
ar
X

iv
:1

41
1.

37
16

v1
  [

cs
.N

I] 
 1

4 
N

ov
 2

01
4

1

Power Allocation in the Energy Harvesting
Full-Duplex Gaussian Relay Channels

Mahmood Mohassel Feghhi, Mahtab Mirmohseni, and Aliazam Abbasfar,Senior Member, IEEE

Abstract—In this paper, we propose a general model to study
the full-duplex non-coherent decode-and-forward Gaussian relay
channel with energy harvesting (EH) nodes, called NC-EH-RC,
in three cases: i) no energy transfer (ET), ii) one-way ET
from the source (S) to the relay (R), andiii) two-way ET. We
consider the problem of optimal power allocation in NC-EH-RC

in order to maximize the total transmitted bits from S to the
destination in a given time duration. General stochastic energy
arrivals at S and R with known EH times and amounts are
assumed. In NC-EH-RC with no ET, the complicated min-max
optimization form along with its constraints make the problem
intractable. It is shown that this problem can be transformed to a
solvable convex optimization form; however, convex optimization
solution does not provide the structural properties of the optimal
solution. Therefore, following an alternative perspective, we
investigate conditions on harvesting process of S and R where
we find optimal algorithmic solution. Further, we propose some
suboptimal algorithms and provide some examples, in which the
algorithms are optimal. Moreover, we find a class of problems
for NC-EH-RC with one-way ET from S to R, where the
optimal algorithmic solution is devised. For NC-EH-RC with
two-way ET, we proposegeneral optimal algorithmic solution.
Furthermore, the performance of the proposed algorithms are
evaluated numerically and compared with optimal numerical
convex optimization tools.

Index Terms—Convex optimization, energy harvesting, energy
transfer, full-duplex, Gaussian relay channel, power allocation.

I. I NTRODUCTION

RECENTLY, Energy Harvesting (EH) has received con-
siderable research interest as a promising solution to

the perennial energy constraint of wireless networks with
limited batteries [1]. Moreover, in near future, increasing
energy consumption of highly-demanded mobile data networks
is anticipated to be the main cause of global warming. Hence,
EH has emerged to be used as a foundation of green communi-
cation networks [2]. Energy harvesters collect ambient energy
from the environment (including solar, hydro, wind, biomass,
vibration, geothermal, piezoelectricity) and convert it into
usable electrical energy. In contrast to the conventional battery-
powered nodes, EH nodes have access to an unlimited source
of energy which is free for users. However, the limitations
in EH nodes are the low EH production rate as well as its
sporadic nature. To overcome these limitations, sophisticated
utilization of scavenged energy is mandatory.
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Another related novel research avenue focuses on providing
the power of devices wirelessly through ambient Radio Fre-
quency (RF) signals. This avenue, known as wireless energy
transfer, is motivated by notable development for the coupled
magnetic resonators in [3] and has considerable increasingly
emerging applications [4]–[6]. Also, recently authors in [7]
designed an efficient rectenna, which is capable of harvest-
ing ambient RF energy. Wireless energy transfer consists of
two research directions: one direction considersSimultaneous
Wireless Information and Power Transferand characterizes
the achievable rate-energy trade-off (see e.g., [8], [9] and the
references therein). Another direction aims to design a new
type of networks, calledWireless Powered Communication
Networks, where the nodes harvest their required powers from
wireless power transfer (see e.g., [6], [10], and the references
therein).

A. Related Work and Motivation

EH has been considered as a facility to ameliorate the
energy consumption challenge of sensor nodes in many pi-
oneering works [11]–[13]. Information theoretic capacityof
AWGN channels with an EH transmitter has been derived
in [14]. In a similar work, [15] has derived the shannon
capacity of sensor nodes by considering processing energy
cost, energy inefficiencies and channel fading. In [16], the
authors have studied the optimal packet scheduling problemin
wireless single-user EH communication system, where energy
and data packets are stochastically arrived at the source node:
to minimize the transmit time of the data packets, transmission
rate adaptively changes according to data and energy traffics.
This optimal packet scheduling has later been extended to
fading channel [17], broadcast channel [18], [19], multiple-
access channel [20], two-hop channel [21] and interference
channel [22].

The wireless Relay Channel (RC) is a basic model to inves-
tigate the benefits of cooperation in communication networks
from many aspects such as information theoretic capacity,
diversity, outage analysis, cooperative and network coding,
resource allocation, etc. In addition, resource-constrained net-
works such as Wireless Sensor Network (WSN) can get
more benefit of cooperation through optimal allocation of
energy and bandwidth to the nodes based on the available
channel state information of those nodes (see e.g. [23] and
the references therein). Motivated by the advantages that the
EH and cooperation provide for the next generation wireless
networks (such as high data rates, energy efficiency, and so
on), a fundamental question is to find the optimal resource
allocation in a RC with EH nodes.
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Some special cases of multi-hop and relay channel with EH
transmitting nodes have been considered in [21], [24], [25].
The authors in [21] have considered an EH two-hop network
with only the relay node harvesting the energy. In [24], authors
have studied a two-hop network where both Source (S) and
Relay (R) are the EH nodes. In [25],half-duplexorthogonal
RC with Decode-and-Forward (DF) relay has been considered
and two different delay constraints are investigated: one-
block decoding delay constraint and arbitrary decoding delay
constraint (up to total transmission blocks). On the other hand,
Full-Duplex (FD) protocols has emerged recently to overcome
the spectral efficiency loss of half-duplex protocols, by allow-
ing the users to send and receive information concurrently at
a same frequency band (see e.g., [26], [27] and the references
therein). In [28], we have considered the general model for
RC with a direct link andFD coherentDF relaying strategy.
So a more complicated min-max optimization problem has
arisen in [28] which has not been encountered in prior works.
The complicated min-max problem was transformed to a
solvable convex optimization form, using some mathematical
background. First, an auxiliary parameter was introduced and
then a minimax theorem of [29] was used to make the problem
tractable. However, the convex optimization solutions derived
in [28] for FD RC do not provide detailed structural properties
of optimal transmission policy. In fact, general algorithmic
solution for the FD coherent DF Gaussian RC has not been
tackled in the previous literatures. Moreover, this problem
is not easily reducible to other channels like point-to-point,
multiple-access channel, broadcast channel, two-hop channel,
etc. None of the aforementioned works have considered the
energy transfer. In the context of wireless powered communi-
cation networks, the authors in [30] have introduced the notion
of energy cooperationwhere users share a portion of their
scavenged energy in order to shape and optimize the energy
arrivals to improve the overall performance. Here, cooperation
is performed in the battery energy level instead of signal level
as in the classical cooperative networks.

B. Main Contributions and Organization

In this paper, we consider the problem of optimal power
allocation for a three-node FD Gaussian RC with EH nodes.
We focus on noncoherent DF relaying strategy compared to the
coherent strategy in [28]. Although the noncoherent DF bound
on the capacity of the RC is lower than that of the coherent
DF lower bound (which is the capacity of the degraded RC);
implementing noncoherent communication is more convenient
in wireless systems. Our goal is to maximize the total number
of bits that can be delivered from S node to the destination (D)
node in a given time duration. Three cases are studied based on
the ability of the nodes to transfer some parts of their harvested
energy:(i) no Energy Transfer (ET) among nodes(ii) one-
way ET from S to R, and(iii) two-way ET between S and
R or bi-directional energy cooperation. We consider a general
model compared to the existing works. In our model, there is a
direct link from S to D (in contrast to [21], [24], [30]) and also
we investigate the FD mode compared to the half-duplex mode
of [25]. Besides, unlike [21], [24], [25], [28], we considerthe

energy transfer among nodes, which makes our model more
general. We assume zero cost energy transfer among nodes.
Studying the cost of energy sharing among nodes is parallel
to our work (see e.g., [30] and the references therein). In this
work, we investigate the offline problem where we assume the
availability of offline knowledge about EH times and amounts
in S and R. This is due to the fact that the online problem that
assigns the nodes’ powers in real-time is intractable for now
in our studied model and it is consistent with the assumptions
in existing works, such as [16]–[22].

In our problem, like [28], the structural properties of optimal
policy can not be derived from the convex optimization
solution. Therefore, we follow a different perspective to derive
the algorithmic solutions. Our main contributions in the rest
of this paper are organized as follows.

• In Section II, we propose a general model for FD Non-
Coherent DF Gaussian RC with EH nodes, called “NC-
EH-RC” in three cases:1) no-ET, 2) one-way ET from
S to R, and3) two-way ET. Also, relaying strategy and
harvesting process are described and some preliminaries
are added to make the paper self-contained.

• Section III considers NC-EH-RC with no ET case. First,
we formulate the power allocation problem. Then, we
show that it can be transformed to a tractable form even
though it is a complicated optimization problem. How-
ever, the solution do not provide the detailed structural
properties of optimal solution. Hence, we explore some
conditions on the harvesting process of R that help us to
find the optimal algorithmic solution. We provide this
solution when the R is in good EH condition, which
means that R can forward any received information from
S toward D without any energy shortage. This solution
reveals some important specifications of general optimal
solution for our problem that discriminate it from other
problems solved in the literatures. Moreover it is shown
that disjoint optimization at S and R is suboptimal, though
it is optimal in some special cases. We further propose
a suboptimal algorithmic solution based ontotal power
allocation for S and R, which is optimum for some
realization of EH process at S and R.

• In Section IV, we study optimal power allocation in
NC-EH-RC with one-way ET from S to R. For some
conditions on the harvesting process of S, we propose
an algorithmic optimal solution for our power allocation
problem. We devise an algorithm for optimal power
allocation, when the S is in good EH condition. It means
that for a fixed amount of network’s energy resources, S
transfers some parts of its harvested energy (stored in its
battery) to R in order to improve the performance.

• In Section V, we concentrate on the optimal power allo-
cation for NC-EH-RC with two-way ET or bi-directional
energy cooperation. We propose ageneral algorithmic
optimal solution for the problem in this case. In fact, two-
way ET capability provides new interesting specifications
for optimal solution. These are utilized for devising
algorithms that solve the problem optimally.

• In Section VI, we evaluate the performance of our pro-
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Fig. 1. General model for Gaussian RC with EH nodes that are capable of transferring energy to each other.

posed algorithmic solutions derived in sections III, IV,
and V, numerically. Also, we present some typical exam-
ples, where each of the suboptimal solutions outperforms
the other one and is optimal. Besides, allocated powers
of nodes in our algorithms are compared with optimal
numerical convex optimization tool.

• Finally, section VII concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

Notation: Upper-case letters (e.g.,X) denote Random
Variables (RVs) and lower-case letters (e.g.,x) their real-
izations. The probability mass function (p.m.f) of a RVX
with alphabet setX is denoted bypX(x). The variables
related to S and R are indicated with subscripts1 and 2,
respectively. We showN -length vectors by bold-face letters,
(e.g.,Vi = [V 1

i , V
2
i , ..., V

N
i ]), where theirj-th component is

denoted by superscriptj (e.g.,V ji ). CN (0, σ2) denotes a zero-
mean complex value Gaussian distribution with varianceσ2

andI(X ;Y ) denotes themutual informationbetweenX and
Y . In addition,C(x) = log2(1 + x) and [x]† = max {1, x}.

RC models a three-node network, in which the source node
wants to communicate to the destination node with the help
of the relay node. Codebook, encoder, decoder and rate for
the discrete memoryless RC (DM-RC) can be defined as [31,
Chapter 16].

A general model for Gaussian RC with EH nodes and
ET capabilities is depicted in Fig. 1. The channel outputs
corresponding to the channel inputsX1, X2 are as follows

Y2 = aX1 + Z2, (1)

Y3 = X1 + bX2 + Z3, (2)

where a and b are channel gains of S-R and R-D links,
respectively, assuming normalized channel gain for the S-D
link, and we haveZ2 ∼ CN (0, N0), Z3 ∼ CN (0, N0).

The energy harvester block scavenges the ambient energy
from the environment. Transmitting nodes are capable of
transferring parts of their harvested energies to each other
to have better control on the network’s energy resources. We
study three cases in this paper, namely(i) nodes with no ET
(δ1 = δ2 = 0 in Fig. 1), (ii) nodes with one-way ET from S
to R (δ1 6= 0, δ2 = 0 in Fig. 1), and(iii) nodes with two-way
ET (δ1 6= 0, δ2 6= 0 in Fig. 1), whereδ1 and δ2 denote the
amount of energy transferred in S→ R and R→ S directions,
respectively. The power management module determines the

amount of the harvested energy used for communication as
well as the amount transferred to other node. The remaining
energy is stored in the energy storage device (e.g., batteryor
super-capacitor) for future use.

A. Relaying Strategy

Since the capacity of FD DM-RC is not known in general,
in this paper, we consider an achievable rate for the RC that
provides a lower bound on its capacity. This rate is achievedby
noncoherentDF strategy in the R. Since implementing of the
coherent communication is difficult in wireless systems [31],
it is more convenient to consider noncoherent coding schemes
in S and R at the cost of loosing some rate. In this strategy,
R plays a central role in communication by decoding the
information bits received from S. Then, S and R noncoherently
cooperate to transmit their codewards to D. D decodes the
received coded information from S and R, simultaneously.
With this coding scheme, the following rate for DM-RC is
achievable [31, Chapter 16]:

C ≥ max
pX1

(x1)pX2
(x2)

min {I(X1, X2;Y3), I(X1;Y2|X2)} .

(3)
Note that X1 and X2 are independent in this case.

Hence, we usedpX1,X2
(x1, x2) = pX1

(x1)pX2
(x2). The

corresponding rate for the Gaussian RC is given by

C ≥ min
{

C
(

P1+b
2P2

N0

)

, C
(

max{1,a2}P1

N0

)}

=















C

(

P1 + b2P2

N0

)

if
([a2]† − 1)P1

b2P2
> 1,

C

(

[a2]†P1

N0

)

, otherwise,

(4)
whereP1 and P2 are the powers of S and R, respectively.
The first term under the minimum can be interpreted as
Noncooperative Multiple-Access(N-MAC) term. The second
term implies that if the quality of S-R link is worse than that
of the direct S-D link (i.e.,a2 < 1), any information that R can
decode, is previously decoded at D. In such cases, R cannot
help and should be ignored (The minimum isC

(

P1

N0

)

, which
is the capacity of direct link from S to D). We do not consider
these cases in this paper.
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Fig. 2. EH instants and amounts for S and R withK = 6.

Remark 1: In two-hop networks, studied in [24], [32], there
is a data causality constraintat R: data bits can only be
transmitted from R toward D after they have arrived from S.
With this constraint, in a given time duration, the minimum
of total bits transmitted from S to R (calledBS→R) and the
total transmitteed bits from R to D (calledBR→D) is equal
to BR→D. Therefore, the min-max problem has not been
encountered in these works. This again shows the complexity
of our problem compared to that of [24], [32].

B. Harvesting Process

We consider a RC, in which the harvested energy from
the environment is the sole source of energy in the network.
Our problem is to maximize the number of bits delivered
by a deadlineT from S to D. S and R harvest energy
at random instantst0, t1, t2, ..., tK and in random amounts
E1

1 , E
2
1 , ..., E

K+1
1 and E1

2 , E
2
2 , ..., E

K+1
2 , respectively. If at

some instants only S or R harvests energy, we simply set
the amounts of the energy harvested by the other one to zero
(see Fig. 2). The interval between two harvesting instants is
called an epoch. The length ofith epoch isli = ti − ti−1 for
i = 1, ...,K + 1. So, there are a total ofK + 1 epoch with
t0 = 0 andlK+1 = T−tK . We consider the offline problem in
which theti, Ei1, E

i
2, ∀i are known to S and R before the start

of transmission. Moreover, considering the offline problem,
enables transmitting nodes to share their harvested energies
in the offline mode. We ignore any inefficiency in ET among
nodes.

C. Optimal Point-to-Point Solution and Its Interpretation

To make the paper self-contained, we briefly describe the
optimal packet scheduling in wireless point-to-point EH com-
munication systems which was proposed in [16], translating
to our notations. The problem in [16] is to find the optimal
offline transmission policy, which minimizes the transmission
completion time with a predefined data bits to transmit.
Energies harvested at time instantsti with the amount ofEi

at the transmitter. This problem is shown to be the dual of
maximizing the throughput (total number of bits that can be
transmitted) in a given time (deadline), with the same optimal
transmission policies [17]. The solution for these problems is
as follows [16, Theorem 1]:

in = argmin
i:tin−1<ti≤T

∑i−1
j=in−1

Ej

ti − tin−1

, n = 1, ..., N (5)

0 1 2 3
t

4 5 6

i
E

Infeasible Allocation

Shortest-path Allocation

CHEC:

Energy

Feasible Allocation

Fig. 3. Shortest path power allocation for point-to-point EH communication
system. A typical feasible and infeasible solutions are included in this figure
for a typical cumulative energy harvested curve (CEHC), shown in thick solid
line.

Pn =

∑in−1
j=in−1

Ej

tin − tin−1

, n = 1, ..., N (6)

Ln = tin − tin−1 =

in
∑

j=in−1+1

lj, n = 1, ..., N (7)

where P i, ∀i is the sequence of transmission power with
corresponding duration ofLi, ∀i, respectively,T =

∑N
n=1 L

n

and in is the index of time instant that allocated power
changes fromPn to Pn+1. This result is achieved using
some lemmas about necessary optimality conditions. The idea
follows from the lazy scheduling [33], convexity [34] and
majorization theory [35]. The solution has theshortest-path
graphical interpretation. This notion is depicted in Fig. 3:
any power allocation restricted to the Cumulative Energy
Harvested Curve (CEHC),

∑

Ei, from below is feasible; It
is infeasible otherwise. The optimal solution is shown to be
the piecewise linear curve with the shortest length (or tightest
string) restricted to CEHC from below, connecting the origin
to the end point of CEHC (shown by thin solid line in Fig. 3).

In next three sections, we investigate the optimal algorithmic
power allocation solution in our NC-EH-RC model with no
ET, one-way ET and two-way ET.

III. NC-EH-RC WITH NO ENERGY TRANSFER

In this section, we consider the NC-EH-RC with no ET.
We study the optimal power allocation for S and R in order
to maximize the total transmitted bits from S to D, satisfying
energy causality constraints at S and R. This means that energy
cannot be utilized in S and R before it is harvested in the
corresponding node. We consider the noncoherent relaying
strategy, achieving the rate in (4). Therefore, we can formulate
the problem as:
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L({P i1}, {P
i
2}, ξ, µ, ϑ, η) =

K+1
∑

i=1

{

λiC

(

P i1 + b2P i2
N0

)

+ (1 − λi)C

(

[a2]†P i1
N0

)}

li

−
K+1
∑

k=1

ξk

(

k
∑

i=1

P i1l
i −

k−1
∑

i=0

Ei1

)

−
K+1
∑

k=1

µk

(

k
∑

i=1

P i2l
i −

k−1
∑

i=0

Ei2

)

+

K+1
∑

i=1

ϑiP
i
1 +

K+1
∑

i=1

ηiP
i
2, (25)

max
P1,P2

K+1
∑

i=1

min
{

C̃1(P
i
1 , P

i
2), C̃2(P

i
1)
}

li (8)

s.t. P i1 ≥ 0, P i2 ≥ 0, i = 1, ...,K + 1, (9)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1, k = 1, ...,K + 1, (10)

k
∑

i=1

P i2l
i ≤

k−1
∑

i=0

Ei2, k = 1, ...,K + 1. (11)

where we haveC̃1(P
i
1, P

i
2) = C

(

P i
1
+b2P i

2

N0

)

and C̃2(P
i
1) =

C
(

[a2]†P i
1

N0

)

.
Equation (9) denotes the non-negativity of the powers at S

and R. Equations (10) and (11) state the energy causalities at S
and R, respectively. Finding the solution of the above problem
is not straightforward as it has the min-max optimization
form which cannot be separated due to the FD nature of
the problem. In other words, since R sends and receives
information at the same time, in each epoch we do not
know which term (in epochi, C̃1(P

i
1, P

i
2) or C̃2(P

i
1)) is the

minimum. Therefore, optimal power assignment for S and
R to maximize the total transmitted bits is unknown. Also,
observe that in (4) the condition that specifies the minimum
term depends on the optimization parameters (i.e.,P1 andP2

in (8)-(11)).
We rewrite the problem in (8)-(11) by introducing0 ≤ λi ≤

1 as follows

max
{P i

1
},{P i

2
}

K+1
∑

i=1

min
{λi}

{

λiC̃1(P
i
1, P

i
2) + (1− λi)C̃2(P

i
1)
}

li

(12)

s.t. P i1 ≥ 0, P i2 ≥ 0, i = 1, ...,K + 1, (13)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1, k = 1, ...,K + 1, (14)

k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1, k = 1, ...,K + 1, (15)

where,

λi =











0 if C̃1(P
i
1 , P

i
2) > C̃2(P

i
1),

1 if C̃1(P
i
1 , P

i
2) < C̃2(P

i
1),

arbitrary if C̃1(P
i
1 , P

i
2) = C̃2(P

i
1).

(16)

Noting the similarity of the problem in (12) with the one
in [28], we use the technique proposed in [28, Theorem 1]

and change the order of min and max operators in (12) by
applying the min-max theorem of Terkelsen [29].

Then, the problem in (12)-(15) can be decomposed into the
following two problems.

(Problem1) : f∗({λi})= max
{P i

1
},{P i

2
}

K+1
∑

i=1

{

λiC
(

P i
1
+b2P i

2

N0

)

+(1− λi)C
(

[a2]†P i
1

N0

)}

li

(17)

s.t. P i1 ≥ 0, P i2 ≥ 0, i = 1, ...,K + 1, (18)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1, k = 1, ...,K + 1, (19)

k
∑

i=1

P i2l
i ≤

k−1
∑

i=0

Ei2, k = 1, ...,K + 1. (20)

(Problem2) : min
{λi}

f∗({λi}) (21)

s.t. 0 ≤ λi ≤ 1, i = 1, ...,K + 1. (22)

Problems 1 and 2 are convex optimization problems as their
objective functions are concave and their constraints are affine;
thus, they can be solved by efficient convex optimization
methods [34].

For Problem 1, we write the Lagrangian function for any
ξk ≥ 0, µk ≥ 0, ϑk ≥ 0 and ηk ≥ 0 as (25), in top of this
page. KKT optimality conditions for (25) are

λi

P i1 + b2P i2 +N0
+

(1− λi)[a2]†

[a2]†P i1 +N0
−

K
∑

k=i

ξk + ϑi=0, ∀i(23)

b2λi

P i1 + b2P i2 +N0
−

K
∑

k=i

µk + ηi =0, ∀i(24)

together with following complementary slackness conditions;

ξk

(

k
∑

i=1

P i1l
i −

k−1
∑

i=0

Ei1

)

= 0, k = 1, ...,K, (26)

µk

(

k
∑

i=1

P i2l
i −

k−1
∑

i=0

Ei2

)

= 0, k = 1, ...,K, (27)

N
∑

i=1

ϑiP
i
1 = 0, i = 1, ...,K + 1, (28)

N
∑

i=1

ηiP
i
2 = 0, i = 1, ...,K + 1. (29)

We find the optimal solution as
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P i∗1 =
(1− λi)

−1
b2

K
∑

k=i

µk +
K
∑

k=i

ξk +
ηi
b2

− ϑi

−
N0

[a2]†
, ∀i (30)

P i∗2 =
λi

K
∑

k=i

µk − ηi

−
(1− λi)

b2
K
∑

k=i

ξk −
K
∑

k=i

µk − b2ϑi + ηi

+
N0

[a2]†b2
−
N0

b2
, ∀i.

(31)
To be able to solve Problem 2, one has to find theP i∗1

andP i∗2 in terms of onlyλi. Then, it is enough to solve the
following problem with respect toλis.

min
{λi}

K+1
∑

i=1

(

λiC(
P i∗1 + b2P i∗2

N0
) + (1− λi)C(

[a2]†P i∗1
N0

)

)

li(32)

s.t. 0 ≤ λi ≤ 1, i = 1, ...,K + 1. (33)

As the solutions provided in (30) and (31) do not give
any explicit idea about the structural properties of optimal
power assignment; therefore, it is not straightforward to find
algorithmic solutions forP∗

1
andP∗

2
using these expressions.

In fact, finding a general algorithmic solution for optimal
power allocation for NC-EH-RC is a complex and non-trivial
task that has not been tackled in the existing works, yet.
Therefore, in the following we find the optimal algorithmic
solution for NC-EH-RC with no ET in a special case to gain
insight on the optimal solution.

A. Optimal Algorithmic Solution for NC-EH-RC with No ET

In this case, the R is in good EH condition and has
scavenged sufficient energy such that it is able to forward
any information bits received from S. Algorithm 1 gives
the optimal solution in this case. Its optimality is shown in
Lemma 1.

Algorithm 1 Optimal greedy power allocation algorithm for
NC-EH-RC with no ET, when R is in good EH condition.

(1) Single-user Power Allocation for S

on = argmin
on−1<i≤K+1

∑i−1

j=on−1
E

j
1

ti−ton−1

Pn1
∗ =

∑on−1

j=on−1
E

j
1

ton−ton−1

(2) Feasibility Problem for Power Allocation at R
if P i2 = [a2]†−1

b2
P i1

∗
, ∀i is feasiblethen

Find power allocation for R asP i2
∗
= [a2]†−1

b2
P i1

∗
, ∀i

else
return The algorithmic optimal solution is not known
in general.

end if

Definition 1: We define the class of problem (4) withR in
good EH conditionas the problems, whereP i∗1 , P

i∗
2 , ∀i (in

optimal solution) satisfy

P i2
∗
≥

[a2]† − 1

b2
P i1

∗
, ∀i.

This means that R harvests sufficient energy so that at any
time instant, it has enough power to transfer any bits received
from S toward D. The algorithm is calledgreedywhen R uses
the least power to transmit the data bits received by S, i.e.,
P i2

∗
= [a2]†−1

b2
P i1

∗
, ∀i.

Lemma 1: In NC-EH-RC with no ET, Algorithm 1 provides
the optimal greedy power allocation, when R is in good EH
condition.

Proof: If R is in good EH condition, the bottleneck is the
S-R link. Hence, the cost function is expressed as the second
term under the minimum and the problem is

max
P1,P2

K+1
∑

i=1

C

(

[a2]†P i1
N0

)

li

s.t. (9)− (11)

Removing variables and constraints irrelevant to the cost
function results in

max
P1

K+1
∑

i=1

C

(

[a2]†P i1
N0

)

li

s.t. P i1 ≥ 0, ∀i and (10)

Now, the cost function is a concave function of its single
variable P1 and the constraints are convex sets overP1.
Hence, the problem is convex and the solution is the shortest-
path power allocation algorithm for the S. Now, R should only
use sufficient power to makẽC1(P

i
1, P

i
2) ≥ C̃2(P

i
1), ∀i or

C
(

P i
1
+b2P i

2

N0

)

≥ C
(

[a2]†P i
1

N0

)

, ∀i. This is equivalent to satisfy

P i1 + b2P i2 ≥ [a2]†P i1, ∀i, as C(.) is a monotonic function.
Algorithm 1 utilizes the least possible power for R in each
epoch to achieve the above result, so it is called thegreedy
algorithm.

Remark 2: In existing works, the EH nodes must use all
their harvested energy in order to be optimal [16]–[21], [24],
[32]. However, Lemma 1 shows that for NC-EH-RC, leaving
some parts of harvested energy unused in the battery of R is
not necessarily suboptimal. This fact shows that our problem
can not be reduced to the existing EH problems in [16]–[21],
[24], [32]. In addition, if we do not use a greedy algorithm,
any feasible power allocation for R, greater than the one
in Algorithm 1, also provides the optimal solution for the
problem. Therefore, Lemma 1 reveals a general specification
of the solution of our general problem in (8)-(11) in the
following lemma.

Lemma 2:The optimal power allocation for NC-EH-RC is
not necessarily unique.

Outline of proof: Consider an optimal power allocation
that in each epoch the second term under the minimum of
(4) is dominant (the achievable rate of channel is forced by
the rate of S-R channel). In such cases, it is obvious that
expending more power by the R, not violating its energy
causality constraint, has no benefit in terms of total transmitted
bits in a given deadline and leads to the same optimal value.
Therefore,P∗

1
andP∗

2
are not necessarily unique.
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Fig. 4. Comparison between the allocated powers for S and R inour greedy
algorithm and that of the CVX-Tool in Example 1.

Now, we present an example that applies to the considered
case.

Example 1: Suppose that in time instants 0, 2, 4 and
6 sec, the S and R harvest energiesE1 = [2, 9, 7, 9]
mJ andE2 = [9, 2, 9, 10] mJ, respectively. We assume
a = b = 2, T = 7. Also, we useCVX-Tool, a package for
solving disciplined convex programs [36] to solve this problem
numerically. The CVX-Tool allocates the power for S and
R asP∗

1 = [1, 4, 9] mW with durationL∗
1 = [2, 4, 1] and

P
∗
2 = [1.5970, 3.6188, 4.3775, 4.3795, 10.8113] mW with

durationL∗
2
= [2, 2, 1, 1, 1]. Algorithm 1, on the other hand,

assignsP∗
1 = [1, 4, 9] mW with durationL

∗
1 = [2, 4, 1]

andP
∗
2
= [0.75, 3, 6.75] mW with durationL∗

2
= [2, 4, 1]

for S and R, respectively. The above two power allocations
provide the same total transmitted bits with the differencethat
Algorithm 1 uses the least possible power for the relay. This
causes to leave some energies unused (Eexcess = 9.75 mJ in
this example). This excess energy can be stored in the R for
future use or sending its own data in cooperative scenarios.
The harvested energies and the consumed energies of the S
and R in our proposed greedy algorithm and those provided
in CVX-Tool are shown in Fig. 4.

Example 1 shows the following Lemma.
Lemma 3:Under the optimal policy of NC-EH-RC, if

powers of S or R changes in an instant, the total harvested
energy in the previous epochs of that node has not necessarily
been consumed completely by this instant. Thus, [16, Lemma
3] does not hold for optimal policy of NC-EH-RC.

Corollary 1: The power allocation for S and R based on the
disjoint optimization, which follows the separate shortest-path
algorithm for S and R, constructs a sub-optimal solution for
NC-EH-RC.

Proof: This follows directly using Lemma 3. In other
word, [16, Lemma 3] which is a necessary condition for
optimality of disjoint optimization algorithm (shortest path)
in S and R, does not hold in general.

Remark 3: In section VI, we give an example where in

the optimal allocation policy, the power of nodes are not
monotonically increasing. Therefore, [16, Lemma 1] does not
hold for the general optimal solution of NC-EH-RC.

Remark 4:The disjoint optimization for the S and R is
optimal for the special cases studied in [28]. Those cases that
are presented for coherent DF Gaussian RC can be used for
NC-EH-RC, as well.

In the following, we propose a suboptimal algorithmic
solutions for the power allocation problem in NC-EH-RC.
This solution is optimal for some EH realizations of S and R.
We present some numerical examples in section VI to study
the scenarios in which this suboptimal solution is optimal.

B. Suboptimal Algorithmic Solution for NC-EH-RC with No
ET

Here, we come up with a novel approach to find a subopti-
mal power allocation by introducing a new constraint on the
total transmission powers of the nodes. First, we consider a
simplified problem, which its solution provides a suboptimal
solution to our problem. Then, we propose an algorithm which
solves the simplified problem.

This suboptimal power allocation for NC-EH-RC is pro-
vided in Algorithm 2. Unlike Algorithm 1, this algorithm
solves the problem by assuming that the cost function is
dominated by the first term under the minimum of (4). If this
assumption does not hold, the solution will be suboptimal. We
add the following constraint to the problem by combining (10)
and (11):

k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , ∀k, (34)

whereP̃ it = P i1 + b2P i2, ∀i and Ẽit = Ei1 + b2Ei2, ∀i.
Therefore, the problem is as follows

max
P1,P2

K
∑

i=1

C

(

P i1 + b2P i2
N0

)

li (35)

s.t. (9)− (11), (34)

By relaxing constraints (10) and (11) from the above
problem, we get

max
P̃t

K
∑

i=1

C

(

P̃ it
N0

)

li

s.t. P̃ it ≥ 0, (34)

It can be easily seen that the solution forP̃t in the above
problem follows the shortest-path algorithm. Now, to find the
solution to the problem (35), it suffices to allocateP i∗1 , P

i∗
2 , ∀i

satisfying (9)-(11) and̃P i∗t = P i∗1 + b2P i∗2 , ∀i. One solution
for this problem is presented in Algorithm 2. Note that if at
any time instant, (34) is satisfied with equality, then (10) and
(11) should also be satisfied with equality. In other words, if
the total harvested energies of the network is completely used
up in an instant, the same should be happened for energies
of S and R. Hence, we force the S and R to empty their
batteries whenever the (34) is active. Within such instants,
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Fig. 5. An example with modified shortest path power allocation for S and
R. Total consumed energy follows the shortest path.

we allocate power for S and R individually based on shortest
path algorithm. This allocation for S and R is calledmodified
shortest path. It is obvious that the power allocations for S
and R are surely feasible. Fig. 5 shows a typical example, in
which P1 andP2 are obtained using Algorithm 2. In section
VI, we present some examples that this suboptimal solution is
optimal.

Algorithm 2 Suboptimal power allocation for NC-EH-RC
with no ET

Total Power Allocation
(1) Merge the harvested energies of S and R to produce total
harvested energy as̃Eit = Ei1 + b2Ei2, i = 1, ...,K + 1.
(2) Find optimal total power allocation as

ov = argmin
ov−1<i≤K+1

∑i−1

j=ov−1
Ẽ

j
t

ti−tov−1

P̃ vt
∗
=

∑ov−1

j=ov−1
Ẽ

j
t

tov−tov−1

(3) Partition transmission time into time slots that total
power is fixed (or (34) is active), i.e.,sj , j = 1, ..., Q

(
Q
∑

j=1

sj = T ).

for j = 1 to Q do
Individual Power Allocation for S and R
(4) Allocate power for S in time slotsj according to
single-user shortest path algorithm.
(5) Allocate power for R in time slotsj according to
single-user shortest path algorithm.

end for

IV. NC-EH-RC WITH ONE-WAY ENERGY TRANSFER

FROM S TO R

In this section, we concentrate on NC-EH-RC with one-way
ET from S to R, as in [30], and studying the optimal algo-
rithmic solutions for power allocation problem. The system
model in this case is depicted in Fig. 6. We first formulate the

E1

a
b

1

Data Transfer

Energy/Power

Transfer

S

E2

D

R

Data queue

Energy

queue

Energy

queue

Data queue

1
δ

Fig. 6. Full-duplex RC with energy harvesting S and R and one-way ET
from S to R.

problem as follows:

max
{P i

1
}{P̃ i

2
}{δi

1
}

K+1
∑

i=1

(

λiC

(

P i1 + P̃ i2
N0

)

+ (1− λi)C

(

[a2]†P i1
N0

)

)

li

(36)

s.t. P i1 ≥ 0, P̃ i2 ≥ 0, i = 1, ...,K + 1, (37)

δi1 ≥ 0 i = 1, ...,K + 1, (38)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1 − δi1, k = 1, ...,K + 1, (39)

k
∑

i=1

P̃ i2l
i ≤

k−1
∑

i=0

Ẽi2 + δi1, k = 1, ...,K + 1, (40)

where δi1 denotes the energy transfer at epochi from S to
R, P̃2 = b2P2 and Ẽ2 = b2E2. Then, we modify the cost
function as

C ≥ min

{

C

(

P̃t
N0

)

, C

(

[a2]†P1

N0

)

}

(41)

whereP̃t = P1 + P̃2.
Lemma 4:We can replace energy causality constraints for

R in (40), with the following

k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , ∀k (42)

Proof: See Appendix A.
Remark 5:We considerP̃t = P1 + b2P2 instead of

Pt = P1 + P2 to define total power. Note that a feasible

P i1 and P i2 for
k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , ∀k does not necessarily

satisfy
k
∑

i=1

P it l
i ≤

k−1
∑

i=0

Eit , ∀k. In other words, any feasible

partitioning ofP̃ it into P i1 andP i2 is not necessarily a feasible
partitioning forP it .

Applying Lemma 4, (36)-(40) are expressed as

max
{P i

1
}{P̃ i

t }{δ
i
1
}

K+1
∑

i=1

(

λiC

(

P̃ it
N0

)

+ (1− λi)C

(

[a2]†P i1
N0

)

)

li

(43)
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s.t. P i1 ≥ 0, P̃ it − P i1 ≥ 0, δi1 ≥ 0 i = 1, ...,K + 1, (44)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1 − δi1, k = 1, ...,K + 1, (45)

k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , k = 1, ...,K + 1, (46)

It can be easily observed that this problem is convex. Thus,
the Lagrangian is computed as

L =
K+1
∑

i=1

(

λiC
(

P̃ i
t

N0

)

+ (1− λi)C
(

[a2]†P i
1

N0

))

li

−
K
∑

k=1

ξk

(

k
∑

i=1

P i1l
i −

k−1
∑

i=0

(Ei1 − δi1)

)

−
K
∑

k=1

µk

(

k
∑

i=1

P̃ it l
i −

k−1
∑

i=0

Ẽit

)

+
K+1
∑

i=1

ϑiP
i
1 +

K+1
∑

i=1

ηi

(

P̃ it − P i1

)

+
K+1
∑

i=1

φiδ
i
1.

(47)

KKT optimality conditions for (47) are

(1− λi)[a2]†

[a2]†P i1 +N0
−

K
∑

k=i

ξk + ϑi − ηi=0, ∀i (48)

λi

P̃ it +N0

−
K
∑

k=i

µk + ηi=0, ∀i (49)

−
K
∑

k=i

ξk + φi=0, ∀i (50)

with the following complementary slackness conditions

µk

(

k
∑

i=1

P̃ it l
i −

k−1
∑

i=0

Ẽit

)

=0, ∀k (51)

ξk

(

k
∑

i=1

P i1l
i −

k−1
∑

i=0

(Ei1 − δi1)

)

=0, ∀k (52)

ϑiP
i
1 =0, ∀k (53)

ηi

(

P̃ it − P i1

)

=0, ∀k (54)

φiδ
i
1 =0, ∀k (55)

The results for optimal allocated powers are as follows

P̃ i∗t =
λi

K
∑

k=i

µk

−N0, ∀i (56)

and

P i∗1 =
(1− λi)
K
∑

k=i

ξk

−
N0

[a2]†
, ∀i (57)

and finally

P i∗2 =
P̃ i∗t − P i∗1

b2
, ∀i. (58)

Considering (44), the allocated powers for nodes must be
nonnegative. However, there is no incentive to letP i1 = 0 or

P i2 = 0 for any i. This is due to the fact thatE1
1 > 0 and

E1
2 > 0 (see [17] for more details). Thus, the complementary

slackness conditions (ϑiP i1 = 0, ∀i and ηi
(

P̃ it − P i1

)

=

0, ∀i) dictatesϑi = ηi = 0, ∀i.
Now, we assume that S is in good EH condition.
Definition 2: We define the class of problem (36)-(40) with

S in good EH conditionas the problems, whereP i∗1 , P
i∗
2 , ∀i

(in optimal solution) satisfy

C̃i2(P
i
1
∗
) ≥ C̃i1(P

i
1
∗
, P i2

∗
), ∀i (59)

∀k, ∃ δi1
∗
≥ 0 s.t.

k
∑

i=1

P i1
∗
li ≤

k−1
∑

i=0

Ei1 − δi1
∗

(60)

This means that S not only scavenged sufficient energy to use
for its transmission, but also it can provide energy for R by
transferring some parts of its harvested energy.

Here, MAC bound (̃C1) is the bottleneck. The optimal
allocation, for the case when S is in good EH condition, is
given in Algorithm 3.

Lemma 5:Algorithm 3 present the optimal algorithmic
solution for power allocation problem of NC-EH-RC with one-
way ET from S to R, when S is in good EH condition.

Proof: When S is in good EH condition, according to
Definition 2, the cost function is̃C1(P̃t). Therefore, problem
(43) reduces to

max
{P̃ i

t }

K+1
∑

i=1

C

(

P̃ it
N0

)

li (61)

s.t. P̃ it ≥ 0, i = 1, ...,K + 1, (62)
k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , k = 1, ...,K + 1, (63)

This is equivalent to insertingλi = 1, ∀i in (43). In this
case, substitutingλi = 1, ∀i in (56), we have

P̃ i∗t =
1

K
∑

k=i

µk

−N0, ∀i. (64)

It is clear that the optimal solution for̃Pt follows the shortest-
path algorithm (we call itP̃∗

t ). This is due to the fact that
three necessary lemmas for this conclusion [16, Lemmas 1,
2 and 3] can be deduced using (64). The optimal point is

B∗ =
K+1
∑

i=1

C(P̃ it
∗
/N0)l

i for P̃∗
t = P

∗
1+b

2
P

∗
2 and feasibleP∗

1

andP∗
2
, irrespective of exact values forP i1

∗
andP i2

∗
. We set

P̃ i∗t = [a2]†P i∗1 , ∀i, which satisfies (59). Substitution in (60)

yields: ∀k, ∃ δi∗1 ≥ 0, ∀i such that
k
∑

i=1

P̃ i∗
t

[a2]†
li ≤

k−1
∑

i=0

Ei1 −

δi∗1 , ∀k. Therefore, our optimal allocations are as

P i1
∗
=

P̃ it
∗

[a2]†
, P i2

∗
=

([a2]† − 1)P̃ it
∗

[a2]†b2
, ∀i

This allocation is feasible due to Definition 2. Note that this
partitioning makesC̃1 andC̃2 equal. We remark that when S
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is in good EH condition, Algorithm 3 never enters thereturn
line. This means that theif condition is always met. This
completes the proof.

Algorithm 3 Optimal power allocation algorithm for NC-EH-
RC with one-way ET from S to R

Total Power Allocation
(1) SetẼit = Ei1 + b2Ei2, i = 1, ...,K + 1.
(2) Find optimal power allocation for̃Pt as

ov = argmin
ov−1<i≤K+1

∑i−1

j=ov−1
Ẽ

j
t

ti−tov−1

P̃ vt
∗
=

∑ov−1

j=ov−1
Ẽ

j
t

tov−tov−1

Feasibility Problem for Power Allocation at S

if ∀k, ∃ δi1
∗
≥ 0 s.t.

k
∑

i=1

P̃ i
t

∗

[a2]† l
i ≤

k−1
∑

i=0

Ei1 − δi1
∗

then

Individual Power Allocation for S and R
(3) Find optimal power allocation for S asP v1

∗ =
P̃v

t

∗

[a2]†

(4) Find optimal power allocation for R asP v2
∗ =

([a2]†−1)P̃v
t

∗

[a2]†b2

else
return The algorithmic optimal solution is not known
in general.

end if

Remark 6:Consider a situation where the harvested energy
at S (i.e.,E1) is sufficiently large, so that optimal solution of
(43) is obtained while (45) is inactive for all epochs. Using
slackness condition in (52), we reachξk = 0, ∀k. Substituting
this in KKT optimality condition in (50), we obtainφi = 0, ∀i.
Combining with (48), we conclude thatλi = 1, ∀i. Therefore,
in this case, the problem (43)-(46) is transformed to (61)-(63).
Thus, sufficiently largeE1 is a special case of S in good EH
condition as expected and hence Algorithm 3 is optimal in this
case.

Lemma 6: In the optimal solution provided by Algorithm
3, we have the followings

K+1
∑

i=1

P i1
∗
li =

K
∑

i=0

Ei1 − δi1
∗

(65)

K+1
∑

i=1

P i2
∗
li =

K
∑

i=0

Ei2 +
δi1

∗

b2
(66)

This means that S must completely use up its total harvested
energy either for transferring toward R or utilizing it for data
transmission. On the other hand, R has to use up total energies
received by S and harvested through environment by the end
of transmission time.

Proof: As proved in Lemma 5, when S is in good EH
condition, the cost function is only expressed inC̃1, which is
a monotonically increasing function ofP2. If the constraints
in (65) and (66) are satisfied with strict inequalities in the
optimal solution, we can increaseδK1

∗
without violating (45).

So, we can increasePK+1
2

∗
, as well. With this increment,̃C1

increases. This contradicts the optimality ofP i1
∗
, P i2

∗
andδi1

∗
.
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Fig. 7. Optimal algorithmic solution for the case that one-way ET from S
to R is possible.

Here, an example is presented that optimal solution is
obtained using algorithm 3.

Example 2: We assume that S and R harvestE1 =
[10, 9, 14, 8] mJ andE2 = [7, 5, 5, 5] mJ, respectively at
time instantst = [0, 2, 4, 6] sec. Time duration of interest
is T = 7 sec and we seta = 2 and b = 2. This
example is the case that there is a positive one-way ET vector
δ∗
1
= [0, 2.25, 5.5, 1] mJ at time instantst = [0, 2, 4, 6], for

which the optimal allocation using algorithm 3 is possible.
This algorithm assigns the power of S and R asP1 =
[4.1875, 4.25, 7] mW andP2 = [3.1406, 3.1875, 5.25] mW,
respectively, with durationsL1 = L2 = [4, 2, 1] sec. Figure 7
shows the energy arrivals at S and R and their allocated powers
using Algorithm 3. Besides, total harvested energy curves and
optimum total power, which is allocated based on shortest path
algorithm, are shown in this figure. The allocated power of S is
restricted toE1− δ∗1 and that of R is restricted toE2+ δ

∗
1
/b2,

as expected.

V. NC-EH-RC WITH TWO-WAY ENERGY TRANSFER

The NC-EH-RC with two-way ET, in which S and R share
their harvested energies with each other is shown in Fig. 8.
This is a case, where we find the general algorithmic optimal
solution. In this case the problem is as follows

max
P1,P̃2,δ1,δ2

K+1
∑

i=1

min

{

C

(

P i1 + P̃ i2
N0

)

, C

(

[a2]†P i1
N0

)

}

li (67)

s.t. P i1 ≥ 0, P̃ i2 ≥ 0, i = 1, ...,K + 1, (68)

δi1 ≥ 0, δi2 ≥ 0, i = 1, ...,K + 1, (69)

δi1 · δ
i
2 = 0, i = 1, ...,K + 1, (70)

k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

Ei1 − δi1 + δi2, k = 1, ...,K + 1, (71)

k
∑

i=1

P̃ i2l
i ≤

k−1
∑

i=0

Ẽi2 − δi2 + δi1, k = 1, ...,K + 1, (72)
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Fig. 8. Full-duplex RC with two-way ET. S and R share their harvested
energies in order to have better control on the network resources.

whereδi1 and δi2 denote the energy transfers in epochi in S
→ R and R→ S directions, respectively. The constraint (70)
arises due to the fact that it does not make sense to send and
receive energy at the same time. We call this constrainthalf-
duplex energy transfer constraintin each epoch. This problem
is not convex due to (70). Now, we transform it into a convex
optimization problem.

Lemma 7:The problem in (67)-(72) is equivalent to the
following convex optimization problem:

max
P1,P2

K+1
∑

i=1

min

{

C

(

P̃ it
N0

)

, C

(

[a2]†P i1
N0

)

}

li (73)

s.t. P i1 ≥ 0, P̃ it ≥ 0, i = 1, ...,K + 1, (74)
k
∑

i=1

P̃ it l
i ≤

k−1
∑

i=0

Ẽit , k = 1, ...,K + 1, (75)

This means that two problems have the same optimal values.
Proof: See Appendix B.

Theorem 1:Algorithm 4 provides the optimal algorithmic
solution for the power allocation problem in NC-EH-RC with
two-way ET between S and R, presented in (67)-(72).

Outline of Proof: We transform the problem in (67)-(72)
to the one in (73)-(75), using Lemma 7. This shows that only
feasibility on total power must be met and anyP i1

∗
andP i2

∗

satisfying (77) are feasible. We set̃P it = [a2]†P i1, ∀i. This
leads to the following allocations:

P v1 =
P̃ vt
[a2]†

, P v2 =
([a2]† − 1)P̃ vt

[a2]†b2
, ∀v (76)

It can be easily seen that in this case the problem is only
expressed in terms of̃Pt. Therefore, we first optimally allocate
network’s total power based on optimal allocation for point-to-
point channel (shortest path algorithm). Then, we partition the
total power as in (76). As indicated in the proof of Lemma 7,
optimal allocation is not unique congruent to the previous
parts.

Example 3: In order to show the performance of Algo-
rithm 4, we assume that S and R harvest energy at time instants
t = [0, 2, 4, 6], with the amounts ofE1 = [10, 9, 7, 9] mJ

Algorithm 4 Optimal power allocation for NC-EH-RC with
two-way ET

Total Power Allocation
(1) SetẼit = Ei1 + b2Ei2, i = 1, ...,K + 1.
(2) Find optimal power allocation for̃Pt as

ov = argmin
ov−1<i≤K+1

∑i−1

j=ov−1
Ẽ

j
t

ti−tov−1

P̃ vt
∗
=

∑ov−1

j=ov−1
Ẽ

j
t

tov−tov−1

Individual Power Allocation for S and R
(3) Find optimal power allocation for S asP v1

∗ =
P̃v

t

∗

[a2]†

(4) Find optimal power allocation for R asP v2
∗ =

([a2]†−1)P̃v
t

∗

[a2]†b2
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Fig. 9. Optimal algorithmic solution for NC-EH-RC with two-way ET in
Example 3.

andE2 = [2, 10, 10, 13] mJ, respectively. Other parameters
are T = 7 sec, a = 2 and b = 2. Algorithm 4 allocates
P1 = [2.25, 6, 15.25] mW andP2 = [1.6875, 4.5, 11.4375]
mW with durationsL1 = L2 = [2, 4, 1] sec for S and R, re-
spectively. This needs the energy transfer ofδ∗1 = [5.5, 0, 0, 0]
mJ from S to R and energy transfer ofδ∗

2
= [0, 3, 5, 6.25] mJ

from R to S at time instantst = [0, 2, 4, 6]. These values are
shown in Fig. 9. The curves associated withE1− δ∗1+ δ

∗
2

and
E2−δ∗2/b

2+δ∗
1
/b2 are also shown, which are the upper limits

of energy consumption in nodes.
Lemma 8:General optimal algorithmic solution for nodes

in NC-EH-RC with two-way ET presented in Algorithm 4 is
equivalent to disjoint optimization for S and R with modified
EH patternE1 andE2, whereE1 = E1 − δ∗

1
+ δ∗

2
andE2 =

E2 − δ∗2/b
2 + δ∗1/b

2.
Proof: See Appendix C.

VI. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we investigate the performance of our
proposed power allocation algorithms for NC-EH-RC. They
consist of optimal and suboptimal solutions that are optimal
for some special cases and are presented for NC-EH-RC with
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no ET, one-way ET from S to R and two-way ET. We consider
a band-limited AWGN channel with noise power spectral
densityN0 = 10−19 W/Hz and bandwidthW = 1 MHz.
The distances among nodes are assumed to be 1 Km and
path loss isψ = 100 dB (typical values used in some EH
literatures, e.g. [16]). Therefore, the Channel to Noise Ratio
(CNR) of links in NC-EH-RC areγsr = a2ψ

N0W
, γrd = b2ψ

N0W

andγsd =
ψ

N0W
for S-R, R-D and S-D links, respectively. The

channel gains are set toa = 2 and b = 2 for S-R and R-D
links, respectively. Harvesting time instants aret = [0, 2, 4, 6]
sec withT = 7 sec as the time duration of interest. Harvested
energies at S and R are samples of Poisson distribution with
meanĒ1 = Ē2 = 10mJ.

In Table I, the performance of our two proposed suboptimal
allocation algorithms (Algorithm 2 and disjoint optimization
algorithm), and optimal allocation (Algorithm 4) is evaluated
and compared with optimal numerical solutions presented by
CVX-Tool. Six scenarios are studied:(s1) Scenario 1 is the
case that Algorithm 2 outperforms the disjoint optimization
algorithm, while both of them are suboptimum.(s2) Scenario
2 is the same as(s1) with the difference that Algorithm 2
is optimal. (s3) Scenario 3, is the case where disjoint op-
timization outperform Algorithm 2, while both solutions are
suboptimal.(s4) Scenario 4 presents an example that disjoint
optimization is optimal and has better performance compared
to that of Algorithm 2.(s5) In scenario 5, two algorithms have
the same performance, which are suboptimal.(s6) Scenario 6
is the case that both algorithmic solutions are optimal. Note
that (s2) and (s3) correspond to the examples 2 and 3 in
sections IV and V, respectively. For these scenarios, optimal
allocated powers in Algorithms 3 and 4 are shown in Fig. 7
and Fig. 9, respectively.

In Table I, the results of optimal CVX-Tool are provided
for the cases that one-way ET from S to R and two-way ET
between S and R are possible. In(s1), transferring energy
from S to R improves the performance but not vice versa.
This follows from the fact that the EH at S is better than the
EH at R. Thus, energy is required in R more than S. In(s2),
we gain nothing by ET (EH at S and R is well equalized and
sharing does not improves the performance), whereas in(s3),
ET provides the opportunity for better utilization of network
energy resources. Here, we achieve better performance, with
more capable nodes sharing energy bi-directionally, compared
to the no ET and one-way ET cases. In scenarios 4, 5 and 6,
unlike (s1), the performance improves only when R is able
to transfer some part of its energy toward S. We note that
with ET capability added to transmitting nodes, we are able to
provide algorithmic optimal solution for the cases that arehard
to achieve without them. We remind that since Algorithm 4
presents the optimal solution for the case with two-way ET, it
leads to the same result as CVX-Tool (see the last column of
Table I), but with different power allocations which are given
in Tables II, III, and IV.

Tables II, III, and IV provide the powers allocated to S
and R in different solution methods for scenarios 2, 4, and
6, respectively. In Table II, where Algorithm 2 is optimal, R’s
allocated powers are[3, 2.5, 5] mJ with durations[4, 2, 1] sec.

On the other hand, in disjoint optimization (suboptimum in this
example), they are[2.8333, 5] mJ with durations[6, 1] sec.
Therefore, optimal powers do not have necessarily monotonic
behaviour. Note that the CVX-Tool shows the same behaviour
as Algorithm 2. Unlike(s2), Table III shows the case where
equalized power of S in disjoint optimal algorithm, i.e.,
P1 = 5.4286 mW with durationL1 = 7 sec, provides optimal
performance. This exceeds the performance of Algorithm 2
(P1 = [5.5, 5] mW with durationsL1 = [6, 1] sec for S
with same power allocation for R). In Table IV, where two
suboptimal allocation algorithms are optimal, power alloca-
tions are exactly the same. Also, we observe in these tables
that even though Algorithm 4 provides the same optimal value
as the CVX-Tool with two-way ET, its allocated powers are
totally different. We see in three scenarios of Tables II, III,
and IV that the power allocation of Algorithm 4 is more fair
compared to diverse power allocation of CVX-Tool. Besides,
high power allocation for S in CVX-Tool may cause some
technical difficulties, if utilized in practice. This highlights the
applicability of Algorithm 4 in practical transmitter schedulers.

VII. C ONCLUSION

We investigated the optimal power allocation for a three-
node full-duplex non-coherent decode-and-forward Gaussian
relay channel with energy harvesting source and relay nodes
(called NC-EH-RC). Three cases were considered based on
the capability of the source and the relay nodes to transfer
parts of their energies to each other, namely no ET, one-
way ET and two-way ET. The original problem for NC-EH-
RC with no ET has a complicated min-max form, which
is not easy to solve. We showed that it is transformed to a
tractable convex optimization problem, which can be solved
efficiently. However, convex optimization did not provide any
structural property of optimal solution to be used in devising
algorithmic solutions. Following a different perspective, we
studied cases where optimal algorithmic solutions are found.
These cases were investigated to give insight by revealing
some key specifications of general optimal solution. These
specifications discriminated our problem from the others in
the existing works and showed that our problem can not be
reduced to the existing EH problems. Also, we proposed some
suboptimal algorithmic solutions that are optimal for some
realizations of EH pattern at S and R. Moreover, in NC-EH-
RC with one-way ET, we found a class of problems, where
the optimal algorithmic solution was devised. For NC-EH-
RC with two-way ET, we derived some interesting properties
of optimal solution that are used to find optimal algorithmic
solution in general. Besides, the performance of our proposed
algorithms were evaluated numerically and compared with op-
timal numerical convex optimization tools. Numerical results
highlighted the applicability of our proposed algorithms in
practical transmitter schedulers.

APPENDIX A
PROOF OFLEMMA 4

It is obvious that for a feasible solution satisfying (39) and
(40), (42) is also held by combining (39) and (40). To show
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TABLE I
TOTAL TRANSMITTED BITS (IN MBITS) IN THE SUBOPTIMAL ALGORITHMS, WHICH ARE PROPOSED FORNC-EH-RC. OPTIMAL POWER ALLOCATION

USING CONVEX OPTIMIZATION TOOL IS INCLUDED FOR NO-ET, ONE-WAY ET AND TWO-WAY ET. THE RESULTS OF OPTIMAL POWER ALLOCATION IN
ALGORITHM 4 IS ALSO INCLUDED.

Scenarios EH values for S,
E1

EH values for R,
E2

Algorithm 2 Disjoint
Optimization

Algorithm

CVX-Tool [36] CVX-Tool with
one-way ET

CVX-Tool
with two-way

ET, and
Algorithm 4

Scenario 1 [10 21 14 9] [ 7 5 8 11] 31.8339 31.8082 32.1965 32.4212 32.4212

Scenario 2 [10 9 14 8] [ 7 5 5 5] 29.7968 29.7821 29.7968 29.7968 29.7968

Scenario 3 [10 9 7 9] [ 2 10 10 13] 28.2032 28.4398 28.9548 29.8207 31.1735

Scenario 4 [17 7 9 5] [ 13 7 9 10] 31.5337 31.5387 31.5387 31.5387 33.6705

Scenario 5 [7 11 15 15] [ 12 15 10 8] 32.3543 32.3543 32.7000 32.7000 35.3402

Scenario 6 [7 11 11 9] [ 10 7 11 12] 31.1175 31.1175 31.1175 31.1175 33.4912

TABLE II
POWER ALLOCATION FORS AND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARIO2 OF TABLE I, IN WHICH ALGORITHM 2 IS OPTIMAL.

POWER ALLOCATION IN ALGORITHM 4 IS ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL WITH TWO-WAY ET.

Scenario Solution Methods Power Allocation for S,P1 andL1 Power Allocation for R,P2 andL2

Scenario 2

Algorithm 2 P1 = [4.75 7 8 ] P2 = [3 2.5 5 ]

L1 = [4 2 1 ] L2 = [4 2 1 ]

Disjoint Optimization Algorithm
P1 = [4.75 7 8 ] P2 = [2.8333 5 ]

L1 = [4 2 1 ] L2 = [6 1 ]

CVX-Tool
P1 = [4.6569 4.8430 7 8] P2 = [3.0233 2.9767 2.5 5]

L1 = [2 2 2 1] L2 = [2 2 2 1]

CVX-Tool with one-way ET P1 = [4.6709 4.7416 6.2051 9.7647] P2 = [3.0198 3.0021 2.6987 4.5588]

L1 = [2 2 2 1] L2 = [2 2 2 1]

Algorithm 4 P1 = [4.1875 4.25 7 ] P2 = [3.1406 3.1875 5.25 ]

L1 = [4 2 1 ] L2 = [4 2 1 ]

CVX-Tool with two-way ET P1 = [14.336 14.2945 14.4894 23.7573] P2 = [0.6035 0.6139 0.6276 1.0607]

L1 = [2 2 2 1] L2 = [2 2 2 1]

the converse, if (42) is satisfied for an arbitraryi = ĭ, then

ĭ
∑

i=1

(P i1 + P̃ i2)l
i ≤

ĭ
∑

i=1

Ei−1
1 + Ẽi−1

2 ,

SubtractingP i1l
i > 0, ∀i from both sides of the above

inequality, we have

ĭ
∑

i=1

P̃ i2l
i ≤

ĭ
∑

i=1

Ẽi−1
2 + Ei−1

1 − P i1l
i,

SinceEi−1
1 − P i1l

i ≥ 0 according to (38)-(39), defining
δi = Ei1 − P i1l

i, we reach (40).

APPENDIX B
PROOF OFLEMMA 7

It suffices to show that equations (69)-(72) can be replaced
with (75). The direct proof is straightforward as we reach to
(75) by combining (71)-(72). Then, (69)-(70) can be omitted
as they are irrelevant to cost function and other constraints.
To prove the converse, using (75) we have

k
∑

i=1

(P i1 + P̃ i2)l
i ≤

k
∑

i=1

(Ei−1
1 + Ẽi−1

2 ), k = 1, ...,K+1,

(77)
SubtractingP̃ i2l

i ≥ 0 from both sides, results in

k
∑

i=1

P i1l
i ≤

k
∑

i=1

Ei−1
1 +∆i, k = 1, ...,K + 1, (78)

where∆i = Ẽi−1
2 − P̃ i2l

i, ∀i. This yields

k
∑

i=1

P̃ i2l
i =

k
∑

i=1

Ẽi−1
2 −∆i, k = 1, ...,K + 1, (79)

which can be expressed as

k
∑

i=1

P̃ i2l
i ≤

k
∑

i=1

Ẽi−1
2 −∆i, k = 1, ...,K + 1, (80)

Now, if ∆i > 0, we define∆i = δi1; otherwise, for∆i < 0, we
define∆i = −δi2. Therefore, we have (69)-(72). It is obvious
that δi1, δ

i
2, ∀i are not unique. This completes the proof.
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TABLE III
POWER ALLOCATION FORS AND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARIO4 OF TABLE I, IN WHICH DISJOINT OPTIMIZATION

ALGORITHM IS OPTIMAL . POWER ALLOCATION IN ALGORITHM 4 IS ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL WITH TWO-WAY ET.

Scenario Solution Methods Power Allocation for S,P1 andL1 Power Allocation for R,P2 andL2

Scenario 4

Algorithm 2 P1 = [5.5 5 ] P2 = [4.8333 10 ]

L1 = [6 1 ] L2 = [6 1 ]

Disjoint Optimization Algorithm
P1 = [5.4286 ] P2 = [4.8333 10 ]

L1 = [7 ] L2 = [6 1 ]

CVX-Tool P1 = [5.4288 5.4272 ] P2 = [4.6786 4.7186 4.9065 10.3926]

L1 = [6 1 ] L2 = [2 2 2 1]

CVX-Tool with one-way ET P1 = [5.4286 ] P2 = [4.7325 4.7533 4.8809 10.2667]

L1 = [7 ] L2 = [2 2 2 1]

Algorithm 4 P1 = [6.2083 11.25 ] P2 = [4.6563 8.4375 ]

L1 = [6 1 ] L2 = [6 1 ]

CVX-Tool with two-way ET
P1 = [21.6191 21.5233 21.4378 38.4547]P2 = [0.8036 0.8275 0.8489 1.6363]

L1 = [2 2 2 1] L2 = [2 2 2 1]

TABLE IV
POWER ALLOCATION FORS AND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARIO6 OF TABLE I, IN WHICH BOTH OF THE PROPOSED

SUBOPTIMAL ALGORITHMS ARE OPTIMAL. POWER ALLOCATION IN ALGORITHM 4 IS ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL

WITH TWO-WAY ET.

Scenario Solution Methods Power Allocation for S,P1 andL1 Power Allocation for R,P2 andL2

Scenario 6

Algorithm 2
P1 = [3.5 5.5 9 ] P2 = [4.25 5.5 12 ]

L1 = [2 4 1 ] L2 = [4 2 1 ]

Disjoint Optimization Algorithm P1 = [3.5 5.5 9 ] P2 = [4.25 5.5 12 ]

L1 = [2 4 1 ] L2 = [4 2 1 ]

CVX-Tool P1 = [3.5 5.4989 5.5011 9] P2 = [3.3394 4.8254 5.4913 12.6878]

L1 = [2 2 2 1] L2 = [2 2 2 1]

CVX-Tool with one-way ET P1 = [3.5 5.4998 5.5002 9] P2 = [3.3420 4.8907 5.4962 12.5423]

L1 = [2 2 2 1] L2 = [2 2 2 1]

Algorithm 4
P1 = [5.3750 6.8750 14.25 ] P2 = [4.0313 5.1563 10.6875 ]

L1 = [4 2 1 ] L2 = [4 2 1 ]

CVX-Tool with two-way ET
P1 = [18.5759 18.5001 23.6885 48.8493]P2 = [0.7310 0.75 0.9529 2.0377]

L1 = [2 2 2 1] L2 = [2 2 2 1]

APPENDIX C
PROOF OFLEMMA 8

In optimal solution of Algorithm 4, we havẽC1 = C̃2.
Therefore, the problem is

max
P1,P̃2,δ1,δ2

K+1
∑

i=1

C

(

[a2]†P i1
N0

)

li (81)

s.t. (68)− (72). (82)

This is simplified to

max
P1,δ1,δ2

K+1
∑

i=1

C

(

[a2]†P i1
N0

)

li (83)

s.t. P i1 ≥ 0, ∀i, and (69), (70), (71), (84)

whereP i2 is removed from the problem. Substitutingδ1 = δ∗1
andδ2 = δ∗

2
, we have

max
P1

K+1
∑

i=1

C

(

[a2]†P i1
N0

)

li (85)

s.t. P i1 ≥ 0, ∀i, (86)
k
∑

i=1

P i1l
i ≤

k−1
∑

i=0

E
i
1, ∀k, (87)

It is clear that the solution of this problem (convex opti-
mization problem in single variableP1) is the shortest-path
algorithm applied to modified EH patternE1. Using a similar
technique, we can achieve the desired result forP2.
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