
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
Int. J. Circ. Theor. Appl. 2009; 37:899–919
Published online 20 June 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cta.505

Application of Filippov method for the analysis of subharmonic
instability in dc–dc converters

Damian Giaouris1,∗,†, Somnath Maity2, Soumitro Banerjee2, Volker Pickert1

and Bashar Zahawi1

1School of Electrical, Electronic and Computer Engineering, Newcastle University,
Newcastle upon Tyne NE1 7RU, U.K.

2Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721302, India

SUMMARY

We propose a method of estimating the fast-scale stability margin of dc–dc converters based on Filippov’s
theory—originally developed for mechanical systems with impacts and stick-slip motion. In this method
one calculates the state transition matrix over a complete clock cycle, and the eigenvalues of this matrix
indicate the stability margin. Important components of this matrix are the state transition matrices across
the switching events, called saltation matrices. We applied this method to estimate the stability margins of
a few commonly used converter and control schemes. Finally, we show that the form of the saltation matrix
suggests new control strategies to increase the stability margin, which we experimentally demonstrate
using a voltage-mode-controlled buck converter. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is considered desirable to operate dc–dc converters with constant switching frequency equal to
that of the external clock. The stability of this periodic mode of operation may, however, be lost due
to variation of parameters such as the input voltage or the load, resulting in subharmonic oscillations
[1, 2]. In order to avoid the occurrence of subharmonic oscillations in practical converters, it is
normal practice to specify the range of external parameters within which the converter will operate
reliably in steady state.

∗Correspondence to: Damian Giaouris, School of Electrical, Electronic and Computer Engineering, Newcastle
University, Newcastle upon Tyne NE1 7RU, U.K.

†E-mail: damian.giaouris@ncl.ac.uk

Copyright q 2008 John Wiley & Sons, Ltd.



900 D. GIAOURIS ET AL.

The internal parameters of the converter (the inductance, capacitance, clock speed, etc.) are
chosen on the basis of the averaged model [3, 4] to obtain the desired voltage ratio, power
throughput, transient behavior, etc. Although this is effective in ensuring stability and the desired
transient performance at slow timescale, it provides no information regarding stability of the cycle-
to-cycle fast timescale dynamics. It is therefore necessary to estimate the fast-scale stability margin
at the clock speed and thus, the range of the external parameters that will ensure periodic operation
without the onset of subharmonic oscillations.

The sampled-data model was developed by Verghese et al. [5] to address this problem. This
modeling procedure makes discrete observation of the state at every clock instant (in some literature
the sampled-data model is also referred to as the Poincare map [6, 7]). The problem of the stability
of the trajectory in the state space then reduces to that of the stability of the fixed point of the
sampled-data model [8, 9]. Other methods have also been applied such as the trajectory sensitivity
[10], which yields a discrete-algebraic-differential model with various switching/jump conditions.
An auxiliary vector has been proposed in [11] which again produces similar results as the Poincare
map and the trajectory sensitivity approach. Such techniques have also been applied to analyze
more complicated systems such as the Ćuk converter [12], power factor correctors [13, 14], parallel
connected converters [15] and fuzzy logic controllers [16]. However, even though these approaches
are conceptually simple, they have not found widespread acceptance among mainstream power
electronic practitioners—probably because of the mathematical complexity involved.

At present the fast-scale stability is mostly checked by simulation or experimentation over a
large parameter range. In most cases, the components are overdesigned, thus practically eliminating
the problem of subharmonics. However, with the push toward miniaturization, and the advent
of on-chip power supplies, one is constrained to design the components in a minimum possible
size. This has provided the renewed motivation for developing a useful and simple technique for
estimating the fast-scale stability margin.

In this paper we present an alternative method of estimating the fast-scale stability margin
of dc–dc converters. It achieves the same objective as the sampled-data model, but in a more
straightforward way. The technique is based on the theory originally developed by Floquet [17] to
study the stability of periodic orbits, and then extended by Aizerman, Gantmakher and Filippov
to analyze impacting motion and stick-slip oscillations in mechanical switching systems [18, 19].
The purpose of this paper is to show that this theoretical structure is very suitable to the study
of fast-scale stability of dc–dc converters which belong to the same class of switching dynamical
systems as the mechanical systems for which the theory was originally developed.

However, in applying this method to dc–dc converters, some specific issues need to be addressed.
We illustrate this using a number of commonly used converters and control strategies. First, we
consider the buck converter with voltage mode control operating in the continuous conduction mode
as well as in the discontinuous conduction mode (DCM). We demonstrate the specific problem in
applying the technique to PWM of type-1, and the way to overcome it. Then we study the stability
of the boost converter which is normally used with peak or average current mode control.

It is interesting to note here that all the available methods such as sampled-data modeling,
trajectory sensitivity analysis, etc. are based on three basic steps: A local approximation, the
solution of a matrix differential equation and the use of a stability criterion [20]. Since all the
techniques describe the stability of periodic orbits, they produce the same final matrix (given
various names such as the Jacobian of the Poincaré map or monodromy matrix [21]) and the same
eigenvalues (also called Floquet multipliers). For example, Equations (64) in [10], (5.49) in [6] and
(7.64) in [22] are very similar. Out of all the mathematically equivalent formalisms, the method
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presented in this paper is more convenient because it studies the effects of each switching on the
stability of the system separately.

The proposed technique also offers a powerful strategy for controlling the instability that results
in subharmonic oscillations. In the current-mode-controlled converters, a compensation ramp is
generally used to control the onset of subharmonic oscillations. We show that similar methods
can be evolved for controlling subharmonic instabilities and the onset of slow-scale sinusoidal
oscillations in other converters and PWM strategies. The basic concept here is to employ a
supervising controller (using system variables such as current and voltage ripple as feedback),
which alters specific saltation matrix parameters to stabilize the periodic solution without greatly
altering its location in the state space.

2. AN OUTLINE OF THE FILIPPOV METHOD

In a dc–dc converter one is interested in the stability of a periodic orbit that starts at a specific
state at a clock instant and returns to the same state at the end of the clock period. The stability
of such a periodic orbit can be understood in terms of the evolution of perturbation. If the initial
condition is perturbed and the solution converges back to the orbit, then the orbit is stable. The
stability margin can be assessed from the rate of convergence.

Suppose a given system has an initial condition x(t0) at time t0, and we perturb it to x̄(t0)
such that the perturbation is �x(t0)=x(t0)− x̄(t0). If the original trajectory and the perturbed
trajectory evolve for a time t , the perturbation at the end of the period can be related to the initial
perturbation by

�x(t)=U�x(t0)

where U is the state transition matrix, which is a function of the initial state, the initial time and
the final time. It is known that in linear time-invariant (LTI) systems, the state transition matrix is
given by the matrix exponential

U=eA(t−t0)

where A is the state matrix that appears in the state equation ẋ=Ax+Bu.
Now, for any dc–dc converter, the state evolves through subsystems (ON state of the switch,

OFF state of the switch, etc.) that are LTI. Therefore, for the evolution through each subsystem, the
state transition matrix can be obtained by the above formula (if the initial time, the final time and
the initial condition are known), and can be explicitly evaluated using MATLAB’s expm function.

Suppose the state evolves from the instant tA to the instant tB , and the state transition matrix for
that period is U1; then it evolves from the instant tB to tC , and the state transition matrix in that
interval is U2. It is known that if the evolution from tA to tC is smooth (everywhere differentiable),
then the state transition matrix from tA to tC is simply the product of the two matrices U2U1.
However, if a switching occurs at point B, the evolution becomes nonsmooth at that point since
the governing equations before and after the event are different. Aizerman and Gantmakher [18]
and Filippov [19] showed that in such a situation one has to additionally consider the evolution of
the perturbation across the switching event. They derived the form of the state transition matrix S
that relates the perturbation just after the switching event to that just before

�x(tB+)=S�x(tB−)
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which is called the ‘jump matrix’ [10] or ‘saltation matrix’ [22] or ‘updating matrix’ [23, 24]. It
was shown [22, 25] that the saltation matrix can be expressed as

S=I+ (f+−f−)nT

nTf−+�h/�t
(1)

where I is the identity matrix of the same order as the number of state variables, h(x, t)=0
represents the switching condition (a surface in the state space of the system), n is the vector
normal to the switching surface and nT is its transpose. f− represents the right-hand side of the
differential equations before the switching occurred and f+ represents the right-hand side of the
differential equations after the switching. From this expression the saltation matrix can be evaluated
for each switching event.

Since we are interested in the stability of the periodic orbit exhibited by the converters, we
need to calculate the state transition matrix over a whole clock cycle. This matrix is called the
monodromy matrix. If the switch is ON at the beginning of the clock cycle from time 0 till time
dT (where d is the duty ratio), and the switch remains OFF from time dT till time T (the clock
period), then the monodromy matrix is expressed as

Ucycle(T,0)=S2×Uoff(T,dT )×S1×Uon(dT,0) (2)

where S1 is the saltation matrix related to the first switching event, and S2 is that related to the
second switching event.

The monodromy matrix then relates the perturbation at the end of the clock period to that at
the beginning:

�x(T )=U(T,0)�x(0)

If the moduli of all the eigenvalues of the monodromy matrix are less than unity (i.e. if all the
eigenvalues are inside the unit circle), perturbations will die down and the system will be stable.
The eigenvalues of the monodromy matrix are also called the Floquet multipliers, whose distance
from the unit circle indicates the stability margin.

3. THE VOLTAGE-MODE-CONTROLLED BUCK CONVERTER

We now illustrate the method with reference to the voltage-mode-controlled buck converter, whose
schematic diagram is shown in Figure 1. The switching signal can be generated (see Figure 2)
either by comparing the control voltage at the beginning of a clock period with a ramp waveform
(type-1 PWM or PWM-1), or by comparing the instantaneous value of the control voltage with
a ramp waveform (type-2 PWM or PWM-2). We first consider a PWM-2 control that is more
prevalent in analog implementations.

3.1. Continuous conduction mode

When the switch is ON, the state equations are

dv

dt
=− v

RC
+ i

C
,

di

dt
=− v

L
+ Vin

L
,

dvi
dt

=KI (v−Vref)
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Figure 1. The schematic diagram of the voltage-mode-controlled buck converter.
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Figure 2. The difference between type-1 and type-2 PWM switchings. In PWM-1, the switching occurs
at point P1 whereas in PWM-2 it occurs at point P2.

When the switch is off, the equations are

dv

dt
=− v

RC
+ i

C
,

di

dt
=− v

L
,

dvi
dt

=KI (v−Vref)

One peculiarity of this system is that the output of the integrator (the state vi ) does not appear
in the right-hand side of the system equations, and plays role only in deciding the switching
condition. That is why any perturbation in that variable does not affect any of the states. The
integrator—which is necessary to avoid noise feedback—acts as a slow first-order low-pass filter
that is effectively isolated from the rest of system dynamics. We shall see later that this gives rise
to one eigenvalue very close to +1, which does not change with the variation of the parameters.

For the sake of compact notation, we express the equations in terms of the state vector x, where
x1 is the capacitor voltage v, x2 the inductor current i , x3 the output of the integrator in the
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feedback loop vi , and the state equations are expressed as

ẋ(t)=
{
foff(x, t)=Aoffx+Boffu, S is off

fon(x, t)=Aonx+Bonu, S is on
(3)

For the buck converter,

Aoff=Aon=A=
⎡
⎢⎣

−1/RC 1/C 0

−1/L 0 0

KI 0 0

⎤
⎥⎦ (4)

and

Boff=
⎡
⎢⎣

0

0

−KI

⎤
⎥⎦ , Bon=

⎡
⎢⎣

0

1/L

−KI

⎤
⎥⎦ , u=

⎡
⎢⎣

0

Vin

Vref

⎤
⎥⎦

The control voltage obtained from the output of the PI controller is

vcon=KP(x1−Vref)+x3 (5)

The switch conducts when the output of the PI controller is less than vramp=VL +(VU −
VL)(t/T mod1).

Suppose, on the basis of the customer specification and the averaged model, the designer has
chosen the parameter values Vref=11.3V, L=20mH, C=47�F, KP =8, KI =10, T =1/2500 s,
and the ramp signal varies from 3.8 to 8.2V. Using PSPICE or SIMULINK simulation, one can
easily check that if the external parameters are R=22� and Vin=25V, the converter operates
in the stable periodic mode. The experimentally obtained waveforms in this mode are shown in
Figure 3. The question is, how stable is this behavior?

To probe this question, we note that the OFF period lasts for (1−d)T seconds, and the ON

period lasts for dT seconds. Therefore, the state transition matrices for these two intervals are

Uoff=eA(1−d)T and Uon=eAdT (6)

3.8
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0.50

0.51

co
n

v
i

,V
, A

Figure 3. Experimental waveforms for the voltage and current ripples for R=22� and Vin=25V.
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In order to evaluate these, one needs to know the duty ratio. This can be obtained following
[5, 20, 26, 27] using the Newton–Raphson method. Alternatively, one can use any standard simulator
to obtain the stable behavior, from which the information about d can be extracted. Thus, we
assume that the steady-state value of the duty ratio d is known. For the chosen set of parameters,
the duty ratio was found to be d=0.5480. Substituting the parameter values, we obtain

Uoff=
⎡
⎢⎣
0.7868 4.1670 0

−0.01 0.9763 0

0.0020 0.0047 1

⎤
⎥⎦ , Uon=

⎡
⎢⎣
0.8241 3.5088 0

−0.008 0.9836 0

0.0016 0.0033 1

⎤
⎥⎦

Now we need to calculate the saltation matrix to account for the switching. Within one period
of the clock, the switching condition can be defined as h(x, t)=0, where

h(x, t)=KP(x1−Vref)+x3−VL −(VU −VL)t/T (7)

Hence, its normal vector and the rate of change are given by

n=

⎡
⎢⎢⎣

�h/�x1

�h/�x2

�h/�x3

⎤
⎥⎥⎦=

⎡
⎢⎣
KP

0

1

⎤
⎥⎦ and

�h
�t

=− (VU −VL)

T

Now, since

fon(x, t)=

⎡
⎢⎢⎢⎢⎢⎣

Rx2−x1
RC

Vin−x1
L

KI (x1−Vref)

⎤
⎥⎥⎥⎥⎥⎦ , foff(x, t)=

⎡
⎢⎢⎢⎢⎣

Rx2−x1
RC
−x1
L

KI (x1−Vref)

⎤
⎥⎥⎥⎥⎦

we have

(fon−foff)nT=
⎡
⎢⎣

0

Vin/L

0

⎤
⎥⎦ [KP 0 1]=

⎡
⎢⎢⎢⎣

0 0 0

KPVin
L

0
Vin
L

0 0 0

⎤
⎥⎥⎥⎦

and

nTfoff = [KP 0 1]

⎡
⎢⎢⎢⎢⎣

Rx2−x1
RC
−x1
L

KI (x1−Vref)

⎤
⎥⎥⎥⎥⎦

= KP
Rx2−x1

RC
+KI (x1−Vref)
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Substituting these into the expression for the saltation matrix (1), we obtain

S1=
⎡
⎢⎣

1 0 0

s21 1 s23

0 0 1

⎤
⎥⎦ (8)

where

s21 = KPVin/L

KP
Rx2−x1

RC
+KI (x1−Vref)− VU −VL

T

s23 = Vin/L

KP
Rx2−x1

RC
+KI (x1−Vref)− VU −VL

T

which are to be evaluated at the switching instant t=(1−d)T . Substituting the values, we get the
saltation matrix as

S1=
⎡
⎢⎣

1 0 0

−0.4656 1 −0.0582

0 0 1

⎤
⎥⎦

The second saltation matrix S2 related to the switching from the ON state to the OFF state at
the end of the clock cycle turns out to be an identity matrix, because the falling edge of the ramp
causes the �h/�t term in Equation (1) to be infinity.

Hence, the state transition matrix over the complete cycle (the monodromy matrix) is calcu-
lated as

Ucycle=S2UonS1Uoff=
⎡
⎢⎣

−0.6717 0.0514 −0.2042

−0.3766 −0.9827 −0.0572

0.0020 0.0085 0.9998

⎤
⎥⎦

The eigenvalues of the monodromy matrix were found to be −0.76029, −0.89376 and 0.99951.
As expected, one eigenvalue comes very close to +1, which is actually contributed by the integrator
of the controller. As we have already noted, this eigenvalue does not contribute to the system’s
stability, and has to be ignored while estimating the stability margin.‡ We see that the second
eigenvalue is reasonably close to −1 and hence the system has a poor stability margin—a fact
that was in no way evident from circuit simulation or the experimental waveform presented in
Figure 3.

This prediction is confirmed as the input voltage is increased from 25 to 27V, and experiment
shows that period-2 subharmonic oscillation sets in (see Figure 4, where the same state repeats

‡In fact, with the same duty ratio, if the saltation matrix calculation is done using only two variables, the eigenvalues
of the monodromy matrix are obtained as −0.76021 and −0.89343. This shows that very little error is incurred if
the stability calculation is simplified by considering 2×2 matrices.
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Figure 4. The voltage and current ripples at R=22� and Vin=27V observed in the experiment.
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Figure 5. The locus of the eigenvalues of the monodromy matrix.

every two clock periods). This period-doubling instability has been reported in numerous studies
on the buck converter [28–30].

By our method one can obtain the locus of the eigenvalues as a parameter is varied, which
is shown in Figure 5. It shows that the eigenvalues are complex conjugate at Vin=20V, which
move on a circle toward each other as the parameter is increased, and become real at Vin≈25V.
Thereafter, they move away from each other, and at Vin=25.5V one of the eigenvalues move out
of the unit circle. Thus, one can find the exact parameter value at which the fast-scale stability is
lost (in this case Vin=25.5V). It is known from bifurcation theory that a period-2 subharmonic
occurs if one of the eigenvalues equals −1 at the point of instability, and this is what we see in
Figure 4. It is notable that the third eigenvalue does not shift with the change in parameter.

By the technique introduced in this paper, one can also obtain the range of external parameters
for which stable periodic operation is obtained (Figure 6). Such a diagram helps in setting the
design limits, as it shows that the safe range of Vin depends on the load, and the safe range of R
depends on the input voltage.
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Figure 6. The parameter space map showing the stable region.

3.2. Discontinuous conduction mode

Low rating power converters are normally operated in DCM [31], and in that case one has to
consider the state equation when i=0 in addition to those appearing in Equation (3). Since we
have seen in the last section that the integrator in the feedback path only adds an extra dimension
whose associated eigenvalue is inconsequential in deciding the fast-scale stability of the system,
we ignore that extra variable in this section. However, the integrator has effect in deciding the duty
ratio, and hence all the three variables are considered when computing the instants of switching.

The state equations are

ẋ(t)=

⎧⎪⎨
⎪⎩
foff(x, t)=Aoffx+Boffu, S is off, D is on

fon(x, t)=Aonx+Bonu, S is on, D is off

fd(x, t)=Adx+Bdu, S is off, D is off

(9)

where

Aoff =Aon=A=
[−1/RC 1/C

−1/L 0

]
, Ad=

[−1/RC 0

0 0

]

Boff =
[
0

0

]
, Bon=

[
0

1/L

]
, Bd=

[
0

0

]
, u=

[
0

Vin

]

In this case, the system starts the clock cycle in the ON state which continues for a period of
d1T , the switch turns off when vcon<vramp at d2T , and the zero-current phase continues for a
period (1−d2)T . One can obtain d1, d2 and the values of the state at the switching instants from
simulation or by the Newton–Raphson method following [5].

The state transition matrix over the complete cycle will be composed of the state transition
matrices over the three phases of evolution, and three saltation matrices for the switching from
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the ON state to the OFF state (S1) that from the OFF state to the zero-current state (S2), and that
for the final switching back to the ON state (S3):

Ucycle=S3×Ui=0×S2×Uoff×S1×Uon

In this case, the state transition matrices Uon, Uoff and Ui=0 are obtained as matrix exponentials
as before. In calculating the saltation matrix S1, the switching function is h1(x, t)=KP(Vref−x1)−
vramp, so that the normal is n1=[−KP 0]T and the time derivative is �h1/�t=−(VU −VL)/T . For
calculating S2, the expression for the switching function is simply h2(x, t)= x2. Thus, n2=[0 1]T
and �h2/�t=0. With these expressions, one can obtain the saltation matrices

S1=I+ (foff−fon)nT1
nT1 fon+�h1/�t

, S2=I+ (fd −foff)nT2
nT2 foff+�h2/�t

which are evaluated as

S1=
⎡
⎢⎣

1 0

Vin
L

(
− x2
C

+ x1
RC

− VU −VL

KPT

)−1

1

⎤
⎥⎦ , S2=

⎡
⎣1

Lx2
Cx1

0 0

⎤
⎦

As mentioned before, S3 is an identity matrix.
To illustrate, we choose the parameter values L=1mH, C=47�F, T =400�s, VL =3.8V,

VU =8.2V, KP =5.0, KI =2.0, Vref=10V, R=100�, and find that at Vin=18V the behavior
is stable as shown in Figure 7. The steady-state duty ratios are calculated to be d1=0.1829 and
d2=0.3301 (this was done by simulating the actual system model, including the integrator). Upon
calculating the eigenvalues of the monodromy matrix we get the values 0 and −0.758765. Note
that one eigenvalue coming out to be zero is natural since any perturbation in the inductor current
goes to zero at the end of the clock period. The other eigenvalue needs to be followed in order to
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Figure 7. (a) The voltage and current waveforms for the converter in DCM and
(b) the orbit in the state space.
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ascertain the system’s stability as the external parameters vary. In fact, it is found that subharmonic
oscillations set in at Vin=19.3V.

3.3. Pulse width modulation of type-1

In the case of type-1 PWM (which is more common in digital implementations), one observes the
control voltage only at the beginning of a clock period, and the switching signal is generated when
that value of the control voltage becomes equal to the ramp voltage (see Figure 2). In this case the
complication is that if one writes the switching function as h(x, t)=KP(Vref−x1(0))−vramp, one
may erroneously conclude that the normal vector is [0 0]T, i.e. it does not exist. The correct way
of approaching the problem is to note that switching happens when the state reaches a specific
point in the state space, say x(t), and to express x(0) in terms of that. Since

x(t)=eAt x(0)+
∫ t

0
eA(t−�)

[
0

Vin/L

]
d�

by writing the integral term as I(t) we can express x(0) as

x(0)=(eAt )−1(x(t)−I(t))

if eAt is invertible. The switching function can now be expressed as

h(x, t)=[1 0](eAt )−1[x(t)−I(t)]−Vref+vramp/KP

To show that this expression really represents the switching function (which is now seen to be
dependent on both x1, x2 and time), we present in Figure 8 the positions of the above switching
function at four different time points within a clock cycle. It is seen that this switching function
coincides with the state at t=dT .

Having crossed the main hurdle, the rest of the computation proceeds in the same way as
before. We take the parameter values L=20mH, C=22�F, T =110�s, Vref=5.2V, R=10.38�,
VU =5.5V, VL =0.4V, KP =20 and KI =10. At Vin=20V, we obtain the duty ratio d=0.25997,
and the saltation matrix and the monodromy matrix were obtained as

S1=
[

1 0

−0.4885 1.5972

]
, Ucycle=

[−0.7316 3.9498

−0.4328 0.9882

]

The eigenvalues of Ucycle are 0.12834±0.98496j with modulus 0.9933. The system is thus stable,
but very close to losing stability.

Whenever the system loses stability with complex conjugate eigenvalues of the complete-cycle
state transition matrix, a very special phenomenon occurs. A low-frequency sinusoidal oscillation
develops in the output voltage and inductor current waveforms. The experimentally observed
waveforms of the control voltage and the inductor current at Vin=20 and 19.5V are shown in
Figure 9. It confirms the observations of the earlier studies on the PWM-1-controlled converters
[28, 32, 33].
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Figure 8. The position of the switching function and the system trajectory in the
state space at four points in time.

Figure 9. (a) Stable period-1 orbit at Vin=20V and (b) the slow-scale sinusoidal oscillation at Vin=19.5V.
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4. THE BOOST CONVERTER UNDER CURRENT MODE CONTROL

Boost converters are generally operated in current mode control to avoid the undesirable transient
behavior resulting from the zero in the right-half-plane appearing in the averaged model [7]. There
are two types of current mode control strategies. In both, the switch is turned ON at the beginning
of every clock period. In the peak current mode control, the maximum value of the inductor current
is compared with a reference current signal with a compensation ramp, and the switch is turned
OFF when the two become equal. In the average current mode control, the inductor current is
compared with a ramp waveform, and the switch is turned OFF when i<iramp. It is turned ON again
at the next clock instant. We now illustrate the technique of obtaining the state transition matrix
over the full cycle for these two control strategies.

4.1. Peak current mode control

The peak current-mode-controlled boost converter is shown in Figure 10. The right-hand sides of
the state equations are

foff=

⎡
⎢⎢⎣
x2R−x1

RC
Vin−x1

L

⎤
⎥⎥⎦ , fon=

⎡
⎢⎣− x1

RC
Vin
L

⎤
⎥⎦

where x1 is the capacitor voltage and x2 is the inductor current.
Thus, the state matrices for the ON and OFF periods are

Aon=
[−1/RC 0

0 0

]
, Aoff=

[−1/RC 1/C

−1/L 0

]

If the compensation ramp falls mc amperes in a clock period, the switching condition is
i−(Iref−mct/T )=0, and hence the normal vector is given by n=[0 1]T and the rate of change

in

ref

i

L D
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S
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Figure 10. (a) The peak current-mode-controlled boost converter and (b) the inductor current
and reference current waveforms.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2009; 37:899–919
DOI: 10.1002/cta



APPLICATION OF THE FILIPPOV METHOD 913

of the switching function �h/�t=mc/T . Using these, we get the saltation matrix S1 as

S1=

⎡
⎢⎢⎢⎣
1

(
x2R−x1

RC
+ x1

RC

)(
Vin
L

+mc

T

)−1

0 1+
(
Vin−x1

L
− Vin

L

)(
Vin
L

+mc

T

)−1

⎤
⎥⎥⎥⎦ (10)

and S2=I.
Substituting the values at the switching instant, one can evaluate the exponential matrices and

the saltation matrix, from which the monodromy matrix can be obtained as

Ucycle=S2×eAoff(1−d)T ×S1×eAon dT

It is interesting to note that the stabilizing ramp works by influencing the saltation matrix.
For example, if we choose the parameters Vin=4V, Iref=0.5A, L=1.5mH, C=10�F, R=40�,
T =100�s and do not use the stabilizing ramp (mc=0), the duty ratio is found to be 0.5208, and the
eigenvalues of the monodromy matrix are 0.5725 and −1.2730, respectively. Since one eigenvalue
is outside the unit circle, the orbit is unstable and subharmonic oscillations occur [34, 35]. If we set
the slope of the compensation ramp mc=0.05 A, then the duty ratio is 0.5072 (i.e. still greater than
0.5). However, the system becomes stable as the eigenvalues turn out to be 0.5510 and −0.8305
(both inside the unit circle). This happens because the saltation matrix S1 changes

from

[
1 18.7500

0 −0.9358

]
to

[
1 14.9886

0 −0.5876

]

This provides an alternative explanation of the stabilization of subharmonic oscillations with the
compensation ramp.

4.2. Average current mode control

The schematic diagram of the average current-mode-controlled boost converter is shown in
Figure 11. In this case the foff, fon, Aoff, and Aon remain the same as in the peak current-mode-
controlled boost converter. The switching condition changes to

h(x, t)=VL +(VU −VL)
t

T
−KPx2=0

so that n=[0 −KP ]T and �h/�t=−(VU −VL)/T .
Using these, we obtain the saltation matrix

S1=

⎡
⎢⎢⎢⎣
1 −x2

KP

C

(
−KPVin

L
+ −VU +VL

T

)−1

0 1+x1
KP

L

(
−KPVin

L
+ −VU +VL

T

)−1

⎤
⎥⎥⎥⎦
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Figure 11. The boost converter with the average current mode control.

For example, if the parameters are KP =5V/A, Vin=5V, Iref=0.8A, L=1.5×10−3H, C=
10×10−6 F, R=40�, T =100�s, VL =0V, VU =2V, then we obtain

S1=
[
1 8.1346

0 0.1407

]
, Ucycle=

[
0.7144 7.2322

−0.0264 −0.1141

]

whose eigenvalues are 0.3001±0.1396j indicating that the system is quite stable as its modulus
is much smaller than unity.

5. INCREASING THE STABILITY MARGIN

Since the stability of the orbit is given by the state transition matrix over a full clock period, its
Equation (2) can be used as a guideline for evolving control strategies. Note that it is composed of
two types of matrices: the matrix exponentials and the saltation matrices. The matrix exponentials
depend on the state matrix A for the ON and OFF periods (which are constant), and the duty ratio.
For constant output voltage, if the input voltage varies, the duty ratio will also vary, and that cannot
be controlled. But Equation (2) reveals that there is another handle: the saltation matrix. We show
here that the saltation matrix can be manipulated to stabilize the system.

Now, note the expression for the saltation matrix (1). It contains the right-hand sides of the
state equations fon and foff for the ON and OFF periods, which depend on the internal parameters
(set by the customer’s specifications) and cannot be manipulated. It also depends on the rate of
change �h/�t , and the normal vector n, which can be manipulated. This observation provides the
theoretical grounding for the proposed control strategies.

5.1. Strategies for manipulating the saltation matrix

Let us first focus on the term �h/�t . In the current-mode-controlled converter of Section 4, this
term is directly proportional to mc. The compensation ramp therefore directly affects the saltation
matrix (see Equation (10)), and through that the monodromy matrix. This has the effect of pushing
the eigenvalues into the unit circle even though the duty ratio exceeds 0.5.
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In case of the voltage mode control (PWM-2), �h/�t=−(VU −VL)/T . Since the clock period
is effectively constant, the control on the saltation matrix can be exercised through either VU or
VL .§ In this paper we illustrate the control through manipulation of the upper tip of the triangular
wave which is easily implementable using analog hardware.

Now let us look at the normal vector n. In the case of the voltage mode control, the capacitor
voltage x1 and the integrator output x3 are fed back to decide the control voltage, which is then
compared with the ramp. Therefore, the switching surface is parallel to the current axis in the state
space (which moves back and forth as the ramp voltage goes up and down). The way to affect the
normal vector n is to change the orientation of this surface by introducing a current feedback to
decide vcon.

5.2. Experimental validation

In the following subsections, we illustrate these possibilities as effective control strategies to avoid
subharmonic oscillations.

5.2.1. Voltage-mode-controlled buck converter in PWM-2. We implemented a controller that
observes the magnitude of the voltage ripple (which can be used as an indicator of impending
onset of instability), and a supervising controller comes into action when the ripple magnitude
exceeds a threshold value. The supervising controller notches up the peak value VU of the ramp
waveform by �VU volts. This increases the slope of the ramp, and hence alters the saltation matrix.
The temporal response of the system due to the operation of the supervising controller is shown
in Figure 12.

A convenient way of having a panoramic view of the stability status under varying parameter
is through what is known as a bifurcation diagram. In obtaining such a diagram one samples a
variable (say, the control voltage) at every clock instant. Thus, if the orbit is periodic, one obtains
a single point on the CRO screen. When period-2 subharmonic occurs, one gets two points. The
variable parameter Vin is fed into channel-1 and the variable vcon is fed into channel-2 of the CRO,
which is put in the X–Y mode. Now, if the input voltage is varied, the point will move in the
horizontal direction, and when the subharmonic instability occurs, the point will split into two. The
whole process can be captured and stored as image in a digital storage oscilloscope. Figure 13(a)
shows the experimentally obtained bifurcation diagram of the converter described in Section 3. It
clearly shows that the instability occurs at Vin≈26.7V.

Suppose we want to extend the range of stable operation to 30V. By the method given in
Section 3, we find that at this input voltage, the eigenvalues are −1.6619, −0.4089 and 0.9995,
and hence the system is unstable. By keeping the duty ratio fixed (for a given input voltage)

§We have shown earlier [26] that an alternative way of influencing this term is by adding a small-amplitude sinusoid
to the ramp waveform, so that the switching condition becomes

x1−Vref−Vrefa sin(�t+�)− T VL +(VU −VL )t

AT
=0

If one chooses the phase � of the sinusoid so that the zero crossing coincides with the nominal steady-state
switching instant in each clock cycle, then the introduction of this additional sinusoid has very little influence on
the switching instant, and hence on the normal operation of the converter. But since �h/�t contains the cosine term
which attains maximum value at the switching instant, this term is affected. This significantly alters the saltation
matrix and the system is stabilized.
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Figure 12. The temporal response showing the action of the supervising controller to stabilize the system
at a parameter value where the system is normally unstable.
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Figure 13. The experimentally obtained bifurcation diagram for the
voltage-mode-controlled buck converter: (a) under normal PWM-2 control

and (b) when the secondary control loop is added with �VU =0.7V.

we express the monodromy matrix and hence its eigenvalues as a function of VU . Then we can
solve a nonlinear equation (using the Newton–Raphson method) and that allows us to obtain the
required value of �VU , to optimally design the supervising controller. We find that if the value
of VU is pushed up by 1.11V, then the eigenvalues become −0.9982, −0.6808 and 0.9995, so
that the system is stable. In the experiment (Figure 13(b)), we found that �VU =0.7V suffices in
controlling the system up to Vin=30V, because of the small difference in the experimental system
and the idealized model.

We have also experimentally verified the stabilization of the system by changing the orientation
of the switching surface (by adding current feedback). For the same system, a current feedback
path was added so that the control voltage is given by

vcon=KP

(
v

k1
+ i

k2
−Vref

)
+vi

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2009; 37:899–919
DOI: 10.1002/cta



APPLICATION OF THE FILIPPOV METHOD 917

14

10

6

2

–2

Input Voltage (V)

C
on

tr
ol

 V
ol

ta
ge

 (
V

)
22 2624 28 30 32 34

Figure 14. The experimentally obtained bifurcation diagram for the voltage-mode-controlled buck converter
when a current feedback path is added with gain k2=0.15V/A.
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Figure 15. The experimentally obtained bifurcation diagram for the
voltage-mode-controlled buck converter: (a) under normal PWM-1 control

and (b) when the secondary control loop is added with �VU =0.7V.

For the experiment, we chose k1=1 and k2=0.15A/V, and the resulting bifurcation diagram is
shown in Figure 14. By comparing it with the nominal bifurcation diagram of Figure 13(a), it is
clear that the current feedback increases the stable range to 31.6V.

5.2.2. Voltage-mode-controlled buck converter in PWM-1. As we have seen earlier, the common
type of instability in PWM-1-controlled buck converter is the sudden onset of slow sinusoidal
oscillation, known as quasiperiodicity. In this converter configuration also, we applied the same
control technique of increasing the slope of the ramp. The result is shown in the two bifurcations
diagrams in Figure 15, one for the standard PWM-1 control and the other for the proposed
controller that changes the slope of the ramp. It shows that although the instability occurred at
Vin≈19.6V for a normal PWM-1-controlled system, the stable range could be extended to 15.5V
by the proposed control technique. Note that if we allow VU to be varied by a larger extent, the
range can be further extended.

6. CONCLUSIONS

We have shown that the method developed by Filippov and others for the study of switching
mechanical systems is very convenient in studying the fast-scale stability in dc–dc converters. The
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method rests on the computation of the state transition matrix over a complete clock cycle as
a product of the state transition matrices for the evolutions through each linear subsystem (the
ON state, the OFF state, etc.), and the state transition matrices corresponding to the switching
events (the saltation matrices). The eigenvalues of the complete-cycle state transition matrix are
the Floquet multipliers, which indicate the stability of the system in fast timescale.

We have applied this technique to a number of converter configurations, namely, the buck
converter under voltage mode control (both PWM of types 1 and 2), and the boost converter under
peak current mode control and average current mode control. In all these cases we have derived
the expressions of the saltation matrices and the state transition matrices for evolution through
the linear subsystems—which can be directly used in evaluating the stability margin in converters
with similar configurations.

We have shown that the saltation matrix offers a handle in increasing the stability margin. The
expression of this matrix shows that it can be manipulated by influencing either the time derivative
of the switching function, or its orientation in the state space. In a PWM controller, the rate of
change of the switching function can be altered by controlling the slope of the ramp, and its
orientation can be controlled by feeding back both voltage and current signals to decide the control
voltage. Based on this theoretical premise, we have proposed effective and simply implementable
control strategies to increase the range of parameters such as input voltage or load over which the
converter remains stable.
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