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3School of Engineering, Universidad de Los Andes, Mèrida, Venezuela
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SUMMARY

The achievement of step-up inversion with a boost DC/AC converter requires appropriate periodic refer-
ences for inductor currents, which have to satisfy ordinary differential equations (ODE) of the Abel
type. These are equations with highly unstable solutions for which the existence of periodic solutions
remains unproved. Hence, the studies reported so far in this subject obtain periodic output voltages that
approximately track the expected profile using different periodic current references that do not exactly
satisfy the Abel ODE. However, neither an explanation of why are periodic output voltages still obtained,
nor an assessment of the output voltage error is provided. This paper analyzes the effect of using periodic
current references in a Lyapunov-based controlled boost DC/AC converter performing step-up inversion
tasks. It is shown that, for sufficiently accurate current references, the system exhibits asymptotically
stable periodic solutions with bounded error. Moreover, the paper propounds the use of Harmonic Balance
(HB)-based techniques to obtain such current references. Simulation and experimental results confirm
that this choice yields periodic output voltages with an error that may be lowered using higher HB
approximations. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Uninterruptible power supply devices or ac power sources are key elements of power conditioning
systems. They are designed to supply an ac load from a dc source [1–3]. Usually, the power stage
circuits in charge of performing DC/AC conversion are based on a full-bridge buck switching
converter topology. When ac amplitudes higher than the dc input voltage are required, the classical
design combines a step-up turns ratio transformer and a buck converter in the DC/AC conversion
circuit. However, this approach entails some drawbacks related to the transformer nonidealities
(leakage inductances, limited bandwidth, etc.) and increases the weight and size of the converter
circuit. The boost DC/AC converter does not show these problems and can perform DC/AC
step-up conversion.

One of the main issues when facing step-up inversion with a boost DC/AC converter is the
obtention of bounded, periodic references for the inductor currents. This is due to the fact that
such signals should satisfy a nonlinear ODE of the Abel type [4] for which not only there is no
way of obtaining an analytical solution, but also it is not actually known whether it has periodic
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solutions. Indeed, to the authors’ knowledge, the already reported existence results for periodic
solutions of these ODE are only applicable to DC tracking [5, 6], and not to pure inversion.

Hence, the existing literature dealing with this subject considers different periodic current refer-
ences that do not satisfy the Abel ODE. The proposal in [7] uses a double loop control, namely, an
inductor current control inner loop and an output voltage control outer loop. A feedforward control
technique is also applied to improve the system robustness in front of external disturbances. The
controllers are designed by using the known time-decoupling between the inductor and capacitor
dynamics. The paper does not present any theoretical analysis which validates the time-decoupling
and may help the designer in control parameter tuning. The paper compares the results with
those obtained by using the sliding mode proposal of [8]. The sliding mode scheme considers the
inductor current and the capacitor voltage errors as feedback variables. The inductor current error
is obtained by high-pass filtering the inductor current, which assumes that the inductor current is
always close to its reference. This hypothesis yields some problems in transient response, as stated
in the experimental comparison discussed in [7]. Sliding mode control is also used in [9], where a
double loop sliding mode is designed to track sinusoidal signals in a boost inverter. The inductor
current reference is obtained as the output of a Proportional-Integral (PI) controller of the capacitor
voltage. A novel perspective can be found in [10], where a passive-based control design is applied
to guarantee state asymptotic convergence to the reference values. As in [9], the current reference
is obtained as the output of a PI voltage controller and presents the same drawback, namely that
the overall stability remains unproved. The proposals in [11, 12] use an energy shaping control
strategy that allows the obtention of a stable limit cycle which produces a pre-specified oscillating
behavior for currents and voltages under known and unknown resistive loads, respectively. In both
cases the current reference is approximated by a first harmonic signal. No analysis of the effect
of using such current reference approximations in the output voltage is carried out.

This paper studies the tracking of a sinusoidal reference by the differential load of a Lyapunov-
based controlled boost DC/AC inverter. By posing the problem in terms of a periodic system
affected by a periodic perturbation that appears because the selected periodic current references
do not exactly meet the Abel ODE, it is first proved that if the perturbation term is small enough,
then the closed-loop system responds with an asymptotically stable periodic solution. Moreover,
the difference between such a solution and reference currents and voltages vector is shown to be
of the same order as the disturbance term.

Harmonic Balance (HB) has been long used to improve the accuracy of the theoretical predictions
in the analysis of power converters (see, for example [13, 14]) based on averaged models. This
paper also proposes the use of the HB method to compute current reference approximations that
approximately satisfy the specific Abel ODE. In case the HB approximations exist and converge,
the output voltage error is expected to tend to zero. Otherwise, an alternative technique is to use
ideal, first-order HB approximations, which are always obtainable and have an analytical, closed-
form expression that depends explicitly on the converter parameters. The drawback of this latter
approach is an amplitude difference with the expected output voltage, which can be tackled by an
appropriate tuning of the control law parameters at the cost of slight Total Harmonic Distortion
(THD) increasing. The study is validated by means of both simulation and experimental results.

The remainder of the paper is organized as follows. Section 2 studies the tracking of periodic
references by a boost DC/AC inverter. Section 3 introduces an HB-based technique that provides
periodic current references for the inductor currents. Sections 4 and 5 contain, respectively, simu-
lation and experimental results. Finally, conclusions and further research lines are summarized in
Section 6.

2. MATHEMATICAL ANALYSIS

Throughout the paper, ‖·‖ denotes the uniform norm, i.e. ‖·‖=‖·‖∞, while ‖·‖2 stands for the
euclidean 2-norm.

The boost DC/AC converter, depicted in Figure 1, consists of two identical boost converters
connected in opposition and sharing the output resistance. The system dynamics may be modelled
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HARMONIC BALANCE-BASED CONTROL OF A BOOST DC/AC CONVERTER

Figure 1. Boost DC/AC converter.

selecting the inductance currents and output voltages I1(�), V1(�), I2(�), V2(�) as state variables.
Then, using Kirchhoff’s laws

İ1 = (E−RL I1−u1V1)L
−1,

V̇1 = −(V1−V2)(RC)
−1+u1 I1C

−1,

İ2 = (E−RL I2−u2V2)L
−1,

V̇2 = −(V2−V1)(RC)
−1+u2 I2C

−1,

(1)

where the derivatives are calculated with respect to the time variable � and the control actions
u1, u2 take values in the discrete set {0,1}. Notice that the control signal u1 is associated to the
half bridge of the left side of circuit depicted in Figure 1, whereas u2 is related to the half bridge
drawn on the right side. The branch switches operate in complementary mode, that is, ui =1
when its corresponding upper switch is conducting, while ui =0 when the corresponding lower
switch is on.

The goal is to make the output voltage Vo(�)=V1(�)−V2(�) track a pure sinusoidal signal

V̄o(�)=Va sin2���.

This will be achieved forcing V1(�) and V2(�) to track appropriate offset DC signals, i.e.

V̄i (�)=Vof +(−1)i+1Va
2

sin2���, i =1,2, (2)

with Vof −|Va |/2>E>0.
For a systematic analysis it is advisable to work with a dimensionless system equivalent to

Equation (1) and exhibiting a minimum number of parameters. Hence, with the change of variables

x1= 1

E

√
L

C
I1, x2= V1

E
, x3= 1

E

√
L

C
I2, x4= V2

E
, t= 1√

LC
�

and the introduction of the new parameters

�= 1

R

√
L

C
, �L = RL

√
C

L
, (3)

(1) may be written as:

ẋ1 = 1−�Lx1−u1x2,

ẋ2 = −�(x2−x4)+u1x1,

ẋ3 = 1−�Lx3−u2x4,

ẋ4 = −�(x4−x2)+u2x3,

(4)

where the derivatives are now calculated with respect to t .
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The change of variables makes the voltage references to be

x̄i (t) = a+(−1)
i
2+1 b

2
sin�t, i =2,4,

x̄o(t) = x2(t)−x4(t)=b sin�t,
(5)

where a=Vof /E , b=Va/E , �=2��
√
LC and a−|b|/2>1. Hence, the key point is in the selection

of current references x̄1(t), x̄3(t) and a control law in such a way that the closed-loop system
is stable and, at the same time, the output voltage scaled variable xo(t) converges to x̄o(t) for
t→+∞.

Assumption A. The nominal reference signals x̄1, x̄3, are smooth and T -periodic, with x̄21(t)+
x̄23 (t) �=0.

The control law u= (u1,u2)� is selected as a Lyapunov-based state feedback action with compo-
nents:

u1 = ū1+�(x̄2x1− x̄1x2),

u2 = ū2+�(x̄4x3− x̄3x4),
(6)

where �>0 and ū= (ū1, ū2)� is the nominal control action

ū1= 1−�L x̄1− ˙̄x1
x̄2

, ū2= 1−�L x̄3− ˙̄x3
x̄4

, (7)

which is well defined under Assumption A.
Let ei = xi − x̄i , i=1,2,3,4, be the error variables. Then, the closed-loop error dynamics corre-

sponding to Equations (4)–(6) is governed by the T -periodic system

ė= f (t,e)+g(t), (8)

where

f (t,e)= [A(t)+B(ū(t))]e+�B[u(t,e)− ū(t)]e (9)

and

A(t)=

⎛
⎜⎜⎜⎜⎜⎝

−�L −�x̄22(t) �x̄1(t)x̄2(t) 0 0

�x̄1(t)x̄2(t) −�−�x̄21(t) 0 �

0 0 −�L −�x̄24(t) �x̄3(t)x̄4(t)

0 � �x̄3(t)x̄4(t) −�−�x̄23(t)

⎞
⎟⎟⎟⎟⎟⎠

,

while B(·) is a linear, skew-symmetric operator that acts on R2 vectors as follows:

B(v)= B(v1,v2)=

⎛
⎜⎜⎜⎜⎝

0 −v1 0 0

v1 0 0 0

0 0 0 −v2

0 0 v2 0

⎞
⎟⎟⎟⎟⎠ .

Moreover, g(t)= (g1(t), . . . ,g4(t))�, with g1(t) = g3(t) = 0 and

g2(t)= F1(x̄1, �̄1(t))

x̄2(t)
= x̄1(1−�L x̄1− ˙̄x1)−�̄1(t)

x̄2(t)
, (10)

g4(t)= F3(x̄3, �̄3(t))

x̄4(t)
= x̄3(1−�L x̄3− ˙̄x3)−�̄3(t)

x̄4(t)
, (11)
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where

�̄1(t)= x̄2(t)[ ˙̄x2(t)+�(x̄2(t)− x̄4(t))], (12)

�̄3(t)= x̄4(t)[ ˙̄x4(t)+�(x̄4(t)− x̄2(t))]. (13)

Notice that Equation (8) may be regarded as a nominal T -periodic system, with an equilibrium
point at e=0, affected by a T -periodic perturbation g(t)

ė= f (t,e)+	ĝ(t), (14)

where 	=‖g(t)‖ and ĝ(t) is a unitary vector (in the sense of the uniform norm) in the direction
of g(t). The stability features of the nominal system, i.e. with 	=0, will allow us to prove that,
for a small enough 	, Equation (8) has a nontrivial, asymptotically stable periodic orbit which, in
the large, has order ‖g(t)‖.
Lemma 1
Let Assumption A be fulfilled. The equilibrium point e=0 of the T -periodic, nominal system

ė= f (t,e) (15)

is:

(i) Exponentially stable in the linear approximation.
(ii) Globally uniformly asymptotically stable.

Proof
Using Equation (9), system (15) reads as

ė= [A(t)+B(ū(t))]e+�B[u(t,e)− ū(t)]e (16)

and its linear approximation in a neighborhood of e=0 is

ė= [A(t)+B(ū(t))]e. (17)

(i) Let V (e)=1/2e�e be a Lyapunov function candidate for Equation (17). Taking into account
that B(·) is skew-symmetric, one obtains that

V̇ (t,e)=e�A(t)e.

Denote as �i the principal minor of A(t) with dimension i×i ; then, by Assumption A

�1 = −�L −�x̄22�−�L<0,

�2 = ��L +�(�L x̄
2
1 +�x̄22 )���L>0,

�3 = −(�L +�x̄24 )�2�−�L�2<0,

�4 = ��2L�(x̄21 + x̄23 )+�L�2 x̄21(�L x̄
2
3 +�x̄24)+��L�2x̄22 x̄

2
3���2L�(x̄21 + x̄23)>0

thus yielding the negative-definiteness of A(t). Let now 
max(t) denote the maximum eigenvalue
of A(t), which is trivially continuous and T -periodic, and let 
m<0 be defined as


m = sup{
max(t), t ∈ [0,T ]}.
Then, for all e �=0

V̇ (t,e)=e�A(t)e�
max(t)‖e‖22�−|
m |‖e‖2<0. (18)

As |
m |‖e‖2 is continuous and positive definite in R4 and it is also radially unbounded, it follows
that e=0 is uniformly asymptotically stable [15]. Finally, for linear systems, as in Equation (17),
uniform asymptotic stability and exponential stability are equivalent concepts [15].
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(ii) Using V (e)=1/2e�e as a Lyapunov function candidate for Equation (16), it occurs again
that V̇ (t,e)=e�A(t)e. From this point onwards the proof follows that of item (i). �

Proposition 2
Let Assumption A be fulfilled. Then, there exists an open neighborhood I	 of 	=0 such that,
for each 	∈ I	, the perturbed system (14) has one and only one exponentially stable, T -periodic
solution e(t,	) that verifies e(t,0)=0.

Proof
Under Assumption A, it is immediate from Equation (9) that f , Dx f , g and Dxg are continuous
with respect to all their arguments. Moreover, the variational system of the unperturbed equation
(15) with respect to e=0 coincides with Equation (17), and Lemma 1.i indicates that Equation
(17) does not have nontrivial T -periodic solutions and also that all its characteristic multipliers are
in modulus less that 1. Hence, the thesis follows from Theorems 6.1.1 and 6.1.3 in [16]. �

Proposition 3
Let Assumption A be fulfilled. Then, for t→+∞ and for any positive constant �<1, the solution
e(t) of the perturbed system (8) satisfies

‖e(t)‖�
√
2

|
m |�‖g(t)‖. (19)

Proof
It is known from Lemma 1.i that e=0 is an exponentially equilibrium point of the nominal error
system (15). Moreover, the Lyapunov function V (e)=1/2e�e for Equation (15) satisfies

c1‖e‖2= 1
2‖e‖2�V (e)= 1

2‖e‖22�‖e‖2=c2‖e‖2,
V̇ (t,e)�−|
m |‖e‖2=−c3‖e‖2,∥∥∥∥�V

�e

∥∥∥∥=‖e‖�‖e‖=c4‖e‖,

for all (t,e)∈ [0,∞)×R4. Furthermore, Assumption A guarantees that the perturbation term g(t)
is such that ‖g(t)‖=�<∞. Then, according to Lemma 9.2 in [15], there exists t0∈R+ such that,
for all t�t0

‖e‖�c4
c3

√
c2
c1

�

�
=

√
2

|
m |�‖g(t)‖.

The usual control goal for system (4) is the tracking of a priori selected x̄2, x̄4, by the state
variables x2, x4, respectively. Hence, whenever x̄1, x̄3 can be selected as T -periodic solutions of
the Abel ODE [4] Fi (x̄i , �̄i (t))=0, i =1,3, i.e.

x̄i
(
1−�L x̄i − ˙̄xi

)−�̄i (t)=0, i =1,3, (20)

fulfilling Assumption A, then g(t)=0 and Lemma 1 ensures the exact tracking target with global
uniform asymptotic stability.

However, this is a challenging problem for which no theoretical results are still available.
Ongoing research, still at a numerical stage, allows to conjecture the existence of periodic solutions
for Equation (20) in particular situations that, unfortunately, do not satisfy Assumption A. This is
due to the fact that, using Equation (5)

˙̄x2(t)+�[x̄2(t)− x̄4(t)]=−[ ˙̄x4(t)+�(x̄4(t)− x̄2(t))],

which makes �̄1, �̄3 to share zeros and, in turn, may force the nullifying of x̄1 and x̄3 at the same
time instants according to Equation (20).
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The following section contains an HB-based proposal for the selection of periodic references x̄1,
x̄3 in such a way that, besides satisfying Assumption A, Fi (x̄i , �̄i ), i =1,3 and, consequently, g(t),
are close to zero. Then, Propositions 2 and 3 guarantee locally exponentially stable T -periodic
errors of order ‖g(t)‖ in steady state.

3. HARMONIC BALANCE-BASED SELECTION OF CURRENT REFERENCES

Consider the set L2(0,T ) of square integrable functions in (0,T ), provided with the usual scalar
product (· | ·)

(x(t) | y(t))= 1

T

∫ T

0
x(t)y(t)dt . (21)

With the norm induced by Equation (21), L2(0,T ) is a real, separable Hilbert space for which the
trigonometric system {wn}n�0, defined as

w0=1, w2n−1=
√
2cosn�t, w2n =

√
2sinn�t (22)

with �=2�T−1 is a complete orthonormal system and, thus, a basis. Let also XN =
span{w0, . . .,w2N } ⊂ L2 denote the subspace spanned by the 2N+1 first elements of {wn}. Then,
the mapping PN : L2−→ XN acting on any x ∈ L2(0,T ) as

PN (x)=
2N∑
n=0

(x |wn)wn (23)

is an orthogonal projection operator into XN that allows x ∈ L2(0,T ) to be uniquely decomposed as

x = PN (x)+(I−PN )(x). (24)

The selection of current references, x̄1, x̄3, is carried out according to the final discussion of
Section 2. The HB method [4, 17] allows an N th harmonic, T -periodic assignment x̄i N (t) for x̄i (t),
i =1,3 to be found. For this, let us denote

x̄i N (t)=
i0+
N∑

n=1

in cos(n�t)+
in sin(n�t).

The proposal consists of obtaining the 2N+1 unknown coefficients 
i0, . . . ,
i N solving the
nonlinear system of 2N+1 equations PN (Fi (x̄i N , �̄i ))=0, equivalent to (Fi (x̄i N , �̄i )|wn)=0, n=
0, . . . ,2N , i.e. ∫ T

0
Fi (x̄i N , �̄i )cos(n�t)dt = 0, n∈{0, . . . ,N}, (25)

∫ T

0
Fi (x̄i N , �̄i ) sin(n�t)dt = 0, n∈{1, . . . ,N}. (26)

The next result studies the relation between the solutions x̄1N , x̄3N of the HB equations (25)–(26),
i =1,3.

Proposition 4
Assume that

x1N (t)=
10+
N∑

n=1

1n cos(n�t)+
1n sin(n�t)

satisfies Equations (25)–(26) for i =1. Then

x3N (t)= x1N

(
t+ T

2

)
=
10+

N∑
n=1

(−1)n[
1n cos(n�t)+
1n sin(n�t)]

satisfies Equations (25)–(26) for i =3.
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Proof
It is known by hypothesis that PN (F1(x̄1N , �̄1))=0, i.e.

PN (x̄1N (1−�L x̄1N − ˙̄x1N ))= PN (�̄1(t)). (27)

As it is immediate from Equations (12)–(13) and (5) that �̄3(t)= �̄1(t+T/2), the evaluation of
(27) in t+T/2 yields

PN

(
x̄1N

(
t+ T

2

)[
1−�L x̄1N

(
t+ T

2

)
− ˙̄x1N

(
t+ T

2

)])
= PN (�̄3(t))

and the result follows. �

When Equations (25)–(26) have solution for i =1, then Equation (24) allows writing

F1(x̄1N , �̄1)= PN (F1(x̄1N , �̄1))+(I−PN )(F1(x̄1N , �̄1))

= (I−PN )(F1(x̄1N , �̄1)). (28)

As a consequence, the function g2N (t) defined in (10) results in

g2N (t)= (I−PN )(F1(x̄1N (t), �̄1(t)))

x̄2(t)
. (29)

In turn, according to Equation (11), Proposition 4 and Equation (29), g4N (t)=g2N (t+T/2), which
means that ‖gN (t)‖=‖g2N (t)‖. Therefore, an error bound may be calculated from Equation (19)
in Proposition 3.

Remark 3.1
If ‖gN (t)‖ is small enough, Proposition 2 guarantees that the corresponding error Equation (14) has
a T -periodic and asymptotically stable solution eN . If it also happens that Equations (25)–(26) have
a solution on increasing N and ‖gN (t)‖→0 for N →∞, one may expect that ‖eN‖→0 for N →∞.

The above described HB method provides trigonometric approximations x̄1N , x̄3N for the current
references for which the coefficients can only be obtained numerically. However, these coefficients
depend on the converter parameters and, specifically, on the output resistance R through parameter
� (see (3)). Hence, if the converter undergoes piecewise constant load jumps, the performance will
degrade until the disturbance is dynamically compensated by an appropriate modification of x̄1N ,
x̄3N according to the actual value of R. This requires identification of R, solution of the new HB
equations and updating of the current references. The time consumption associated with the second
and third steps could be reduced if closed-form expressions x̄1N (t,�), x̄3N (t,�) were available. This
is possible if one uses first harmonic HB approximations obtained from the ideal boost DC/AC
system, that is, with no inductor loss resistances, which means RL =0 and, consequently, �L =0
in Equations (25)–(26). Indeed, assuming

x̄ id1 (t,�)=
01(�)+
11(�)cos�t+
11(�) sin�t (30)

and taking into account that (recall Equation (12)–(2))

�̄1(t,�)= 
̃01(�)+
2∑

n=1

̃n1(�)cos(n�t)+ 
̃n1(�) sin(n�t)

the solutions of Equations (25)–(26) with �L =0, that is, with

F1(x̄1, �̄1)≡ F id
1 (x̄ id1 , �̄1)= x̄ id1 (1− ˙̄x id1 )−�̄1

are


01= 
̃01, 
11= 
̃11+�
̃01
̃11
1+�2
̃201

, 
11= 
̃11−�
̃01
̃11
1+�2
̃201

. (31)
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The function gid2 (t,�) is now

gid2 (t,�)=
F1(x̄ id1 (t,�), �̄1(t,�)))

x̄2(t)
= −�L (x̄ id1 )

2+F id
1 (x̄ id1 , �̄1)

x̄2
=

= −�L (x̄ id1 )
2+(I−P1)[F id

1 (x̄ id1 , �̄1)]

x̄2
. (32)

Finally, it follows from Proposition 4 that

x̄ id3N (t,�)= x̄ id1N

(
t+ T

2
,�

)
=
01(�)−
11(�)cos�t−
11(�) sin�t

and also that gid4 (t,�)=gid2 (t+T/2,�).

Remark 3.2
In practical applications, real-time computation constraints make it difficult to implement controllers
that include current references x̄1, x̄3 with more than two harmonics, i.e. with N�2. In such cases,
and also when using x̄ id1 , x̄

id
3 , the voltages x2, x4 attain amplitudes presumably lower than expected.

A possible solution to this issue might be to adjust the value of RL , i.e. of �L , in the nominal
control actions ū1, ū2 defined in Equation (7) till the output voltage amplitude reaches the desired
value. Denoting as �̂L the adjusted value of �L eventually used in Equation (7), the corresponding
perturbation terms ĝi+1N (t), i =1,3 are

ĝ2N (t)=
(
�L − �̂L

)
x̄21N (t)

x̄2(t)
+g2N (t), ĝ4N (t)= ĝ2N

(
t+ T

2

)
,

where g2N (t) is defined in Equation (29). When using the ideal approximations, ĝid2 , ĝ
id
4 follow

straightforwardly replacing �L by �̂L in Equation (32).
However, the achievement of the correct output voltage amplitude is at the cost of a degradation

of the sinusoidal shape of the signal, as shown in the simulation and experimental results.

4. SIMULATION RESULTS

The boost DC/AC converter used for simulation has parameters E=8 V , L=33�H, C=1mF,
R=10� and RL =0.19�, while �=0.00004. For the output voltage references V̄1, V̄2 (recall
Equation (2)), the selected offset and amplitudes are Vof =20 V , Va =15 V , while �=50Hz.
Therefore, the expected output voltage is

Vo(�)=15sin100��.

The simulations are carried out in real variables to allow a better comparison with the experimental
results presented in Section 5.

The nominal current references Ī1N , Ī2N have been obtained solving Equations (25)–(26) up to
N =5 for i =1 and then using Proposition 4. On the one hand, the first row of Table I, as well
as the fact that Vof>|Va |/2>E , ensure the fulfillment of Assumption A. On the other hand, Ī1N ,
Ī2N , which are depicted in Figure 2, show convergence when increasing N . This is confirmed in
Table I, where ‖gN‖ appears tending to 0.

The behavior of the boost DC/AC converter (1) under the control law (6)—converted to real
variables—has been simulated for various sets of current references Ī1, Ī3 obtained according to
the HB method introduced in Section 3. The system has been numerically solved with MAPLE
using a Fehlberg fourth–fifth-order Runge–Kutta method with degree four interpolant. The initial
conditions were I1(0)= I2(0)=1, V1(0)=V2(0)=21.
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Table I. Key features of current references, disturbance norms and simulated system response.

N =1 N =2 N =3 N =4 N =5

inf{ Ī21N + Ī22N } 4.0120 0.0111 0.0116 0.0004 0.0002
E

√
C/L‖gN ‖ 0.9940 0.2080 0.0680 0.0259 0.0107

‖I1N − Ī1N ‖ 1.582 0.282 0.0949 0.0341 0.014
‖V1N − V̄1‖ 0.851 0.150 0.0481 0.0147 0.0057
‖VoN − V̄o‖ 0.6030 0.2390 0.0319 0.0234 0.0031

Figure 2. Nominal currents Ī1N , Ī2N (N =1: dashed, N =5: solid).

Figure 3 portrays the output voltages V1N , V2N , N =1,2, obtained using the approximations
Ī1N , Ī2N in Equations (6)–(7), tracking the nominal voltage references V̄1, V̄2. The voltages corre-
sponding to N =3,4,5 have not been included in the plot because they are almost indistinguishable
amongst them and from V̄1, V̄2. Table I‡ confirms again this information, because ‖I1N − Ī1N ‖
and ‖V1N − V̄1‖ tend to 0. It is worth mentioning that the data corresponding to ‖I2N − Ī2N ‖
and ‖V2N − V̄2‖ are omitted because they match exactly those of ‖I1N − Ī1N ‖ and ‖V1N − V̄1‖,
respectively. The output voltage variable VoN =V1N −V2N is depicted in Figure 4 together with
the reference profile V̄o, for N =1,2. Notice that VoN approaches V̄o as N increases, confirmed
by the last row in Table I.

Finally, the ideal current references Ī id1 , Ī id2 have been computed from Equations (30)–(31).
The obtained current references are such that ( Ī id1 )2+( Ī id2 )2=0.9888, the fulfillment of Hypothesis
A being thus guaranteed. Figure 5 portrays the output voltages V id

o and V̂ id
o , the latter obtained

according to Remark 3.2 with R̂L =0.25 �. Notice the shape degradation of V̂ id
o pointed out in

Remark 3.2.

‡The norm measures involving I1N , V1N and VoN are in the steady state.
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Figure 3. Voltages V1N , V2N (V̄1, V̄2: solid; N =1: dashed, N =2: dotted).

Figure 4. Output voltage VoN (V̄o: solid; Vo1: dashed, Vo2: dotted).

5. EXPERIMENTAL RESULTS

The experimental results have been obtained by means of a prototype with the same parameter
values used in the simulations of Section 4. Recall that the step-up conversion operation uses an
input dc voltage source of 8V and delivers an output ac signal with an amplitude of 15V. However,

Copyright � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cta

Int. J. Circ. Theor. Appl. 2012; :777–79240

787



J. M. OLM ET AL.

Figure 5. Output voltages V id
o , V̂ id

o —without/with tuning of RL in the control
law—(V̄o: solid; V id

o : dashed; V̂ id
o : dotted).

it has to be pointed out that other conversion gains (step-up and step-down) have been tested in
the laboratory.

The implementation has been carried out using two interconnected boost circuits with floating
load. The prototype uses Eupec IGBT BSM 200GB 170 DLC transistors which, due to the fact
that there are currents flowing in opposite directions, they work in complementary mode. As the
load does not have ground connection, the output voltage measures are differentially made between
its extremes. Moreover, current and voltage sensor devices have been introduced for inductors and
capacitors, respectively, in such a way that one has access to the four states of the converter. The
controller is implemented by an algorithm in the digital signal processor AD21991, which includes
the current references equations and generates the PWM signal for both IGBTs. The switching
frequency is set to 13.5kHz. It is also worth remarking that the prototype has been constructed
to experimentally validate the theoretical predictions derived in the paper. Hence, its design does
not answer to the usual optimization criteria in terms of efficiency, weight and size. Instead, the
priority has been to simplify the digital implementation of the controller, this being achieved using
a large capacitor that ensures a slow enough transient response.

Figure 6 contains a block diagram scheme detailing the control implementation. The control
design stage involves the following steps:

1. Calculation (offline) of the inductor current references ( Ī1, Ī2) from the desired voltage
references (V̄1, V̄2) applying the HBM, as detailed in Section 3.

2. Obtention of the nominal control actions (ū1, ū2) (see (7)) which, in the original variables,
answer to:

ū1= E−RL Ī1−L ˙̄I 1
V̄1

, ū2= E−RL Ī2−L ˙̄I 2
V̄2

.

3. Implementation of the control algorithm in the DSP:
3.1. Measure of the inductor currents (I1, I2) and the capacitor voltages (V1,V2).
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Figure 6. Block diagram detailing the control implementation.

Figure 7. Experimental results with current references Ī11, Ī21, i.e. with one harmonic.
V1,V2,Vo: [10V/div]; I1: [20A/div].

3.2. Computation of the control actions (ū1, ū2) (see (6)) which, in the original variables,
answer to:

u1= ū1+�(V̄1 I1− Ī1V1), u2= ū2+�(V̄2 I2− Ī2V2).

Figures 7, 8, 9 and 10 depict experimental measures of the capacitor voltages V1 and V2, the
differential output voltage Vo=V1−V2 and the inductor current Ī1, for different current references.
Figures 7 and 8 use, respectively, current references with one and two harmonics, i.e. Ī1N , Ī2N
with N =1 and N =2. Figure 9 uses ideal current references Ī id1 , Ī id2 with RL =0.19 � in the
control law, while Figure 10 also uses ideal expressions but with adjusted R̂L in the control law
according to Remark 3.2, i.e. with R̂L =0.26.

The experimental data are in good agreement with the simulation results of Section 4 and, there-
fore, confirm the theoretical predictions. The inductor currents in Figures 7, 8 shape the nominal
references in Figure 2, and the same happens between the experimental capacitor voltages of
Figures 7, 8 and the simulated ones of Figure 3. The experimental output voltages are also in corre-
spondence with the simulations: Figures 7 and 8 are to be compared with Figure 4, while Figures 9
and 10 are to be compared with Figure 5. For a better assessment of the results, Table II summarizes
the main features of the output voltage responses obtained in simulation and experimentally for
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Figure 8. Experimental results with current references Ī12, Ī22, i.e. with two harmonics.
V1,V2,Vo: [10V/div]; I1: [20A/div].

Figure 9. Experimental results with ideal current references Ī id1 , Ī id2 and no adjustment
of RL in the control law. V1,V2,Vo: [10V/div]; I1: [20A/div].

the different current references. Notice from the first two columns the performance improvement
undergone by the boost DC/AC converter when using HB approximations with an increasing
number of harmonics, namely, achievement of the desired Point-to-Point-Amplitude (PTPA) with
THD reduction. The third and fourth columns show that the use of ideal, first harmonic HB refer-
ences with adjusted R̂L improves the PTPA at the cost of THD increasing, as discussed in Remark
3.2. Quantitative differences between experimental and simulated results are due to unmodelled
internal resistances in the real plant, which cause lower voltage amplitudes. Indeed, when using
ideal references with adjusted R̂L in the control law, the simulation requires less R̂L than the
experimentation to attain the desired amplitude.
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Figure 10. Experimental results with ideal current references Ī id1 , Ī id2 and adjusted
R̂L =0.26� in the control law. V1,V2,Vo: [10V/div]; I1: [20A/div].

Table II. Key features of experimental and simulation output voltage responses for
different current references.

Experimental N =1 N =2 N =1 (ideal) N =1 (ideal, R̂L =0.26)

PTPA (V) 28 30 27 30
THD (%) 3 2.5 2.7 3.2

Simulated N =1 N =2 N =1 (ideal) N =1 (ideal, R̂L =0.25)

PTPA (V) 28.81 30.04 28 30.02
THD (%) 1.86 1.55 1.77 2.13

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This paper assesses the use of periodic current references in a Lyapunov-based controlled boost
DC/AC converter under step-up inversion tasks. The results prove that, for sufficiently accurate
current references, the system responds with asymptotically stable periodic solutions for which
error bounds with respect to the expected behavior are provided.

The paper also propounds the use of HB-based techniques to obtain such current references.
In case the HB approximations exist and converge, the theoretical results allow to expect that the
output voltage error tends to zero. Otherwise, the proposed alternative is to use ideal, first-order
HB approximations that are always obtainable and have an analytical, closed-form expression that
depends explicitly on the converter parameters. The amplitude error problem that arises when using
ideal HB approximations can be alleviated by an appropriate tuning of the control law parameters
at the cost of slight THD increasing. Simulation and experimental results validate the study.

Further research should explore the possibilities offered by ideal first-order HB current references
with regard to the attenuation of piecewise constant load disturbances by means of dynamic
compensation.
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