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Abstract—In this paper, we propose a general model to study

the full-duplex non-coherent decode-and-forward Gaussia relay

channel with energy harvesting (EH) nodes, called NC-EHRC,

in three cases::) no energy transfer (ET), i) one-way ET
from the source (S) to the relay (R), andizi) two-way ET. We

consider the problem of optimal power allocation in NC-EH-RC

in order to maximize the total transmitted bits from S to the

destination in a given time duration. General stochastic eergy

arrivals at S and R with known EH times and amounts are
assumed. In NC-EHRC with no ET, the complicated min-max
optimization form along with its constraints make the problem

intractable. It is shown that this problem can be transformed to a

solvable convex optimization form; however, convex optinzation

solution does not provide the structural properties of the @timal

solution. Therefore, following an alternative perspectie, we
investigate conditions on harvesting process of S and R wher
we find optimal algorithmic solution. Further, we propose sane

suboptimal algorithms and provide some examples, in whichhe

algorithms are optimal. Moreover, we find a class of problems
for NC-EH-RC with one-way ET from S to R, where the
optimal algorithmic solution is devised. For NC-EH-RC with

two-way ET, we proposegeneral optimal algorithmic solution.

Furthermore, the performance of the proposed algorithms ae

evaluated numerically and compared with optimal numerical
convex optimization tools.

Index Terms—Convex optimization, energy harvesting, energy
transfer, full-duplex, Gaussian relay channel, power allgation.

I. INTRODUCTION

Another related novel research avenue focuses on providing
the power of devices wirelessly through ambient Radio Fre-
qguency (RF) signals. This avenue, known as wireless energy
transfer, is motivated by notable development for the cedipl
magnetic resonators inl[3] and has considerable increlgsing
emerging applicationd [4]6]. Also, recently authors fifi [
designed an efficient rectenna, which is capable of harvest-
ing ambient RF energy. Wireless energy transfer consists of
two research directions: one direction considsimultaneous
Wireless Information and Power Transfand characterizes
the achievable rate-energy trade-off (see e.g., [8], [9] tue
references therein). Another direction aims to design a new
type of networks, calledNireless Powered Communication
Networks where the nodes harvest their required powers from
wireless power transfer (see e.dl, [6].][10], and the refeze
therein).

A. Related Work and Motivation

EH has been considered as a facility to ameliorate the
energy consumption challenge of sensor nodes in many pi-
oneering works[[11]=[13]. Information theoretic capacd
AWGN channels with an EH transmitter has been derived
in [24]. In a similar work, [15] has derived the shannon
capacity of sensor nodes by considering processing energy
cost, energy inefficiencies and channel fading. [16], the
authors have studied the optimal packet scheduling prolilem
wireless single-user EH communication system, where gnerg

ECENTLY, Energy Harvesting (EH) has received conand data packets are stochastically arrived at the soumbe: no
siderable research interest as a promising solution tminimize the transmit time of the data packets, transioniss

the perennial energy constraint of wireless networks witlate adaptively changes according to data and energy #raffic
limited batteries [[ll]. Moreover, in near future, incre@sinThis optimal packet scheduling has later been extended to
energy consumption of highly-demanded mobile data netsvorfading channel[[17], broadcast channell[18].1[19], mutipl
is anticipated to be the main cause of global warming. Henacess channel [20], two-hop chanrlell[21] and interference
EH has emerged to be used as a foundation of green commuhiannel [[22].
cation networks[[2]. Energy harvesters collect ambientg@ne The wireless Relay Channel (RC) is a basic model to inves-
from the environment (including solar, hydro, wind, biomastigate the benefits of cooperation in communication netaork
vibration, geothermal, piezoelectricity) and convert ritoi from many aspects such as information theoretic capacity,
usable electrical energy. In contrast to the conventioatéby- diversity, outage analysis, cooperative and network apdin
powered nodes, EH nodes have access to an unlimited sousssnurce allocation, etc. In addition, resource-const@inet-
of energy which is free for users. However, the limitationgorks such as Wireless Sensor Network (WSN) can get
in EH nodes are the low EH production rate as well as itaore benefit of cooperation through optimal allocation of
sporadic nature. To overcome these limitations, sophistéc energy and bandwidth to the nodes based on the available
utilization of scavenged energy is mandatory. channel state information of those nodes (see é.d. [23] and
the references therein). Motivated by the advantages lieat t
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EH and cooperation provide for the next generation wireless
networks (such as high data rates, energy efficiency, and so
on), a fundamental question is to find the optimal resource
allocation in a RC with EH nodes.
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Some special cases of multi-hop and relay channel with Edthergy transfer among nodes, which makes our model more
transmitting nodes have been considered’in [21]] [24].[25jeneral. We assume zero cost energy transfer among nodes.
The authors in[[21] have considered an EH two-hop netwosudying the cost of energy sharing among nodes is parallel
with only the relay node harvesting the energy/In [24], auth to our work (see e.g.. [30] and the references therein).ik th
have studied a two-hop network where both Source (S) amdrk, we investigate the offline problem where we assume the
Relay (R) are the EH nodes. Ih [25jalf-duplexorthogonal availability of offline knowledge about EH times and amounts
RC with Decode-and-Forward (DF) relay has been consideriedS and R. This is due to the fact that the online problem that
and two different delay constraints are investigated: onassigns the nodes’ powers in real-time is intractable fav no
block decoding delay constraint and arbitrary decodingugelin our studied model and it is consistent with the assumption
constraint (up to total transmission blocks). On the otteardh in existing works, such a$ [16]=[22].

Full-Duplex (FD) protocols has emerged recently to overeom | our problem, like[[28], the structural properties of ol
the spectral efficiency loss of half-duplex protocols, dpwat policy can not be derived from the convex optimization
ing the users to send and receive information concurrently &) tion. Therefore, we follow a different perspective tide

a same frequency band (see e.g.] [26]] [27] and the refesenggy aigorithmic solutions. Our main contributions in thetre

therein). In [28], we have considered the general model fgf this paper are organized as follows.
RC with adirect link and FD coherentDF relaying strategy.

So a more complicated min-max optimization problem hase In Sectionl, we propose a general model for FD Non-
arisen in[[28] which has not been encountered in prior works. Coherent DF Gaussian RC with EH nodes, called “NC-
The complicated min-max problem was transformed to a EH-R(C” in three casesi) no-ET,2) one-way ET from
solvable convex optimization form, using some mathemhtica S to R, and3) two-way ET. Also, relaying strategy and
background. First, an auxiliary parameter was introduced! a harvesting process are described and some preliminaries
then a minimax theorem df[29] was used to make the problem are added to make the paper self-contained.

tractable. However, the convex optimization solutionswaet « Sectior 1 considers NC-EHRC with no ET case. First,

in [28] for FD RC do not provide detailed structural propesti
of optimal transmission policy. In fact, general algoriifbm

solution for the FD coherent DF Gaussian RC has not been

tackled in the previous literatures. Moreover, this prable
is not easily reducible to other channels like point-torApoi
multiple-access channel, broadcast channel, two-hopnetan

we formulate the power allocation problem. Then, we
show that it can be transformed to a tractable form even
though it is a complicated optimization problem. How-

ever, the solution do not provide the detailed structural
properties of optimal solution. Hence, we explore some
conditions on the harvesting process of R that help us to

etc. None of the aforementioned works have considered the find the optimal algorithmic solution. We provide this
energy transfer. In the context of wireless powered communi  solution when the R is in good EH condition, which
cation networks, the authors in [30] have introduced thénot means that R can forward any received information from
of energy cooperatiorwhere users share a portion of their S toward D without any energy shortage. This solution
scavenged energy in order to shape and optimize the energy reveals some important specifications of general optimal
arrivals to improve the overall performance. Here, coojena solution for our problem that discriminate it from other
is performed in the battery energy level instead of signadlle problems solved in the literatures. Moreover it is shown
as in the classical cooperative networks. that disjoint optimization at S and R is suboptimal, though
it is optimal in some special cases. We further propose
a suboptimal algorithmic solution based total power
allocation for S and R, which is optimum for some
In this paper, we consider the problem of optimal power realization of EH process at S and R.
allocation for a three-node FD Gaussian RC with EH nodes.. In Section[1V, we study optimal power allocation in
We focus on noncoherent DF relaying strategy compared to the NC-EH-RC with one-way ET from S to R. For some
coherent strategy in [28]. Although the noncoherent DF looun  conditions on the harvesting process of S, we propose
on the capacity of the RC is lower than that of the coherent an algorithmic optimal solution for our power allocation
DF lower bound (which is the capacity of the degraded RC); problem. We devise an algorithm for optimal power
implementing noncoherent communication is more convénien allocation, when the S is in good EH condition. It means
in wireless systems. Our goal is to maximize the total number that for a fixed amount of network’s energy resources, S
of bits that can be delivered from S node to the destination (D  transfers some parts of its harvested energy (stored in its
node in a given time duration. Three cases are studied based o battery) to R in order to improve the performance.
the ability of the nodes to transfer some parts of their hetede o« In Section Y, we concentrate on the optimal power allo-
energy:(¢) no Energy Transfer (ET) among nodgs) one- cation for NC-EHRC with two-way ET or bi-directional
way ET from S to R, andiii) two-way ET between S and energy cooperation. We proposegeneral algorithmic
R or bi-directional energy cooperation. We consider a ganer  optimal solution for the problem in this case. In fact, two-
model compared to the existing works. In our model, there isa way ET capability provides new interesting specifications
direct link from S to D (in contrast td [21][124][30]) and also for optimal solution. These are utilized for devising
we investigate the FD mode compared to the half-duplex mode algorithms that solve the problem optimally.
of [25]. Besides, unlike [21]/124]/125]/128], we considdre « In Section[V], we evaluate the performance of our pro-

B. Main Contributions and Organization
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Fig. 1. General model for Gaussian RC with EH nodes that gpalga of transferring energy to each other.

posed algorithmic solutions derived in sectién$ [T] IVamount of the harvested energy used for communication as
andlM, numerically. Also, we present some typical examvell as the amount transferred to other node. The remaining
ples, where each of the suboptimal solutions outperforrasergy is stored in the energy storage device (e.g., battery
the other one and is optimal. Besides, allocated powessper-capacitor) for future use.

of nodes in our algorithms are compared with optimal

numerical convex optimization tool.

« Finally, sectio VIl concludes the paper. A. Relaying Strategy
Since the capacity of FD DM-RC is not known in general,
Il. SYSTEM MODEL AND PRELIMINARIES in this paper, we consider an achievable rate for the RC that

Notation: Upper-case letters (e.g.X) denote Random provides a lower bound on its capacity. This rate is achiéyed
Variables (RVs) and lower-case letters (e.g), their real- NnoncoherenDF strategy in the R. Since implementing of the
izations. The probability mass function (p.m.f) of a RY coherent communication is difficult in wireless systeins],[31
with alphabet setY is denoted bypx(z). The variables it is more convenient to consider noncoherent coding scekeme
related to S and R are indicated with subscriptend 2, N S and R at the cost of loosing some rate. In this strategy,
respectively. We showN-length vectors by bold-face letters,R plays a central role in communication by decoding the
(e.9.V; = [V}, V2, ..., VN]), where theirj-th component is information bits recelyed frpm S. Then, S and R noncoheyentl
denoted by superscript(e.g.,Vij). CN(0,02) denotes a zero- cooperate to trapsm|t th_elr codewards to D. D decodes the
mean complex value Gaussian distribution with variane 'eceived coded information from S and R, simultaneously.
andI(X;Y) denotes thenutual informatiorbetweenX and With this coding scheme, the following rate for DM-RC is
Y. In addition,C(z) = log,(1 + =) and [z] = max {1,z}.  achievable[[31, Chapter 16]:

RC models a three-node network, in which the source node
wants to communicate to the destination node with the help

of the relay node. Codebook, encoder, decoder and rate fof =, (22X min{I (X1, X2;¥3), [(X1;¥2|X5)}

x, (21)Px, (22)

the discrete memoryless RC (DM-RC) can be defined as [31, 3)
Chapter 16]. Note that X; and X, are independent in this case.
A general model for Gaussian RC with EH nodes andence, we usetx, x,(z1,72) = px, (z1)px,(z2). The

ET capabilities is depicted in Fig[] 1. The channel output®rresponding rate for the Gaussian RC is given by
corresponding to the channel inpuX§, X, are as follows

. 2 max l,a2 P

Yy = aXy 4+ 7, 1) czmm{c(pl}bopz),c( {1e?) )}

YEJ, :X1+bX2+Zg, (2) <P1+b2P2 i ([GQ]T —1)P1 o
where a and b are channel gains of S-R and R-D links,  _ No b2 P ’
respectively, assuming normalized channel gain for the S-D c <[a2]TP1) otherwise
link, and we haveZ, ~ CA (0, Ny), Z3 ~ CN(0, No). No ’

The energy harvester block scavenges the ambient energy 4

from the environment. Transmitting nodes are capable Where 1 and P, are the powers of S and R, respectively.
transferring parts of their harvested energies to eachrottd€ first term under the minimum can be interpreted as
to have better control on the network’s energy resources. \N@ncooperative Multiple-Accegsl-MAC) term. The second
study three cases in this paper, namglynodes with no ET t€rm |m_pI|es that _|f th_e quality of S-R_ link is worse than that
(51 = 62 = 0 in Fig.[), (#4) nodes with one-way ET from S of the d|rgct S-Q link (i.e.¢? < 1), any information that R can

to R (01 # 0, 62 = 0 in Fig.[), and(iii) nodes with two-way decode, is previously decoded at D. In such cases, R cannot
ET (01 # 0, 62 # 0 in Fig.[d), wheres; andd, denote the help and should be ignored (The minimunﬂ:{%), which
amount of energy transferred in-S R and R— S directions, is the capacity of direct link from S to D). We do not consider
respectively. The power management module determines these cases in this paper.
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Remark 1:In two-hop networks, studied in [24],[32], there .'/‘ L
is a data causality constrainet R: data bits can only be k=== | | ! ! | .t
transmitted from R toward D after they have arrived from S. 0 1 2 3 4 5 6
With this constraint, in a given time duration, the minimum_ ) ) ) o
of total bits ransmitted from S 10 R (callal ) and the 53, Shorst et paner alocaton o pont (o pot ot
total transmitteed bits from R to D (calleflz—,p) is equal for a typical cumulative energy harvested curve (CEHC)wshin thick solid
to Br_p. Therefore, the min-max problem has not beelie.
encountered in these works. This again shows the complexity

of our problem compared to that of [24], |32].

B. Harvesting Process o e B LN ©)
We consider a RC, in which the harvested energy from tin — tin-1 ' T

the environment is the sole source of energy in the network.

Our problem is to maximize the number of bits delivered _ _ in _

by a deadlineT” from S to D. S and R harvest energy L" =t — =t = Z Vyn=1,..N (7)

at random instantsg®, ¢',¢2,....,t¥ and in random amounts j=in_1+1

El, E?,....EEXY! and E}, E3, ..., X!, respectively. If at i viis th ’ . ith
some instants only S or R harvests energy, we simply é/&lgereP , Vi is the sequence of transmission power wit

the amounts of the energy harvested by the other one to z&P§reésponding duration dt, Vi, respectivelyl” = Y L
(see Fig[R). The interval between two harvesting instasits3Nd in is the |gdex Orfl +t;me Instant th‘."‘t aIIo_cated power
called an epoch. The length &f* epoch isl’ = ¢ — #i~! for changes fromP™ to P™**. This rgsult_ is ach_le_ved using
i=1,..,K + 1. So, there are a total ok + 1 epoch with some lemmas about necessary optimality condmons. The ide
#0 — 0 andIX+! — T—¢X . We consider the offline problem infoll(.)w_s fr.om the lazy schedullng:BB], convexity [34] and
which thet?, %, i, Wi are known to S and R before the stariajorization theory[[35]. The solution has tiseortest-path

of transmission. Moreover, considering the offine problendr@Phical interpretation. This notion is depicted in Fig. 3

enables transmitting nodes to share their harvested eserd"y POWer allocation restricted to the Cumulative Energy
3 1 1 .

in the offline mode. We ignore any inefficiency in ET amon a_rveste_d Curve ((?EHC)ZE ' _from belqw IS feasible; It

nodes. s infeasible otherwise. The optimal solution is shown to be

the piecewise linear curve with the shortest length (ortégh

C. Optimal Point-to-Point Solution and lIts Interpretation ~ String) restricted to CEHC from below, connecting the arigi

To make the paper self-contained, we briefly describe tftw%the end point of (.:EHC (shown .by thin soI|d.I|ne n F@ 3).
In next three sections, we investigate the optimal algonith

optimal packet scheduling in wireless point-to-point EHnco ) o :
munication systems which was proposed [inl [16], translati wer allocation solution in our NC-ERC model with no
, one-way ET and two-way ET.

to our notations. The problem inh [16] is to find the optima
offline transmission policy, which minimizes the transrigas
completion time with a predefined data bits to transmit. I1l. NC-EH-RC WITH NO ENERGY TRANSFER
Energies harvested at time instantswith the amount ofE? _ _ _ _

at the transmitter. This problem is shown to be the dual of IN this section, we consider the NC-ER€ with no ET.

maximizing the throughput (total number of bits that can b&/%€ study the optimal power allocation for S and R in order
transmitted) in a given time (deadline), with the same optimto maximize the total transmitted bits from S to D, satisfyin

transmission policies [17]. The solution for these protdgm ©Nergy causality constraints at S and R. This means thaggner
as follows [16, Theorem 1]: cannot be utilized in S and R before it is harvested in the

i1 i corresponding node. We consider the noncoherent relaying
i = argmin Zj:in,fl E nel N (5) strategy, achieving the rate inl (4). Therefore, we can fdateu
O T the problem as:



LEPY P} € p,9,m) = Ti {x‘c (Pl+Ti’2P2) +(1-X)C ([aj]VTOPf)} /i

K+1 K+1 K+1 K+1

- Z & (Zplzl ZE) Z <ZP211 ZE2> + 219 P+ Z niPi, (25)

k=

and change the order of min and max operatord{id (12) by

K41 - :
~ Y applying the min-max theorem of Terkelsén][29].
B 2 min {C (P, Py), C2(P1)}l (8) Then, the problem if{12)=(15) can be decomposed into the
=1 following two problems.
s.t. P} >0, Pi>0, i=1,..K+1, (9 K41 .
E | (Problem1) : f*({\})= max > {x‘c (Pjvﬁ)
SR <Y Bl k=1,...K+1, (10) R L P S
= = +(1 - e (HEE e
NPUI'<> B, k=1,...K+1. (11) , .
— — s.t. Pf >0, Pl > 0 i=1,.,K+1, (18)

k—
where we have, (P}, Pi) = C (P}i) and C(P) = ZPJ < Z k=1,...K+1, (19)
().
Ny k—1

quation [[9) denotes the non-negativity of the powers at S ZPQV < k=1,..,K+1. (20)
and R. Equation$ (10) and {11) state the energy causalities a =0
and R, respectively. Finding the solution of the above bl
is not straightforward as it has the min-max optimization(Problem2) : min f*({\'}) (21)
form which cannot be separated due to the FD nature of {x ‘
the problem. In other words, since R sends and receives st 0< A <1, i=1,.,.K+1. (22)

information at the same time, in each epoch we do NBloblems 1 and 2 are convex optimization problems as their

know which term (in epoch, C, (P, ) or Cy(P})) is the 1fjectlve functions are concave and their constraintsfireea

minimum. .T.herefore optimal power qssgnment for S afus, they can be solved by efficient convex optimization
R to maximize the total transmitted bits is unknown. Alsomethods[[?jh]

observe that in[{4) the condition that specifies the minimum

N For Problem 1, we write the Lagrangian function for any
term depends on the optimization parameters Pg.andP,

& >0, pup > 0,9 > 0 andn, > 0 as [25), in top of this

in @-(11)) age. KKT optimality conditions fo (25) are
We rewrite the problem iri{8J=(11) by introducifg< \¢ < page. P Y 25
1 as follows _
A (1 —X)[a?
K+1 _ : ng +9; =0, (23)
NCy (P} PY) 4+ (1= A)Cy(PH) LI P{+0>P; + Ny [GQ]TP +No &=
e Zr{ggn{ L(PL ) + (1= X)Cy(P) ) e 1 =
(12) b"A _ . —0. (24
_ _ , Pi+b2Pi + N, Z_:,”’“Lm 0. (24)
s.t. Pl >0, Py >0, i=1,.,K+1, (13) k=i
k -1 together with following complementary slackness condio
SNPI<> B, k=1,..,K+1, (14) % -
i=1 =0 PlU'—-N E =0, k=1,.., K, 26
L &(21 ;) (26)
S PI<> B, k=1,.,K+1, (15) B b—1
i=1 =0 k <ZP§N’ —ZE;5> =0, k=1,.., K, (27)
where, i=1 i=0
N
0 it CL(P,Pi) > Cy(P)), Y 0iPi=0, i=1,..,K+1, (28)
XN=41 it C\(P},P3) < Cy(Pf),  (16) '
; ; 5 pi piy _ (i N )

Noting the similarity of the problem if(12) with the one
in [28], we use the technique proposed [in][28, Theorem 1]We find the optimal solution as



This means that R harvests sufficient energy so that at any
_ (1) No time instant, it has enough power to transfer any bits reckiv
Pt = ——0 e i Vi (30) from S toward D. The algorithm is callegteedywhen R uses
;_21 Dbkt D &t E U the least Power to transmit the data bits received by S, i.e.,
=i =i pi*t = [0 =1 pi*
2 = B2 1 5 VL.
Lemma 1:In NC-EH-RC with no ET, Algorithni provides

Py = A — (1-X) + No _ﬂﬁg gptimal greedy power allocation, when R is in good EH
f: pe =i b? f: §k — 3 pe — 0205 + *'0* Fondition.
k=i k=i k=i Proof: If R is in good EH condition, the bottleneck is the
(31) S-R link. Hence, the cost function is expressed as the second

To be able to solve Problem 2, one has to find fPg
and P§* in terms of only\‘. Then, it is enough to solve the
following problem with respect to\’s.

term under the minimum and the problem is

K+1 211 pi .
max C ([UL]71D1>ZZ
=1

K+1 ik 35k 7% N
. P 4 b2P. - [a?]TP, . PPy & 0
min NC(———2)+ (1 - \)C L) )32
W}i_l( FEEEEE) - e L Jiea) v oo
st 0< A<, =1, K+ 1 (33) Removing variables and constraints irrelevant to the cost

As the solutions provided il {80) an@{31) do not givéinction results in
any explicit idea about the structural properties of optima

power assignment; therefore, it is not straightforward il fi K+1 2t P
algorithmic solutions folP; andP} using these expressions. max C (71)11

In fact, finding a general algorithmic solution for optimal b No

power allocation for NC-EHRC is a complex and non-trivial s.t. P} >0, Vi and (I0)

task that has not been tackled in the existing works, yet.

Therefore, in the following we find the optimal algorithmic Now, the cost function is a concave function of its single
solution for NC-EHRC with no ET in a special case to gainvariable P1 and the constraints are convex sets o¥yr.
insight on the optimal solution. Hence, the problem is convex and the solution is the shertest
path power allocation algorithm for the S. Now, R should only
use sufficient power to maké (P}, Pi) > C,(P}), Vi or

A. Optimal Algorithmic Solution for NC-EHRC with No ET ; i i
P g (m >C %), Vi. This is equivalent to satisfy

In this case, the R is in good EH condition and hasl ];701, 2 i s , , )
scavenged sufficient energy such that it is able to forwafd + 0" = [a”]'Pi, Vi, asC(.) is a monotonic function.
any information bits received from S. Algorithid 1 givedgorithm I utilizes the least possible power for R in each
the optimal solution in this case. Its optimality is shown ifPOCh to achieve the above result, so it is called greedy

Lemmall. algorithm. |
Remark 2:In existing works, the EH nodes must use all

Algorithm 1 Optimal greedy power allocation algorithm fortheir harvested energy in order to be optimall [16]+-[21]]{24
NC-EH-RC with no ET, when R is in good EH condition. [32]. However, Lemma&ll shows that for NC-ERE, leaving

(1) Single-user Power Allocation for S some parts of harvested energy unused in the battery of R is
B ) Y, B not necessarily suboptimal. This fact shows that our prable
On = Onf‘fgf;ﬁﬂ =171 can not be reduc_e_d to _the existing EH problemg’in [@—[21],
D SE [24], [32]. In addition, if we do not use a greedy algorithm,
P = 7407572%—1 ] any feasible power allocation for R, greater than the one
(2 Feas[|b2|]li|t¥1PrgbIem. for Power Allocation at R in Algorithm [, also provides the optimal solution for the
it P;="4—P{, Vi is feasiblethen . problem. Therefore, Lemnid 1 reveals a general specification
Find power allocation for R a®;" = [a l];—lpli*, Vi of the_ solution of our general problem if](§-(11) in the
else following lemma.
return The algorithmic optimal solution is not known Lemma 2:The optimal power allocation for NC-ERC is
in general. not necessarily unique.
end if Outline of proof: Consider an optimal power allocation

that in each epoch the second term under the minimum of
(@) is dominant (the achievable rate of channel is forced by
the rate of S-R channel). In such cases, it is obvious that
expending more power by the R, not violating its energy
causality constraint, has no benefit in terms of total tratiech

bits in a given deadline and leads to the same optimal value.
Therefore P; and P} are not necessarily unique. [ |

Definition 1: We define the class of probleiil (4) wik in
good EH conditionas the problems, wherB{*, Pi* Vi (in
optimal solution) satisfy

[a?]f = 1

Py > TP{ , Vi.



! ‘ | the optimal allocation policy, the power of nodes are not
mmm CHEC for S | . . .
a0k eeees CHEC for R | lvemwp  Monotonically increasing. Thereforé, [16, Lemma 1] does no
—#— Cosumed Energy at S (Algorithm 1 and CVX-Tool) i / hold for the general optimal solution of NC-ERE.
o Goamed EZZEiZIEE’éEQ’i‘;Z‘D” 7 Remark 4:The disjoint optimization for the S and R is
! ! ! ! ! optimal for the special cases studied[inl[28]. Those casas th
! ! / | are presented for coherent DF Gaussian RC can be used for
****** Frereg/ o NC-EHARC, as well.
v In the following, we propose a suboptimal algorithmic
Ny R solutions for the power allocation problem in NC-BRG.
This solution is optimal for some EH realizations of S and R.
7777777 We present some numerical examples in sedfion VI to study

the scenarios in which this suboptimal solution is optimal.
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B. Suboptimal Algorithmic Solution for NC-ERE with No
ET

Time (sec) Here, we come up with a novel approach to find a subopti-

mal power allocation by introducing a new constraint on the

total transmission powers of the nodes. First, we consider a

simplified problem, which its solution provides a suboptima

solution to our problem. Then, we propose an algorithm which
Now, we present an example that applies to the considef@jves the simplified problem.

case. This suboptimal power allocation for NC-ERE is pro-
Example 1: Suppose that in time instants 0, 2, 4 anyided in Algorithm[2. Unlike Algorithm[lL, this algorithm

6 sec, the S and R harvest energBs = [2,9,7, 9] solve_zs the problem by assuming that_the cost function_ is

mJ andE, = [9, 2,9, 10] mJ, respectively. We assumeolomlnate_zd by the first term under the mlmmumlaf (4). If this

a=0b=2T =7 Also, we useCVX-Too| a package for @ssumption dqes not holq, the solution will be suboptllmd. w

solving disciplined convex progranis [36] to solve this peoiy add the following constraint to the problem by combinihg)(10

numerically. The CVX-Tool allocates the power for S an@nd [11): . oy

R asPj = [1, 4, 9] mW with durationL; = [2, 4, 1] and i i =i

P35 = [1.5970, 3.6188, 4.3775, 4.3795, 10.8113] mW with ;Ptl = ;E‘f’ vk, (34)

durationL3 = [2, 2, 1, 1, 1]. Algorithm[, on the other hand, _ o o . }

assignsP% = [1, 4, 9] mW with durationLi = [2, 4, 1] WwhereP; = P} +b*P;, Vi andE} = E{ + b*Ej, Vi.

and P — [0.75, 3, 6.75] MW with durationLi — [2,4, 1]  Therefore, the problem is as follows

for S and R, respectively. The above two power allocations

provide the same total transmitted bits with the differetinze K Pi4p2pi\

Algorithm[I uses the least possible power for the relay. This max » C < L N 2) I

causes to leave some energies unuged s = 9.75 mJ in 0

this example). This excess energy can be stored in the R for s.L. @) — @), B9

future use or sending its own data in cooperative scenarios

The harvested energies and the consumed energies of th

and R in our proposed greedy algorithm and those provid

in CVX-Tool are shown in Fig14.

Fig. 4. Comparison between the allocated powers for S anddriirgreedy
algorithm and that of the CVX-Tool in Example 1.

(35)

relaxing constraints[{10) and_{11) from the above
roblem, we get

Example 1 shows the following Lemma. maxi C (ﬁ)li
Lemma 3:Under the optimal policy of NC-EHRC, if P = Ny
powers of S or R changes in an instant, the total harvested ~
energy in the previous epochs of that node has not necessaril st B2 0,@9
been consumed completely by this instant. Thus, [16, Lemmait can be easily seen that the solution #y in the above
3] does not hold for optimal policy of NC-EFRC. problem follows the shortest-path algorithm. Now, to finé th

Corollary 1: The power allocation for S and R based on theolution to the probleni.(35), it suffices to allocdg’, Py*, Vi
disjoint optimization which follows the separate shortest-patRatisfying [9){1ll) and?* = Pj* + b>P3*, Vi. One solution
algorithm for S and R, constructs a sub-optimal solution fdor this problem is presented in Algorithim 2. Note that if at
NC-EH-RC. any time instant,[(34) is satisfied with equality, thEnl (160 a

Proof: This follows directly using Lemm&l]3. In other (@) should also be satisfied with equality. In other wordls, i
word, [16, Lemma 3] which is a necessary condition fathe total harvested energies of the network is completedyl us
optimality of disjoint optimization algorithm (shortesgitn) up in an instant, the same should be happened for energies
in S and R, does not hold in general. m of S and R. Hence, we force the S and R to empty their

Remark 3:In section[V], we give an example where inbatteries whenever thé _(34) is active. Within such instants
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Fig. 6. Full-duplex RC with energy harvesting S and R and wag-ET

20 from S to R.

problem as follows:

Time (sec) K+1 ] pi pz ) TP
max Z(MC(% +A=-A)C [ ——2) |0
5 0
(

OF-———F-————+

S R

Fig. 5. An example with modified shortest path power allasatior S andi 2 Hdi} 75

R. Total consumed energy follows the shortest path. 36)
st. Pi>0,Pi>0, i=1,..K+1, (37)

we allocate power for S and R individually based on shortest 5 >0 i=1,.,K+1, (38)

path algorithm. This allocation for S and R is callexdified _

shortest pathlt is obvious that the power allocations for S Zplili < ZEi S k=1,...,K+1, (39

and R are surely feasible. Figl 5 shows a typical example, in , n

which P; and P, are obtained using Algorithid 2. In section

V] we present some examples that this suboptimal solution i Z Pil' < Z Ei4+6, k=1,..,K+1, (40)

optimal.

Algorithm 2 Suboptimal power allocation for NC-ERC Whered] denotes the energy transfer at epacfrom S to

with no ET R, P, = b?P, and E; = b2E,. Then, we modify the cost
Total Power Allocation function as
(1) Merge the harvested energies of S and R to produce total . -
harvested energy as! = Ei + b2Ei, i=1,..,K + 1. C>mindc By c ([a ] P1> (41)
(2) Find optimal total1 power allocation as No No
EJ
0y = argmin -l T - -
ou,lgz‘gxﬂ_ =t whereP;, = P; + Ps.
Pv _ Sy B Lemma 4:We can replace energy causality constraints for

tov —t%v—1 . .
(3) Partition transmission time into time slots that total in (@0), with the following

power is fixed (or[(3K) is active), i.es;, j = 1,..,Q

k k—1
(Z sj=T). Y Bl < Y Ej vk (42)
for j=1toQ do = =0
Individual Power Allocation for S and R Proof: See AppendiXA. u
(4) Allocate power for S in time slot; according to  Remark 5:We considerP, = P; + b2P, instead of
single-user shortest path algorithm. P. = P; + P, to define total power. Note that a feasible
(5) Allocate power for R in time slok; according to ; ; koo kDo ,
single-user shortest path algorithm. P} and P} for ;1 P < ;0 E}, Vk does not necessarily
end for L = N .
satisfy >~ P}lI' < > Ej, Vk. In other words, any feasible
i=1 _i=0 _
partitioning of P} into P} and P; is not necessarily a feasible
IV. NC-EH-RC wWITH ONE-WAY ENERGY TRANSFER partitioning for P;.
FROMSTOR Applying Lemma’#4, [(36)E(40) are expressed as

In this section, we concentrate on NC-BRE with one-way K41 . S
ET from S to R, as in[[30], and studying the optimal algo- . Z <)\ic (i) +(1-N)C ([a ] P1)> i
rithmic solutions for power allocation problem. The systemw;}{5;}{s;} = Ny Ny
model in this case is depicted in Fid. 6. We first formulate the (43)




st. PL>0, PP —P >0,6>0i=1,...K+1, (44) Pi = 0 for anyi. This is due to the fact thab} > 0 and
E} > 0 (see [17] for more details). Thus, the complementary

ZPfli < ZEi — 4, k=1,..,K+1, (45) slackness conditionsd(P; = 0, Vi and n; (1515Z — Pf) =
; 1;1 0, Vi) dictatesy; = n; = 0, Vi.
prli < ZEZa k—1.. K+1, (46) Now, we assume that S is in good EH condition.

Definition 2: We define the class of problein {36)-{40) with

S in good EH conditioras the problems, wher&/*, Pi*, Vi
It can be easily observed that this problem is convex. Thug, optimal solution) satisfy

the Lagrangian is computed as

Cy(P") 2 C{(P{", B, Yi (59)

K+1 =i

L=3 (Aic (P—) (1-\)C ( )V”’)) i K -
=t Ve, 36" >0st. > PI<Y Ej-48"  (60)
-ra(xnr-Te-o) 5= 5
M k-1 (47) This means that S not only scavenged sufficient energy to use
= > Mk <Z P -3 Eti) for its transmission, but also it can provide energy for R by
pai PR Kl transferring some parts of its harvested energy.

+ 2 0P+ Z i (PZ f) + > ¢idi. Here, MAC bound () is the bottleneck. The optimal
i=1 i=1 allocation, for the case when S is in good EH condition, is
KKT optimality conditions for [(4¥) are given in Algorithm[3.

Lemma 5:Algorithm [3 present the optimal algorithmic
i solution for power allocation problem of NC-ERE with one-
A= X)[a”]" Zg + 9 — = Vi (48) way ET from S to R, when S is in good EH condition.
[a?] TPl +N Proof: When S is in good EH condition, according to
Definition[d, the cost function ié‘l(f’t). Therefore, problem
m - Z e +n,=0, Vi (49) (@3) reduces to
0

=1

K K+1 pi
i : L) 61
—;§k+¢—0, Vi (50) r{r}sa})}(;C(NO) (61)
with the following complementary slackness conditions . Pti >0, I (62)
. k k—1
4 L .
Pill < ‘k=1,..,K+1, (63)
ik (Z il —ZEt>=o, vk (51) ; i
i=1 =0
k k—1 This is equivalent to inserting’ = 1, Vi in @3). In this
&k <Z Pil" — Z(EZ - §Z)> Yk (52) case, substituting’ = 1, Vi in (56), we have
i=1 =0
9Pl =0, Vk (53) P = Kl — Ny, Vi. (64)
n (- P)=0, vk (59) P

¢i0, =0, vk (55) It is clear that the optimal solution fd,, follows the shortest-

The results for optimal allocated powers are as follows path algorithm (we call itP;). This is due to the fact that
three necessary lemmas for this conclusion [16, Lemmas 1,

B = — _ Ny, Vi (56) 2 andKi%r]1 carj Pe deducee using](64). The optimal point is
S e B*= > C(P} /No)l' for P{ = P; +b*P3 and feasibléP;
—. i=1
and andP3, irrespective of exact values fd¥ " and Pi". We set
L(1=)N) N Pi* = [a®]T P§*, Vi, which satlsfleSIZB9) Subst|tut|on ih (60)
Pi* = ~ 20y 57
! f:f [a?]t S yields: Vk, 36 > 0, Vi such thatz o TlZ < Z Ei —
k
k=i §i*, Vk. Therefore, our optimal aIIocauons are as
and finally o . Bt (a2t 1)Pi
i P =Pr . i 1 i« \a ] — t .
P2 = tb721, Vi. (58) Pl - [CLQ]T’ P2 - [CLQ]TbQ } Vi

Considering[(44), the allocated powers for nodes must Béis allocation is feasible due to Definitigh 2. Note thasthi
nonnegative. However, there is no incentive to Rt= 0 or partitioning make<”; andC, equal. We remark that when S
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is in good EH condition, Algorithral3 never enters tteturn ‘ ‘ ‘ ‘ ‘ pEmEER

. . . .. . . 60 mmss= CHEC forS ~ t—-----— - g ——— P
line. This means that th& condition is always met. This —CHECforR i i ! .
completes the proof. | Jwn 1B, 1 1 l f,"
50f __ —E2+81/b2 ——i —————— tflll{»il l{l;," ———————
Algorithm 3 Optimal power allocation algorithm for NC-EH- —6— Cosumed Energy at S : et
. _ || --®--Cosumed EnergyatR | | o & ge——
RC with one-way ET from S to R 4011 2'm mSum of CHECS R
Total Power Allocation £ |-~ Total Consumed Energy | ! = s
(1) SetE! = Ei + b?E}, i=1,...,K +1. S ! ‘
(2) Find optimal power allocation faP; as &
B
0, = argmin %

0y 1<i<K+1

oy —1 i
P“,U* o Zj:DU71 Et
t —¢%v—1

ovy

Feasibility Problem for Power Allocation at S

*

. o ko pix . k=l . -
if Vk, 361 >0st. > @l < > EY — 4% then

.. i=1 i=0 ]

Individual Power Allocation for S and R ) Time(sec)
H : : EI Pg’*

(3) Flhd optlr_nal power allocatlor_‘ for S a8 = [a®]" Fig. 7. Optimal algorithmic solution for the case that ongyET from S
(4) Find optimal power allocation for R a#y" = toRis possible.
(e’ -1 PP~

R

else

Here, an example is presented that optimal solution is
obtained using algorithin] 3.
Example 2: We assume that S and R harvesy =
[10, 9, 14, 8] mJ andE, = [7, 5, 5, 5] mJ, respectively at
] o time instantst = [0, 2, 4, 6] sec. Time duration of interest
Remark 6:Consider a situation where the harvested energy 7 _— 7 sec and we setz — 2 and b — 2. This
at S (i.e.,E,) is sufficiently large, so that optimal solution ofexample is the case that there is a positive one-way ET vector
(43) is obtained while[{45) is inactive for all epochs. Usingi = [0, 2.25, 5.5, 1] mJ at time instants = [0, 2, 4, 6, for
slackness condition i (52), we reagh= 0, Vk. Substituting \yhich the optimal allocation using algorithf 3 is possible.
this in KKT optimality condition in[(8D), we obtaip; = 0, Vi. This algorithm assigns the power of S and R Bg —
Combining with m), we conclude that = 1, Vi. Therefore, [41875, 4.25, 7] mW andP, = [31406, 3.1875, 525] mw,
in this case, the problerh (#3)-{46) is transformedid (BBX respectively, with durationk; = Lo — [4, 2, 1] sec. Figur&l7
Thus, sufficiently largeE, is a special case of S in good EHghos the energy arrivals at S and R and their allocated gower
condition as expected and hence Algorifiim 3 is optimal is thbsing Algorithn3. Besides, total harvested energy curves a

return The algorithmic optimal solution is not known
in general.
end if

case. optimum total power, which is allocated based on shortet pa
Lemma 6:In the optimal solution provided by Algorithm gigorithm, are shown in this figure. The allocated power of S i
B, we have the followings restricted toE; — &; and that of R is restricted Bz + &3 /b2,
Ka1 K as expected.
P => B -4 (65)
= Pt V. NC-EH-RC WITH TWO-WAY ENERGY TRANSFER

The NC-EHRC with two-way ET, in which S and R share

L &, 6t their harvested energies with each other is shown in [Big. 8.
Z Pyl = ZE2 + B2 (66) Thisis a case, where we find the general algorithmic optimal
=1 =0 solution. In this case the problem is as follows

This means that S must completely use up its total harvested K41 PR 21t pi

energy either for transferring toward R or utilizing it foatd % min {c <P1 + P2> .C <[a ] Pl) } I° (67)

transmission. On the other hand, R has to use up total eser§ie’ 1.6 {7 No No

received by S and harvested through environment by the end

of transmission time. st. P} >0,P>0, i=1,..,K+1, (68)

Proof: As proved in Lemma]5, when S is in good EH 5 >0, 6, >0, i=1,.,K+1, (69)

condition, the cost function is only expressed(n, which is
a monotonically increasing function @-. If the constraints N
in (€9) and [[66) are satisfied with strict inequalities in the Zpili -
optimal solution, we can increagé " without violating [4%). — m=
So, we can increasBX 1", as well. With this increment}; ’

ok ;% sk k
increases. This contradicts the optimality/f , P; andd; . szili <N B -8+ k=1,.,K+1,(72)
i=1

505 =0, i=1,..,K+1, (70)
—1

E

Ei =i 465 k=1,.,K+1,(71)

|
— O

Il
=)

%
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- DEa‘aT'j;Sfe’ Algorithm 4 Optimal power allocation for NC-EKRC with
"ranster two-way ET
Total Power Allocation
S (1) SetE! = Ei + V?EY, i=1,...,K 4+ 1.
B, - “a #Ez (2) Find optlmal power aIIocatlon foP, as
* v Yo, , B
0, = argmin #
Eqnueergg 52 Data queue E izz?g ! ov,1<i§1K+}_ =t !
oy — J
Data queue a P;v* — M
@ ® Individual Power Allocation for S and R )
. (3) Find optimal power allocation for S &3/* = [I:f:“

[uy

(4) fFlnd opt|maI power allocation for R afy* =
@ ([a®)" 1P~
[a2]T52

Fig. 8. Full-duplex RC with two-way ET. S and R share theirveated

energies in order to have better control on the network regsu 45 1 1 ! ! | i" TS
s CHEC for S ! ! ! H I,'

40| == CHEC for R **T""*T"*"T"*"E""/r*

wheresi and§; denote the energy transfers in epach S 4| ™% I R I i

— R and R— S directions, respectively. The constraintl(70) __;_sjsizr’n be;?’; ”ergy sl )

arises due to the fact that it does not make sense to send arfdy...e- Cosumed Energyat R~~~ "~~~ s el R

receive energy at the same time. We call this constizafit = | | | e?l.

duplex energy transfer constraiitt each epoch. This problem €% T T YT I S

is not convex due td(70). Now, we transform it into a conve>§ 20b - L L I T T T

optimization problem. :
Lemma 7:The problem in [[(@7)E(42) is equivalent to the 15 ‘
following convex optimization problem:

10

K+1 Di 21t pi
. Py [a ]TPI i 5
JID?% 1 min {C (N()) ,C( Ny l (73)

i=

i ~ . Time (sec)
s.t. P >0, P >0, 1=1,.,K+1, (74)
k . k-1 . Fig. 9. Optimal algorithmic solution for NC-EHRC with two-way ET in
Z P < Ey, k=1,.,K+1, (75) Example 3.
i=1 i=0

This means that two problems have the same optimal values.
Proof: See AppendixB.
Theorem 1:Algorithm [4 provides the optimal algorithmic
solution for the power allocation problem in NC-ERE with
two-way ET between S and R, presented[inl (67)-(72).

and E; = [2, 10, 10, 13] mJ, respectively. Other parameters
areT = 7 sec,a = 2 andb = 2. Algorithm [4 allocates
P, = [2.25, 6, 15.25] mW andP, = [1.6875, 4.5, 11.4375]
mW with durationsL, = L, = [2, 4, 1] sec for S and R, re-

Outline of Proof: We transform the problem ilﬂB?IEG?Z)SpJe;tévrﬁlé -trohg gizdjggf er;s;g:fter?nsff&f}g f:?’ [55.5760275(])7rr(1)£
to the one in[(ZB)E(A5), using Lemrh& 7. This shows that onp}} gy =10, 3, 5, 6.

P . + 1rmom R to S at time instants = [0, 2, 4, 6]. These values are
feasibility on total power must be met and aRy” and Pj P 0 . cx
satisfying [Z7) are feasible. We s&¢ — [a2] P!, Vi. This shown in Fig[®. The curves associated with— d; + d; and

CSE B2 8% /B2 i imi
leads to the following allocations: E2—05/b% 465/ are al_so shown, which are the upper limits
) of energy consumption in nodes.
o _ py v _ ([a?]F — 1)Py v 76 Lemma 8:General optimal algorithmic solution for nodes
Va2t T2 [a2]Tb2 v (76) in NC-EH-RC with two-way ET presented in Algorithid 4 is

. : . : uivalent to disjoint optimization for S and R with modified
It can be easily seen that in this case the problem is O@Z N N
) = . . pattern€; and €,, where€, = E; — 07 + 05 and &, =
expressed in terms & . Therefore, we first optimally aIIocateE S5 /b 4 ot b2
network's total power based on optimal allocation for pamt 2 2. & 1)\ hendifT -
point channel (shortest path algorithm). Then, we partitiee ’ PP '
total power as in[(76). As indicated in the proof of Lemimha 7,
optimal allocation is not unique congruent to the previous
parts. | In this section, we investigate the performance of our
Example 3: In order to show the performance of Algo-proposed power allocation algorithms for NC-EREG. They
rithm[4, we assume that S and R harvest energy at time instazassist of optimal and suboptimal solutions that are ogtima
t = [0, 2, 4, 6], with the amounts ofE; = [10, 9, 7, 9] mJ for some special cases and are presented for NCREHwith

VI. NUMERICAL RESULTS AND DISCUSSIONS
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no ET, one-way ET from S to R and two-way ET. We considédn the other hand, in disjoint optimization (suboptimumhist

a band-limited AWGN channel with noise power spectraxample), they arg2.8333, 5] mJ with durationg6, 1] sec.
density No = 107! W/Hz and bandwidthiW = 1 MHz. Therefore, optimal powers do not have necessarily monotoni
The distances among nodes are assumed to be 1 Km &etiaviour. Note that the CVX-Tool shows the same behaviour
path loss isyy = 100 dB (typical values used in some EHas Algorithm[2. Unlike(s2), Table[Ill shows the case where
literatures, e.g.[]16]). Therefore, the Chaznnel to Noiszeid?aequalized power of S in disjoint optimal algorithm, i.e.,
(CNR) of links in NC-EHRC are~,, = A‘}O—“fv Vg = 2% Pp = 5.4286 mW with durationL; = 7 sec, provides optimal

and~,q = ﬁ for S-R, R-D and S-D links, respectivejz\I[y/VTheperformance- This exceeds the performance of Algorifhm 2
channel gains are set io= 2 andb = 2 for S-R and R-D (P1 = [5.5, 5] mW with durationsL; = [6, 1] sec for S
links, respectively. Harvesting time instants are [0, 2, 4, 6] With same power allocation for R). In TablellV, where two
sec withT = 7 sec as the time duration of interest. HarvestegPoptimal allocation algorithms are optimal, power adloc

energies at S and R are samples of Poisson distribution wi@ns are exactly the same. Also, we observe in these tables
meank; = By = 10mJ. that even though Algorithil 4 provides the same optimal value

a5 the CVX-Tool with two-way ET, its allocated powers are
otally different. We see in three scenarios of Talleég T, Il
and[IM that the power allocation of Algorithid 4 is more fair
ompared to diverse power allocation of CVX-Tool. Besides,
th power allocation for S in CVX-Tool may cause some
technical difficulties, if utilized in practice. This higghts the
applicability of Algorithm(4 in practical transmitter sathalers.

In Tablell, the performance of our two proposed suboptim
allocation algorithms (Algorithnil2 and disjoint optimiiat
algorithm), and optimal allocation (Algorithid 4) is evated
and compared with optimal numerical solutions presented ﬁ
CVX-Tool. Six scenarios are studie¢s1) Scenario 1 is the
case that Algorithni]2 outperforms the disjoint optimizatio
algorithm, while both of them are suboptimu2) Scenario
2 is the same a¢s1) with the difference that Algorithn]2
is optimal. (s3) Scenario 3, is the case where disjoint op- VII. CONCLUSION
timization outperform Algorithni]2, while both solutionsear We investigated the optimal power allocation for a three-
suboptimal.(s4) Scenario 4 presents an example that disjoimiode full-duplex non-coherent decode-and-forward Ganssi
optimization is optimal and has better performance congpareslay channel with energy harvesting source and relay nodes
to that of Algorithn2.(s5) In scenario 5, two algorithms have(called NC-EHRC). Three cases were considered based on
the same performance, which are suboptini@) Scenario 6 the capability of the source and the relay nodes to transfer
is the case that both algorithmic solutions are optimal.eNoparts of their energies to each other, namely no ET, one-
that (s2) and (s3) correspond to the examples 2 and 3 imay ET and two-way ET. The original problem for NC-EH-
sectiond 1V andV, respectively. For these scenarios, @timRC with no ET has a complicated min-max form, which
allocated powers in Algorithnis 3 ahd 4 are shown in Eig. i not easy to solve. We showed that it is transformed to a
and Fig[9, respectively. tractable convex optimization problem, which can be solved

In Table[, the results of optimal CVX-Tool are providecEfficiently. However, convex optimization did not provideya
for the cases that one-way ET from S to R and two-way EStructural property of optimal solution to be used in dexgsi
between S and R are possible. (1), transferring energy algor|thm|c solutions. Fqllowmg a _dlffe_rent perspectivee
from S to R improves the performance but not vice versatudied cases where optimal algorithmic solutions are doun
This follows from the fact that the EH at S is better than thEh€se cases were investigated to give insight by revealing
EH at R. Thus, energy is required in R more than S(s), some_z_key spec_|f|ca_1t|qns of general optimal solution. The;e
we gain nothing by ET (EH at S and R is well equalized angPecifications discriminated our problem from the others in
sharing does not improves the performance), wheregs3y the existing workg gnd showed that our problem can not be
ET provides the opportunity for better utilization of netio reduced to the existing EH problems. Also, we proposed some
energy resources. Here, we achieve better performande, vagboptimal algorithmic solutions that are optimal for some
more capable nodes sharing energy bi-directionally, coetpa realizations of EH pattern at S and R. Moreover, in NC-EH-
to the no ET and one-way ET cases. In scenarios 4, 5 and¥; With one-way ET, we found a class of problems, where
unlike (s1), the performance improves only when R is ablé€ optimal algorithmic solution was devised. For NC-EH-
to transfer some part of its energy toward S. We note th&C With two-way ET, we derived some interesting properties
with ET capability added to transmitting nodes, we are able ®f optimal solution that are used to find optimal algorithmic
provide algorithmic optimal solution for the cases thatteaed ~SOlutionin general Besides, the performance of our proposed
to achieve without them. We remind that since Algorith 2lgorithms were evaluated numerically and compared with op
presents the optimal solution for the case with two-way ET, imal numerical convex optimization tools. Numerical riesu
leads to the same result as CVX-Tool (see the last columnfighlighted the applicability of our proposed algorithms i
Tablel), but with different power allocations which are giv Practical transmitter schedulers.
in Tables),[, and1V.

Tables[, I, and[I¥ provide the powers allocated to S APPENDIXA
and R in different solution methods for scenarios 2, 4, and PROOF OFLEMMA @
6, respectively. In Tablglll, where Algorithin 2 is optimalsR It is obvious that for a feasible solution satisfyig](39)dan
allocated powers ang, 2.5, 5] mJ with durations4, 2, 1] sec. (@0), [42) is also held by combining([39) ardd](40). To show
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TOTAL TRANSMITTED BITS (IN MBITS) IN THE SUBOPTIMAL ALGORITHMS, WHICH ARE PROPOSED FORC-EH-RC. OPTIMAL POWER ALLOCATION
USING CONVEX OPTIMIZATION TOOL IS INCLUDED FOR NGET, ONE-WAY ET AND TWO-WAY ET. THE RESULTS OF OPTIMAL POWER ALLOCATION IN
ALGORITHM[Z]IS ALSO INCLUDED.

Scenarios EH values for S, EH values for R, Algorithm [2 Disjoint CVX-Tool CVX-Tool with CVX-Tool
Eq Eo Optimization one-way ET with two-way
Algorithm ET, and
Algorithm [4
Scenariol [10 21 14 9 [7 5 8 11] 31.8339 31.8082 32.1965 3242 32.4212
Scenario 2 [10 14 8 [7 5 5 5] 29.7968 29.7821 29.7968 29.7968 29.7968
Scenario 3 [10 7 9 [2 10 10 13] 28.2032 28.4398 28.9548 29.82 31.1735
Scenario 4 [17 7 9 5] [13 7 9 10] 31.5337 31.5387 31.5387 31538 33.6705
Scenario5 [7 11 15 15] [12 15 10 8§ 32.3543 32.3543 32.7000 7080 35.3402
Scenario 6 [7 11 11 9] [10 7 11 12] 31.1175 31.1175 31.1175 1361 33.4912
TABLE 1l

POWER ALLOCATION FORS AND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARIDOF TABLE[Il IN WHICH ALGORITHM[ZIS OPTIMAL.
POWER ALLOCATION IN ALGORITHM[ 1S ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL WITH TWO-WAY ET.

Scenario Solution Methods Power Allocation forB; and L1 Power Allocation for RPo and Lo
Algorithm [2 Pr = [475 7 8 ] P2 = [3 25 5 ]
L1 = [4 2 1 ] Lo = [4 2 1 ]
Disjoint Optimization Algorithm Pi = [475 7 8 1 Pz = [28333 5 ]
Scenario 2 L. = [4 2 1 ] L = [6 1 ]
VX Tool P1 = [4.6569  4.8430 7 8] P, = [3.0233 29767 25 5]
L1 = |2 2 2 1 L, = [2 2 2 1]
CVX-Tool with one-way ET Pi1 = [46709 47416 62051  9.7647] P = [3.0198 3.0021 2.6987 4.5588]
Li = [2 2 2 1] L. = [2 2 2 1]
Algorithm @ P, = [41875 425 7 ] P, = [3.1406 3.1875 5.5 ]
Ly = [4 2 1 ] Lo = [4 2 1 ]
CVX-Tool with two-way ET P: = [14336 142045 144894 23.7573]P» = [0.6035 0.6139 0.6276 1.0607]
L1 = |2 2 2 1 L. = [2 2 2 1]
the converse, if[{42) is satisfied for an arbitrary i, then
S ) g i | piyyi i—1 | fi—1 _
S (PP <> BT LB . 1(P1+P2)l gZ}(El +ESY, k=1, K+1,
1= i=

=1

SubtractingP/l’ > 0, Vi from both sides of the above SubtractingP3i’ > 0 from both sides, results in
inequality, we have

i=1

(77)

k k
SNPI<Y BT+ A, k=1,.,K+1, (78)
=1 =1

S PRI <> Ey '+ BT - Pl o o

i=1 i=1 where A’ = E4~' — P3l°, Vi. This yields

Since Ei™' — Pjl* > 0 according to [3B)E(39), defining b

6" = Ei — Pjl*, we reach[(Z0). > Pl
=1

APPENDIX B which can be expressed as
PROOF OFLEMMA[1] k

It suffices to show that equatiors [68)472) can be replaced ZP‘;V
with (73). The direct proof is straightforward as we reach to =1
(79) by combining[Z1)E(A2). Then_(69)-(70) can be omitteNow, if A’ > 0, we defineA® = §i; otherwise, forA? < 0, we
as they are irrelevant to cost function and other conssaintiefine A’ = —3i. Therefore, we havé (69)-(I72). It is obvious
To prove the converse, using {75) we have thatd?, 65, Vi are not unique. This completes the proof.

k
=Y Ey'-A, k=1,..,K+1, (79
=1

k
<> By -AL k=1,.,K+1, (80)
i=1



TABLE Il
POWER ALLOCATION FORSAND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARIDOF TABLE[ll IN WHICH DISJOINT OPTIMIZATION
ALGORITHM IS OPTIMAL. POWER ALLOCATION IN ALGORITHM[4]1S ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL WITH TWO-WAY ET.
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Scenario Solution Methods Power Allocation forB; and L1 Power Allocation for R P2 and Lo
Algorithm 2 P1 (55 ] P2 = [48333 10 ]
L1 [6 ] L2 = [6 1 ]
Disjoint Optimization Algorithm P1 [5.4286 ] P2 = [48333 10 ]
Scenario 4 L1 [7 ] L = [6 1 ]
CVX-Tool P, [5.4288 5.4272 ] P2 = [46786 4.7186 4.9065 10.3926]
Ly 6 1 ] L = |2 2 2 1]
CVX-Tool with one-way ET P, [5.4286 ] P2 = [4.7325 4.7533 4.8809 10.2667]
Ly [7 ] L = [2 2 2 1]
Algorithm @ P, [6.2083 11.25 ] P2 = [4.6563 8.4375 ]
L1 [6 1 ] L = [6 1 ]
CVX-Tool with two-way ET P, [21.6191 21.5233 21.4378 38.4547]P2 = [0.8036 0.8275 0.8489 1.6363]
Ly [2 2 2 1] L = [2 2 2 1]
TABLE IV

POWER ALLOCATION FORS AND R IN NC-EH-RC. THE RESULTS ARE PRESENTED FOR SCENARI®OF TABLE[T] IN WHICH BOTH OF THE PROPOSED
SUBOPTIMAL ALGORITHMS ARE OPTIMAL. POWER ALLOCATION IN ALGORITHM[4IS ALSO INCLUDED TO BE COMPARED WITH THAT OFCVX-TOOL
WITH TWO-WAY ET.

Scenario Solution Methods Power Allocation forB; and L1 Power Allocation for RPo and Lo
Algorithm 2 Pi [3.5 5.5 9 ] P2 = [425 5.5 12 ]
L1 [2 4 1 ] Lo = [4 2 1 ]
Disjoint Optimization Algorithm P1 (35 55 9 ] P2 = [425 55 12 ]
Scenario 6 L1 [2 4 1 ] L = [4 2 1 ]
CVX-Tool P [3.5 5.4989  5.5011 9] P, = |[3.3394 48254 54913 12.6878]
Ly [2 2 2 1 L = [2 2 2 1]
CVX-Tool with one-way ET Pi [3.5 5.4998  5.5002 9] P, = |[3.3420 4.8907 54962 12.5423]
L1 [2 2 2 1 L = [2 2 2 1]
Algorithm @ P [5.3750  6.8750  14.25 ] P2 = [40313 51563 10.6875 ]
L1 [4 2 1 ] L = [4 2 1 ]
CVX-Tool with two-way ET Pi [18.5759 18.5001 23.6885 48.8493]P2 = [0.7310 0.75 09529  2.0377]
L1 [2 2 2 1 L = [2 2 2 1]
APPENDIXC
PROOF OFLEMMA [g K1 (a2]t P
1 H H & = a
In optimal solution of Algorithm#, we hav€; = Cs. max C( 1)1Z (85)
. P < No
Therefore, the problem is =1
s.t. P} >0, Vi, (86)
max Cl|————= I (81) Pilt < ¢t VE, 87
P1,Py,61,62 No ; b ; ' ( )
st ) - @. (82) It is clear that the solution of this problem (convex opti-
This is simplified to mization problem in single variabl®,) is the shortest-path
algorithm applied to modified EH pattedy . Using a similar
K+l [a?]' P} technique, we can achieve the desired resultHer
1 i
max C l (83)
P1,51,52 NO
st Pi>0, Yiand @, @0, @D,  (84) REFERENCES
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