 the case of incompletely specified functions is described.
Experimental results are presented for several numerical examples in Section 6. Finally,
Section 7 concludes this work.

2

2. Preliminaries

In this section, important concepts and definitions from the area of Boolean algebra
are presented, in order to build up a necessary background for the rest of the paper.

Definition 2.1. A Boolean function f is a mapping f : {0, 1}n → {0, 1}.

Definition 2.2. Let x be a variable that takes a value from V = {0, 1} and S ⊆ V .
Then xS is a literal of x, such that xS = 1 when x ∈ S and xS = 0 when x ∈ V \S.
When S = V then xS = 1.

A common notation denotes x for x{1}, x̄ for x{0} and 1 for x{0,1}.

Definition 2.3. If ẋj , with 1 ≤ j ≤ n, is a literal of the variable xj then the expression
C = ẋ1ẋ2...ẋn is a product term or cube. When ẋj = xj or x̄j (excluding ẋj = 0, 1),
then C is called minterm and we denote ẋj as ẍj for all j’s.

Overall, there exist 2n minterms.

Definition 2.4. If we replace each xj with 1 and each x̄j with 0 in a minterm, we form
a binary number g that represents the specific minterm, which is called representative
number.

Definition 2.5. For each minterm with representative number g and for each variable
j in the representation of the minterm, we define the representative bit bg,j, 1 ≤ j ≤ n,
as:

• bg,j = 1 if the variable is in its normal form i.e. xj
• bg,j = 0 if the variable is in its negated form i.e. x̄j

Each Boolean function f can be uniquely represented as the Boolean sum of all
minterms for which f(ẍ1, ẍ2, ..., ẍn) = 1 (minterm expression of the function).

Example 2.6. Let us consider the minterm x1x̄2x3x̄4. Its representative number is
1010(2) in binary form or 10(10) in decimal form. Hence, this is the 10th minterm i.e.
g = 10. Its representative bits are:

b12,1 = 1
b12,2 = 0
b12,3 = 1
b12,4 = 0

Definition 2.7. We say that a product term covers a minterm, if it is 1 when the
minterm is 1.

This happens when the product term has the constant 1 or the same literal with the
minterm for all corresponding variables. It is noted that a missing variable in the
product term can be considered as 1.

Definition 2.8. The bitvector representation of a Boolean function of n variables is a
2n bit vector, where the gth bit (0 ≤ g ≤ 2n−1) is 1 if the minterm with representative
number g is included in the minterm expression of the function, otherwise the gth bit
is 0.

Example 2.9. The functions f1 = x1x3 and f2 = x1x̄2x3 can be represented as a

3

Boolean sum of minterms, e.g. f1 = x1x3 = x1(x2 + x̄2)x3 = x1x2x3 + x1x̄2x3 and
f2 = x1x̄2x3. The representative numbers of the minterms x1x2x3 and x1x̄2x3 are 7
and 5, respectively. Hence, the bitvector form of function f1 is f1 = 10100000 and of
function f2 is f2 = 00100000, with the least significant bit the rightmost one and the
most significant bit the leftmost one. We also note that according to definition 2.7 the
product term x1x3 = x11x3 = covers the minterm x1x̄2x3 .

Definition 2.10. An Exclusive-or Sum of Product terms (ESOP) is an expression
of the form ⊕

∑m
i=1 Ci, where Ci are cubes, that non-uniquely represents a function

and ⊕ the XOR boolean function. If Ci are minterms, then the expression uniquely
represents the function.

It is easy to see that when the values {0,1} of the variables are given, only one minterm
will be 1 and all others will be 0. Hence, it is indifferent if we have Boolean sum or
XOR sum of the same minterms and each function f can be also uniquely represented
as a XOR sum of its minterms ẍ1ẍ2...ẍn.

Example 2.11. Let us consider the function f = 11001010 in bitvector form or
f = x1x2x3⊕x1x2x̄3 ⊕ x̄1x2x3 ⊕ x̄1x̄2x3 in minterm form. The expression x1x2 ⊕ x̄1x3
is another ESOP expression of the same function f with only two product terms, which
can easily be verified.

Definition 2.12. Let f(x) be a switching function and x the vector of its vari-
ables. Let xi be one of the variables in the vector x. Then f(x1, x2, . . . , xi =
0, . . . , xn), f(x1, x2, . . . , xi = 1, . . . , xn), {f(x1, x2, . . . ,xi = 0, . . . , xn) ⊕ f(x1, x2,
. . . , xi = 1, . . . , xn)} are subfunctions of f , regarding variable xi. For simplicity, in
the rest of this paper, they will be referred as f0, f1 and f2 respectively.

A Boolean function f can thus be expressed as:

f(x) = x̄nf
0 ⊕ xnf

1 = xnf
2 ⊕ f0 = x̄nf

2 ⊕ f1 (1)

These expressions are called Shannon, Positive Davio and Negative Davio expansions
respectively. The Shannon expansion is also known more frequently in the equivalent
form:

f(x) = x̄nf
0 + xnf

1 (2)

Theorem 2.13. Every Boolean function can be implemented using 3ngates at most,

where n is the number of variables.

Proof. Let us consider the tree topology of Fig. 2 with gates as nodes. A simple so-
lution would be to start with the given function at the root of the tree, and apply
recursively the Shannon expansion or the Positive (Negative) Davio expansion respec-
tively up to the inputs of the leave modules. These inputs will be constants 0 or 1,
depending on the minterms of the function, which are known.

Obviously the implementation described previously is not optimal. The problem is
to find a solution with the least number of different kinds of gates and the smaller
number of levels (Fig. 2). This will result in power efficiency and delay reduction.

4

Figure 2. The gate tree

gate
n,1

gate
n-1,1

 gate
n-1,2

gate
1,1

gate
1,2

n

.

.

.

3. The basic idea

In this Section an overview of the basic idea is given, where the input of each gate
can either be binary variables xi of a Boolean function, or binary variables that are
the output of previous level gates, or a constant 0 or 1. Each gate’s type, input, and
output corresponds to an unknown variable to be computed. Hence, for every minterm
g, the following relations should be written:

• Every gate type t is expressed by the following expression
tseli1×f1+tseli2×f2+tseli3×f3+tseli4×f4+tseli5×f5+tseli6×fi6+tseli7×f7,
where tselij are binary unknown variables to select a gate type and the expression
sum should be 1. The fjs are defined as:

f1 = AND(x, y) ⇒ x× y.
f2 = OR(x, y) ⇒ x+ y − (x× y).
f3 = NOT (x) ⇒ (1− x).
f4 = XOR(x, y) ⇒ x+ y − 2× (x× y).
f5 = NAND(x, y) ⇒ (1− x) + (1− y)− (1− x)× (1 − y)) = 1− x× y.
f6 = NOR(x, y) ⇒ (1− x)× (1− y).
f7 = CON(x) ⇒ x.

It is noted that the above expressions show the obvious equivalency between
Boolean algebra expressions and ordinary algebra expressions. It is noted that
the “gate” CON is actually a wire connection. Moreover, since each gate should
be only of one type the following constrain should hold for the gate selection
binary variables tselij

tseli1 + tseli2 + tseli3 + tseli4 + tseli5 + tseli6 + tseli7 = 1.
• The two inputs of each gate are fed by one of a set of possible entities Tj. These

entities can be outputs of gates of the previous level, the variables of the function
or the constants 0, 1. For each input inpi we write a relation of the form:

inpi = inpseli1 × T1 + inpseli2 × T2 + inpseli3 × T3 + . . .

where inpselij is a binary selection coefficient corresponding to each entity. It
means that the corresponding entity Tj will be the only one to feed the input
inpi if inpselij = 1 or not if inpselij = 0.
Since only one entity can feed an input, the following constrain should be used

5

for each of the inputs:
inpseli1 + inpseli2 + inpseli3 + . . . = 1.

• The output of each gate, which is a function fi of its data inputs and its gate
type (as described before), is written as outi = Ei × fi. The coefficient Ei which
is also a binary variable to be computed, signifies that the corresponding gate
will be active if its value is 1 or inactive if its value is 0. If it is inactive it means
that the corresponding module can be eliminated.
Since, the target is to reduce the number of gates used as much as possible, we
must minimize the expression: E1 + E2 + E3 + It is noted that the “gates”
corresponding to the operation CON are not taken into account in the previous
sum, since it corresponds to a simple wire connection.

• Finally we have to ensure that the output(s) of the circuit (the output(s) at the
top level), will produce the given function(s) F . Hence, we have to write the
relation(s):

◦ On = 1, if the examined minterm is covered by the function f or
◦ On = 0, otherwise

All the above described relations, for each minterm, constitute the integer non-linear
problem to be solved. The next illustrative example will clarify the proposed non-linear
integer programming approach.

4. An illustrative example

Let us consider the implementation of the three variable function f =
∑

(0, 1, 3,
5, 6) = 01101011 = 6b . This function has five minterms with representative numbers
0, 1, 3, 5, 6 and representative bits:

b0,1 = 0 for minterm 010 = (000)2 and variable 1
b0,2 = 0 for minterm 010 = (000)2 and variable 2
b0,3 = 0 for minterm 010 = (000)2 and variable 3
b1,1 = 0 for minterm 110 = (001)2 and variable 1
b1,2 = 0 for minterm 110 = (001)2 and variable 2
b1,3 = 1 for minterm 110 = (001)2 and variable 3
b2,1 = 0 for minterm 210 = (010)2 and variable 1
b2,2 = 1 for minterm 210 = (010)2 and variable 2
b2,3 = 0 for minterm 210 = (010)2 and variable 3
. . .
. . .
. . .
b7,3 = 1 for minterm 710 = (111)2 and variable 3

For this example we examine gates that can take as input:

• the output of the exactly previous level (not true for the first level)
• either constant 0 or 1
• the variable of the function

These gates can be placed on a grid formation of 3×2 to implement the given function.
Considering the gate (i, j) we can construct the following equations for each of its two
inputs inp1i,j,g and inp2i,j,g, its output outi,j,g and for each minterm g of the function

6

to be implemented:
inp1i,j,g = inpsel1i,j,1 × outi−1,1,g + inpsel1i,j,2 × outi−1,2,g + inpsel1i,j,3 × bg,1 +
inpsel1i,j,4 × bg,2 + inpsel1i,j,5 × bg,3 + inpsel1i,j,6 × 1 + inpsel1i,j,7 × 0
The above expression signifies that gate (i, j) takes as first input either:

• one of the outputs of the two gates of the previous level or
• one of the three variables, for which the minterm g will have the values

bg,1, bg,2, bg,3 respectively or
• one of the constants 0 or 1

Clearly, for all the b′s that are equal to zero in the given function, the corresponding
term in the above expression can be eliminated. The choice between all entities that
will feed the input is made by the selection parameters inpseli,j,k, hence only one of
these can be 1 while all the rest have to be 0. Mathematically this can be expressed
by the following relation:
inpsel1i,j,1 + inpsel1i,j,2 + inpsel1i,j,3 + inpsel1i,j,4 + inpsel1i,j,5 + inpsel1i,j,6 +
inpsel1i,j,7 = 1
It is noted that all the above variables represent binary ones. We can write corre-
sponding equations for the input inp2i,j,g
inp2i,j,g = inpsel2i,j,1 × outi−1,1,g + inpsel2i,j,2 × outi−1,2,g + inpsel2i,j,3 × bg,1 +
inpsel2i,j,4 × bg,2 + inpsel2i,j,5 × bg,3 + inpsel2i,j,6 × 1 + inpsel2i,j,7 × 0
inpsel2i,j,1 + inpsel2i,j,2inpsel2i,j,3 + inpsel2i,j,4 + inpsel2i,j,5 + inpsel2i,j,6 +
inpsel2i,j,7 = 1
Obviously, at the first level in the expressions for the inputs the first two terms should
be eliminated, since there is no previous level to provide outputs.
As far as the output outi,j,g, we must ensure that the gate (i, j):

• will be one of a given set of gate types (described in the previous Section)
• can be (potentially) eliminated
• will produce at the top level of the examined architecture the desired function

Hence, we can write the following equation for each minterm g:
outi,j,g = Ei,j × (outseli,j,1 × (inp1i,j,g × inp2i,j,g) + outseli,j,2 × (inp1i,j,g + inp2i,j,g −
inp1i,j,g× inp2i,j,g)+ outseli,j,3× (1− inp1i,j,g)+ outseli,j,4× (inp1i,j,g+ inp2i,j,g− 2×
inp1i,j,g × inp2i,j,g)+ outseli,j,5× ((1− inp1i,j,g)+ (1− inp2i,j,g)− 2× (1− inp1i,j,g)×
(1− inp2i,j,g)) + outseli,j,6 × ((1− inp1i,j,g)× (1− inp2i,j,g)) + outseli,j,7 × (inp1i,j,g))
The above equation describes that a gate can only be one of the possible functions fk,
described in the previous Section, determined by the selection variables outsel. It is
noted that we can use a desired subset of the above gates, omitting the appropriate
lines in the above equation. Moreover, variable Ei,j defines if the gate (i, j) will be
active (Ei,j = 1) or inactine (Ei,j = 0) in which case the gate can be eliminated.
Hence, two more equations should be added for each minterm g, in order to ensure
the above requirements:
outseli,j,1+outseli,j,2+outseli,j,3+outseli,j,4++outseli,j,5+outseli,j,6+outseli,j,7 = 1
Obj = E1,1× (1− outsel1,1,7)+E1,2× (1− outsel1,2,7)+E2,1× (1− outsel2,1,7)+E2,2×
(1− outsel2,2,7) + E3,1 × (1 − outsel3,1,7) + E3,2 × (1− outsel3,2,7))
Obj in the above equation is the objective function to be minimized, so that the
produced circuit will have the minimum number of gates. Obj is an integer variable
and is equal to the sum of all Ei,js, which are binary variables indicating that a gate
is active. It is multiplied by (1− outseli,j,7) for each gate (i, j). This is because in case
the gate (i, j) is a simple wire connection, it is not counted in the cost of the circuit.
Finally, we have to ensure that the produced circuit will have as output the given

7

Figure 3. Circuit of function f = 6b

XOR

NAND NOR

NOR

x1 x2

x2 x1 x3

f1 = 6b

function. Hence, the following equations should be added for each minterm g: out3,1,g =
1 or out3,1,g = 0, depending on whether function f covers or not the minterm g.
The search for a solution based on all the above equations establish the non-linear
problem for the specific illustrative example. The final circuit that results from the
that solution is shown in Fig. 3 and consists of four gates.
In case we had a two-output function with outputs 6b and 2a, we would have to add
the corresponding expressions for out3,2,g i.e. for the top level (output) gate 3, 2. This
final circuit is shown in Fig. 4, which requires five gates.

5. Incompletely specified functions

The proposed method can also tackle with the more difficult problem of minimizing
expressions while taking into consideration do-not-care conditions. The do-not-care
conditions refer to cases where for given minterms we do-not-care if their value in the
bitvector form of the function will be 0 or 1. These functions are called incompletely
specified functions and one way of describing them is through two disjoint sets:

• on-set, which includes all the minterms for which the function becomes 1
• do-not-care set (dc-set), which includes all the do-not-care minterms

Those minterms that do not belong to either set, are the ones for which the function
becomes 0 and comprise the off -set. Representing these sets as functions in their
bitvector form results equivalently in the on- and dc- functions.
In these cases with incompletely specified functions, all expressions related to minterms
corresponding to the do-not-care ones are skipped. For example, if the minterms with
representative numbers 0 and 1 are do-not-care ones, i.e. x̄1x̄2x̄3 and x̄1x̄2x3, then all
equations with g = 0 or g = 1 are skipped, e.g. outputi,j,1 = 1 and all others with
subscript g = 1 in the previous illustrative example. The solution obtained in this case

8

Figure 4. Circuit of functions f1 = 6b and f2 = 2a

XOR AND

NAND NOR

NOR

x1 x2

x2 x1 x3

x3●

f1=6b f����

is shown in Fig.5 for the case of the two functions 6b and 2a, a circuit requiring three
gates.

6. Implementation

All our experiments were executed on the free access NEOS server Czyzyk et al. (1998);
Dolan (2001); Gropp and Moré (1997); NeosServer. We mainly used the BARON
solverZhou et al. (2018), which implements deterministic global algorithms of the
branch-and-bound type, as a mixed-integer optimal constrained optimizer. Hence,
BARON solutions are guaranteed to provide global optima under fairly general as-
sumptions. These assumptions are fulfilled in our case, hence we can find an exact
expression of a function.
The free access service of NEOS limits the maximum computing time to 8 hours, which
was not enough for some of our examples to run in full. Hence, for these cases the final
solution was not found, but instead the best one found so far.
The nomenclature used by the NEOS server is that of the GAMS and AMPL for-
mal languages. In order to ease the production of the required GAMS equivalent
programs, a program in FORTRAN was implemented to automatically produce the
required GAMS equivalent programs for a given number of variables, number of levels,
number of gates at each level, type of allowable gates and the given function to be
implemented.
We tested all the examples of references Anjomshoa et al. (2011), Karakatic et al.
(2013), Rajaei et al. (2011) using two-input gates and in all cases the results obtained
by our approach were at least the same or even better in some cases. All the results of
these comparisons are summarized in Table 1, where those examples that exhausted
the maximum allowed running time of the NEOS system are indicated with a star
character, e.g. example functions 0ee9, 5a5a, 936c. However, even for such cases with-

9

Figure 5. Circuit of functions f1 = 6b , f2 = 2a and DCs

AND

XOR

AND

x1 x2

x3

f2=2a f1=6a

 ●
x3 x1

out the guarantee for optimal solutions, the results were the same or better. For those
examples, where no star character is shown, the optimizer terminated within the max-
imum provided time and hence produced the optimal solution, e.g. example functions
a7f1, ab, 4a6a.
The GAMS program for the example of Fig.5 is given in the Appendix. As it can be
observed it is not a difficult task to transform the non-linear-program to a GAMS
equivalent one.

7. Conclusions

In what was shown in the previous Sections, the proposed approach is a non-linear
one that can be applied for designing multi-function, multi-level, two-input multi-gates
logic circuits. Based on the presented experimental results, this method outperforms
other methods available in the literature, while guaranteeing minimality. Moreover, it
can tackle with Boolean functions for incompletely specified functions, and it is flexi-
ble in defining the desired architecture to be used. Due to its generality, the method
can be extended to use more complicated modules, instead of simple gates and to also
support multi-input gates.
The presented experimental results of Section 6 certify that large problems with hun-
dreds or even thousands of unknown variables are manageable computational wise.
The later is a great challenge for this type of non-linear integer programming prob-
lems, which the proposed method overcomes.
Our future endeavour will be to use this method for multi-input gates, as well as
other more complicated modules e.g. for Exclusive Or Complex Terms Voudouris et al.
(2008) (ESCTs).

10

Table 1. Experimental Results

Example Results Results Allowable
Function gates of gates of gates in
in HEX Refx our method circuit

0ee9 Ref.Sasao (1999)→
11

8∗ All gates

∑
(0, 3, 5, 6, 7, 9, 10, 11) example 11.2

a7f1 Ref.Anjomshoa et al.
(2011)→ 5

5 All gates

5a5a
936c Ref.Anjomshoa et al.

(2011)→ 7
7∗ All gates

ec80
a0a0
6ac0 Ref.Anjomshoa et al.

(2011)→ 7
7∗ All gates

4c00
8000

AND,OR,
25cb Ref.Karakatic et al.

(2013)→ 7
7∗ XOR,NOT,

CON
AND,OR,

a7f1 Ref.Karakatic et al.
(2013)→ 7

6∗ XOR,NOT,

CON
ab Ref.Rajaei et al.

(2011)→ 5
5 NAND

∑
(0, 1, 3, 5, 7)

69 Ref.Rajaei et al.
(2011)→ 13

12 NAND

∑
(0, 3, 5, 6)

4a6a Ref.Rajaei et al.
(2011)→ 9

9 NAND

∑
(1, 3, 5, 6, 9, 11, 14)

22d5 Ref.Rajaei et al.
(2011)→ 9

8 NAND

∑
(0, 2, 4, 6, 7, 9, 13)

aaaaaaa8 Ref.Baranov and Karatkevich
(2018)→8

5 NAND,

∑
(3, 5, 7, ..29, 31) NOR

96 Ref.Bhattacharyya and Bhattacharyya
(2008)→>12

12∗ NAND

∑
(1, 2, 4, 7)

e8 Ref.Bhattacharyya and Bhattacharyya
(2008)→>6

6 NAND

∑
(3, 5, 6, 7)

bafc Ref.Bhattacharyya and Bhattacharyya
(2008)→>7

7 NAND

∑
(2, 3, 4, 5, 6, 7, 9,

11, 12, 13, 15)

References

Anjomshoa M, Mahani A, Beig ME (2011) Evolutionary design and optimization of digital
circuits using imperialist competitive algorithm. International Journal of Computer Appli-
cations 32(1):14–19

Baranov S, Karatkevich A (2018) On transformation of a logical circuit to a circuit with nand
and nor gates only. International Journal of Electronics and Telecommunications 64(3):373–
378

Bhattacharyya M, Bhattacharyya M (2008) A novel design approach of boolean functions
with 2-input universal nand gates using µ-graph method. Journal of Multiple-Valued Logic
& Soft Computing 14:277–189

Coello CAC, Christiansen AD, Aguirre AH (2000) Use of evolutionary techniques to automate
the design of combinational circuits. International Journal of Smart Engineering System
Design 2:299–314

Czyzyk J, Mesnier MP, Moré JJ (1998) The neos server. IEEE Computational Science and
Engineering 5(3):68–75

Dolan ED (2001) Neos server 4.0 administrative guide, technical memorandum anl/mcs-tm-
250,. arXiv preprint cs/0107034

GroppW, Moré J (1997) Optimization environments and the neos server. approximation theory
and optimization, md buhmann and a. iserles, eds

Karakatic S, Podgorelec V, Hericko M (2013) Optimization of combinational logic circuits with
genetic programming. Elektronika ir Elektrotechnika 19(7):86–89

NeosServer Neos Server. https://neos-server.org/neos, accessed 2020-12-01
Pavlatos C, Dimopoulos A, Papakonstantinou G (2020) Logic design using modules and non-

linear integer programming. Journal of Circuits, Systems and Computers p 2050164,
Pavlatos C, Dimopoulos A, Papakonstantinou G (2021) Multi-output, multi-level, nand-gate

design using non-linear programming. In: ICCOLD 2021: International Conference on Com-
puter Organization and Logic Design, Zurich, Switzerland

Rajaei A, Houshmand M, Rouhani M (2011) Optimization of combinational logic circuits
using nand gates and genetic programming. In: Soft Computing in Industrial Applications,
Springer, pp 405–414

Sasao T (1999) Switching theory for logic synthesis. Kluwer Academic Publishers
Voudouris D, Sampson M, Papakonstantinou G (2008) Exact esct minimization for functions

of up to six input variables. Integration 41(1):87–105
Zhou K, Kılınç MR, Chen X, Sahinidis NV (2018) An efficient strategy for the activation of mip

relaxations in a multicore global minlp solver. Journal of Global Optimization 70(3):497–516

APPENDIX

Listing 1 The FORTRAN code that implements the GAMS code for the example of Fig.5

* GAMS program for orthogonal architecture iixjj , *

* multi -output functions and multi -type gates. *

* Example of two functions 6b and 2a and two do- *

* not-care minterms with g=0,1. *

* A star in the first column of a line inicates *

* a comment line. *

* The formula con(ii,jj,kk)..exp means , create *

* rules for exp and for every possible value of *

12

http://arxiv.org/abs/cs/0107034
https://neos-server.org/neos

* the indices ii,jj,kk. *

* sum(m,exp) means the sum of all expressions *

* exp , over the index. *

* =e= means must be equal to. *

* z is the (dummy) objective function. *

* obj..z=e=0; means ignore the satisfaction of *

* the objective function and satisfy the *

* constrains only. *

set ii no. of levels /1,2,3/;

set jj no. of gates at a level /1*2/;

set kk no. of inputs of a gate /1*2/;

set ll no. of constants /1*2/;

set gg no. of minterms /2*7/;

* Replace the previous definition of gg with *

* the next one (in comment now)if we do not *

* want to have the do-not -care minterms g=0,1.*

*set gg no. of minterms /0*7/;

set qq no. of variables /1*3/;

set rr no. of gate types /1*7/;

alias (pp,jj);

table f(gg,jj) output functions

1 2

* Activate the next two data lines (deleting *

* the star in the first column of the line), *

* if we do not want to have the do-not-care *

* minterms g=0,1.

*0 1 0

*1 1 1

2 0 0

3 1 1

4 0 0

5 1 1

6 1 0

7 0 0

;

table t(gg,qq) auxiliary table

1 2 3

* Activate the next two data lines (deleting *

* the star in the first column of the line), *

* if we do not want to have the do-not-care *

* minterms g=0,1.

*0 0 0 0

*1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

13

7 1 1 1

;

binary variable c(ii,jj) gate validation;

binary variable inp(ii,jj,kk,gg) inputs of gates;

binary variable out(ii,pp,gg) output of gates;

binary variable p(ii,jj,kk,pp) select output to feed the input;

binary variable q(ii,jj,kk,qq) select variable to feed the input;

binary variable r(ii,jj,rr) select gate type to feed the input;

binary variable con(ii,jj,kk,ll) select constant to feed the input;

Free Variable z objective;

equations con1 ,con2 ,con3 ,con4 ,con5 ,obj;

con1(ii,jj,kk)..sum(pp,p(ii,jj,kk,pp))+sum(qq, q(ii,jj,kk,qq))+

sum(ll,con(ii,jj,kk,ll))=e=1;

con2(ii,jj)..sum(rr,r(ii,jj,rr))=e=1;

con3(ii,jj,kk,gg)..inp(ii,jj,kk,gg)=e=sum(pp, p(ii,jj,kk,pp)

*out(ii -1,pp,gg))+sum(qq,q(ii,jj,kk,qq)*t(gg,qq))+con(ii,jj,kk,’1’);

con4(ii,jj,gg)..out(ii,jj,gg)=e=c(ii,jj)*(r(ii,jj,’2’)

prod(kk,inp(ii,jj,kk,gg)) +r(ii,jj,’3’)(sum(kk,inp(ii,jj,kk,gg))

-prod(kk,inp(ii,jj,kk,gg))) +r(ii,jj,’6’)*(1-inp(ii,jj,’1’,gg))

+r(ii,jj,’4’)*(sum(kk,inp(ii,jj,kk,gg)) -2*prod(kk,inp(ii,jj,kk,gg)))

+r(ii,jj,’1’)*(1 -prod(kk,inp(ii,jj,kk,gg))) +r(ii,jj,’5’)

*prod(kk ,(1-inp(ii,jj,kk,gg))) +r(ii,jj,’7’)*inp(ii,jj,’1’,gg));

con5(gg,jj)..out(’3’,jj,gg)=e=f(gg,jj);

obj..z=e=sum((ii,jj),(c(ii,jj)*(1-r(ii,jj,’7’))));

Model mplex /

con1 ,con2 ,con3 ,con4 ,con5 ,

Obj/;

Option MINLP = BARON;

Option threads =4;

mplex.reslim = 500;

Solve mplex using MINLP minimizing z;

14

	1 Introduction
	2 Preliminaries
	3 The basic idea
	4 An illustrative example
	5 Incompletely specified functions
	6 Implementation
	7 Conclusions

