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Abstract—Wireless Sensor Networks (WSNs) are made of spatially distributed autonomous 
sensors, which cooperate to monitor physical or environmental parameters and to deliver such data 
to one or more central sinks. A promising field of application of WSNs is planet exploration, 
characterized by a continuous monitoring of the surface, to have clear notion of planet conditions 
and prepare for future manned missions. The potentially large size of the region to be monitored 
and the line-of-sight limitations (as, for instance, on the Moon, the case study discussed in the 
paper), hamper the possibility of having 1-hop sensor-sink communication. Therefore, the sensors 
must be able to create and maintain a multi-hop ad-hoc network, to allow sensed data to reach the 
sink(s). This paper proposes an ad-hoc routing algorithm applicable to WSNs for planetary 
exploration, aiming at (i) assuring any-cast communication with multiple data sinks, (ii) minimizing 
the control overhead for the routing paths maintenance, (iii) being light in terms of 
memory/computational requirements, to be installed into low-power and low-memory/processing 
devices, (iv) being rapid to reconfigure in presence of node failures and (v) optimizing the choice of 
the routes, to achieve energy balancing and saving. Extensive simulations demonstrate the 
efficiency of the proposed approach. 
 
Keywords—Wireless Sensor Networks; planetary exploration; ad-hoc networks; routing; energy-
awareness; low-overhead. 

1  Introduction 

Wireless Sensor Networks (WSNs) are made of spatially distributed autonomous sensors, which 
cooperate to monitor a certain physical or environmental condition and pass their data through a 
network to a central processing location. These networks, initially motivated by military 
applications, are used in the industry for process and machine health monitoring and appear to be a 
promising tool in several areas like catastrophe evaluation, fire monitoring, environmental 
experiments and in other distributed sensing applications.  

A very promising field of application of WSNs is planet exploration [1]. In order to prepare for 
manned missions to other planets, it is necessary to permanently monitor the surface environment 
and have a clear notion of its conditions. The surface to be monitored could be very large in 
dimension and, thus, hundreds of small wireless sensors should be dropped onto such surface to 
assure a uniform and sufficient coverage. In this kind of large-scale scenario, standard routing 
protocols applied in WSNs (as for instance LEACH [2], PEGASIS [3], GAF [4] and others) are not 
applicable, since they require a direct communication between each sensor deployed over the 
surface and the data sink, which is in charge of gathering all monitored data and sending back, 
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through a satellite link, to Earth. The large size of the region to be monitored and the line-of-sight 
limitations on remote planets (for instance the Moon, as studied in the SWIPE project [1]), impose 
constraints on the possibility to have 1-hop sensor-sink communication. Therefore, the autonomous 
sensors must create and maintain a multi-hop ad hoc network (i.e., nodes act also as relays for 
traffic generated by other nodes), instead of a star topology (or a 1-level clustered topology) as 
commonly happens in WSNs. Multi-hop protocols suitable for standard fixed networks ([5], [6], 
[7], [8]) or mobile wireless networks ([9], [10], [11], [12], [13], [14]), are, however, not optimized 
for the WSN segment, which has very strict constraints, especially regarding the scarcity of 
computational, bandwidth and energy resources. Moreover, differently from the protocols used in 
Mobile Ad-Hoc Networks (MANETs), WSNs normally consider fixed nodes. Finally, since the 
human intervention is limited, the network should be able to self-optimize, in particular to save and 
to balance the use of the sensors batteries. This is particularly important in environmental 
monitoring scenarios, in which sensors should remain alive as longer as possible, to continuously 
provide the precious monitored information. In this respect, as mentioned above, a multi-hop 
approach should be followed, taking ideas from the routing in MANETs, but the limited resources 
availability must be taken into account as a constraint.  

In this paper, an ad-hoc routing algorithm applicable to WSNs for planetary exploration (such as 
the one of the SWIPE project) is proposed, with the aims of (i) assuring any-cast communication 
with multiple data sinks, deployed for redundancy purposes, (ii) minimizing the control overhead 
for the maintenance of the routing paths, (iii) being light in terms of memory and computational 
requirements, in order to be installed into low-power and low-memory/processing devices, (iv) 
being robust and rapid to reconfigure in presence of node failures and (v) optimizing the choice of 
the routes, to achieve energy balancing and saving. 

This paper is organized as follows. Section 2 illustrates the planetary exploration scenario, 
including the challenges, the network view and the main objective of the routing in the considered 
WSN. Section 3 reports some state of the art of the routing applied in terrestrial ad-hoc networks. 
Section 4 describes the proposed approach and also reports the details about the control packets, 
internal data structures and the pseudo-code of the routing procedures, along with memory and 
computational complexity considerations. Section 5 shows the simulation results, proving the 
efficiency of the proposed approach. Finally, conclusions are drawn in Section 6. 

2 Planetary exploration scenario – the SWIPE project 

2.1 Mission scenario and challenges 

This paper presents a routing algorithm to be applied in planetary exploration scenarios, such as 
the one considered in the SWIPE project [1]. The Space WIreless sensor networks for Planetary 
Exploration (SWIPE) project intends to bring satellite and WSN technologies to space. In order to 
prepare for manned missions to other planets, the surface environment must be permanently 
monitored in order to have a clear notion of its conditions. Hundreds or thousands of small wireless 
sensors, deployed onto the surface, would create their own ad-hoc network, while some of them, 
equipped with satellite communication capabilities, would establish a link between the WSN and 
the satellite. Data gathered from the sensors would be processed and sent to the satellite and later to 
Earth. The following figure shows the considered scenario. 



 

 
Figure 1 Planetary exploration scenario ([1]). 

The mission scenario considered in SWIPE is the Moon. One of the most interesting local 
features on the Moon’s surface are swirls. Swirls have a high albedo such as the Reiner Gamma 
swirl [15] and tend to be associated with magnetic anomalies [16]. Some scientists speculate that 
they are consequences of different space weathering conditions. The fact is that these anomalies 
have not been studied in detail yet and there is not much information available about them. The 
WSN presented in this paper is devoted at studying one of these anomalies. There are several 
different swirl locations on the Moon surface, divided between nearside and farside. The nearside 
swirls have been extensively studied with remote observations whereas farside swirls are more 
enigmatic. Actually, the entire farside is less known and understood, which from a scientific point 
of view makes it a more interesting location. By analysing different locations against several 
features of interest of the Moon, Mare Ingenii is the site that gathers the highest number of 
interesting elements, from a scientific perspective and was the selected landing site for the SWIPE 
mission ([17]). 

A series of challenges and constraints arise from the considered scenario, dictated mainly by the 
mission requirements and by the harsh environment. In this paper we focus on the challenges 
related to the problem of optimizing the network management and control. In the first place, due to 
radio line-of-sight limitations, nodes cannot be positioned over 500m of distance one to each other. 
This distance has been calculated taking into account the rotundity of the Moon, the size of the 
nodes which could be deployed on the planet (see the results of [1] for further details) and margins 
because of the presence of boulders and craters. Thus, in order to guarantee that each node is 
connected with the data sink(s), the limit to the communication range imposes that nodes must 
support multi-hop communication. Furthermore, energy efficiency is perhaps the main challenge to 
be faced, given the limited energy storage capabilities of the nodes and the absence of primary 
recharging energy (especially during nights, when possible solar panels cannot provide energy to 
the batteries). Moreover, communication tasks are energy consuming, therefore energy wise and 
reconfigurable network protocols have to be developed in order to maximize WSN operational life 
and avoid that the energy depletion of few nodes puts in threats the overall mission. Furthermore, 
network protocols have to be compliant with the expected degree of change on the WSN topology, 
considering node or link failures, for instance due to the harsh environment or to complete energy 
depletions. Additionally, the network protocols must be able to handle hundreds or thousands of 



nodes (e.g., in SWIPE largest scenario, up to 1200 nodes): i.e., they must be scalable with respect to 
the network size. The network topologies reported in Table 1 have been envisaged in the project 
(see [19]), differentiated with respect to coverage, resiliency and nodes positioning. 

Finally, nodes periodically (with intervals of 300s or 600s) measure a set of parameters from the 
environment (i.e., radiation, illumination, temperature, dust, as explained in Section 2.3), compose 
packets using proper payload sizes (of the order of some hundreds of bits) and send them to the data 
sinks. For further details on more precise figures, please refer to [19]. 

2.2 Network system view and components 

The network considered in this paper is characterized by up to hundreds or thousands of small 
wireless sensor nodes deployed onto the surface of a planet to assure a uniform and sufficient 
coverage. SWIPE defined three nodes, belonging to the WSN segment: 

• SWIPE regular nodes (or simply SWIPE nodes): sensor nodes which are in charge of (i) 
sensing relevant data from the environment, (ii) fuse and aggregate sensed data, (iii) act as 
relays for other nodes, allowing transmitted data to be disseminated throughout the network, 
in a multi-hop fashion.  

• Data sinks: SWIPE nodes which are also in charge of collecting and processing the data 
generated by the SWIPE nodes. Having more than one data sink increases the tolerance to 
possible failures. 

• Exit points: SWIPE nodes that have satellite communication capability and are responsible 
for transmitting the data collected by the data sinks to the satellite.  

Figure 2 shows the network flow involving the three above-mentioned components, in which 
multiple data sinks and multiple exit points are placed into the network. Scientific (and 
housekeeping) data, generated by the nodes, flow towards the data sinks following multi-hop paths 
(and passing through one or more relay nodes, e.g., other regular nodes).  

 
Figure 2 Network flow of the SWIPE logical nodes (taken from [21]). 



The information stored in the data sinks are periodically sent to the exit points which are in 
charge of delivering the data using the satellite segment. Exit points communicate with the satellite 
every 8449s. This is the duration, in fact, of the period in which the orbiting satellite is not visible 
from the WSN (the so called non-line-of-sight (NLoS) period, see [20]). 

 

2.3 The SWIPE node 

In this section, we briefly summarize the node architecture, principally to highlight the types of 
measurements which will be taken by the SWIPE nodes as well as the internal logical structure and 
the constraints it could pose. For further details, please refer to [21]. The SWIPE node is a 
tetrahedron highly optimized both in mass (max 2000g) and volume (200mm×200mm of base and 
200mm of height). A light aluminium structure, forming the tetrahedron and providing stiffness to 
the node, holds all the elements together. The SWIPE node is equipped with deployable solar panels 
and a passive thermal switch to regulate the temperature of the electronics bay in function of the 
external temperature. The following figure shows a mock-up of the proposed SWIPE node (see [21] 
for further details): 

  
(a) (b) 

Figure 3 (a) Mock-up of the proposed SWIPE node; (b) SWIPE node logical structure. 

The sensors of the SWIPE nodes are the following: (i) radiation sensor, which is an ASIC to 
monitor total ionizing dose and single effect upsets radiation; (ii) three surface thermal sensors 
situated at the end of the node walls (in contact with the ground once the walls are deployed); (iii) 
three multispectral sensors (VIS, IR and UV); (iv) dust deposition sensor to measure the dust 
deposited over a horizontal surface during a certain exposition time. From a logical point of view, 
as depicted in Figure 3(b), the SWIPE node is composed by a payload (which contains the sensors 
and the acquisition electronics) and a bus, including the system control module, a power module and 
a communication module. The power module is in charge of handling the batteries. The system 
control module is an on-board computer (OBC), which handles the data interfaces with the payload 
and the communications module, manages the power distribution inside the node, is responsible for 
running the network algorithms that enable the creation of the WSN and the data processing/fusion 
algorithms. The communication module is in charge of the external communications and is based 
on Software-Defined Radio (SDR) technology. The compact nature of the SWIPE node imposes 
constraints on the battery, computation and memory capacity. The network algorithms must take 



into account the scarce availability of such kind of resources. Moreover, fusion and aggregation 
techniques must take into consideration the nature of the measured data (temperature, radiation, 
illumination, etc.) to perform accurate and optimize data fusion. 

2.4 Objectives of the WSN routing protocol in the proposed scenario 

According to what defined in the network requirements of the SWIPE project ([20]), several 
objectives should be achieved by an optimized routing protocol and are reported in the following 
list: 

• To compute feasible paths, in a multi-hop fashion, among the nodes and the data sinks.  
• To allow the communication with multiple data sinks. The decision of having more than one 

data sinks has two main motivations: (i) to be robust of possible data sinks failure; (i) nodes 
close to the data sink (and the data sink itself) consume their energy faster than farther 
nodes. This implies that, if nodes close to the sink discharge, the data sink is not able to 
receive any data and gets disconnected from the network. A solution to this problem is to 
deploy several sinks: in this way, in fact, traffic is balanced among the multiple data sinks 
and the network lifetime can be significantly increased (see, for instance, [22]). 

• To minimize the control overhead for the maintenance of the routing paths, due to the large 
scale of the WSN. 

• To be light in terms of memory and computational requirements, in order to be installed into 
low-power and low-memory/processing devices. 

• To be robust and rapid to reconfigure in presence of node failures, in the sense that the 
network connectivity and functionalities will be guaranteed also in case of node failures 
(unless the failure partitions the network in strongly connected components, obviously). 

• To optimize the use of the feasible paths, to balance the traffic among the nodes of the 
network and maximizing the network lifetime, avoiding battery discharges, especially during 
the nights (in which no solar energy can be exploited). The energy awareness can be 
achieved by considering the residual battery of the nodes as an input feedback for the 
routing algorithm. Moreover, paths characterized by a short distance between hops should 
be preferred, principally if the radio equipment is able to modulate the transmission power 
in function of the distance with the next-hop of the path. 

3 Routing in ad-hoc networks 
Routing algorithms for multi-hop networks could be grouped in three families: proactive, reactive 

(or on-demand), or hybrid protocols. Proactive protocols are characterized by the fact that each 
node maintains routing information towards every destination of the network, regardless of the 
effective immediate necessity of sending data towards such destination. One main example in 
routing for ad-hoc networks is OLSR [23]. Reactive protocols envisage that a specific source-
destination path is computed only when a specific data packet must be delivered from the source 
towards the destination. One main example in routing for ad-hoc networks is AODV [24]. Hybrid 
protocols consist of a combination of proactive and reactive features, for instance by differentiating 
specific destinations. One example in routing for ad-hoc networks is HWMP [25]. 

Another classification of routing algorithms for multi-hop networks is done according to the 
method for the paths computation. The two main methods, in this sense, are the link state and the 



distance vector approaches. In link state routing algorithms, every node builds a logical view of the 
network connectivity, in the form of a graph. Each node independently computes the route towards 
every possible destination in the network. The name comes from the fact that a proper state is 
associated to each link (for instance the link availability, the estimated delay, etc.): this state is used 
for the best path computation. An example of such method in routing for ad-hoc networks is the 
above-mentioned OLSR. In distance vector algorithms each node has not the knowledge of the 
whole topology (as in the link state approach), but associates, to each destination, a value 
determining the distance (or the cost) as well as the next-hop to reach such destination. An example 
of such method in routing for ad-hoc network is the above-mentioned AODV. 

In the following we will show the main characteristics of the two main protocols used in ad-hoc 
networks (OLSR and AODV) as well as their extensions available in literature, proposed to 
optimize their performances in specific application scenarios. A particular emphasis will be done to 
the state of the art in energy-aware routing algorithms. Before illustrating some energy-aware 
approaches, it is important to introduce two principal metrics which evaluate the goodness of a 
routing algorithm in terms of energy-efficiency: (i) the minimum node lifetime, which could be 
defined as the duration of time until the first node in network fails because of battery depletion; (ii) 
the network disconnection time, which is the quantity of time before the network is disconnected 
(i.e., there is at least a couple of nodes for which there not exist any route connecting the two nodes) 
Moreover, an example of hybrid protocol available in literature is briefly described. The analysis of 
the state of the art has been an important basis to develop the proposed routing algorithm, as will be 
clear in next Sections. 

3.1 OSLR and its extensions 

The Optimized Link State Routing (OLSR) protocol [23] is a largely-used proactive protocol for 
MANETs, based on the link state approach. To generate the network topology inside each network 
node, a control messages flooding is needed. This implies that a very high number of messages are 
potentially exchanged among nodes, due to the flooding. The larger is the network, the higher is the 
control overhead to maintain the topology view in each network node. In order to minimize the 
number of exchanged messages, OLSR uses the concept of Multipoint Relay (MPR). Each node 
selects a subset of its neighbours as Multipoint Relays. Only the nodes selected as MPR are 
responsible for the dissemination of the topology information (the Topology Control messages – 
TC) throughout the network: in this way, the overhead is reduced compared to the traditional link 
state approach. Once the network topology is built up, each node computes the path towards each 
destination, using, for instance, the famous Dijkstra algorithm [26]. Since the protocol is proactive, 
the flooding of TC messages (and the broadcasting of Hello messages among neighbours) is done 
on a regular basis. The reactivity of the protocol to possible network variations could be increased 
by decreasing the interval of the broadcasting of Hello and TC messages. Finally, in OLSR nodes 
can announce their willingness to act as MPR for their neighbours. 

The standard OLSR algorithm has been largely studied and extended in literature ([27], [28]). A 
main extension of the OLSR protocol is the Fish Eye extension [29]. The principle of Fish Eye is 
that the topology information could be refreshed more frequently for close nodes than for far nodes. 
This could be achieved by properly setting the time-to-live (TTL) value of the TC message. In [29] 
the authors studied the OLSR protocol scalability with fish eye extension. They affirmed that OLSR 



with fish eye extension is capable to manage a higher amount of nodes than the standard one, by 
reducing the control overhead. Typical extensions of the OLSR algorithm regard the introduction of 
Quality of Service (QoS) metrics and requirements into the routes computation process. In the 
QOLSR protocol [30], the TC messages contain other information, such as the estimated delay and 
available data rate for each link of the network. Once built the topology with each link associated to 
a state in terms of delay and data rate, each node solves a Delay and Bandwidth Constrained Least 
Hop path problem. Such problem is an optimization problem of the following form: 

min
𝑝𝑝∈𝑃𝑃(𝑠𝑠,𝑑𝑑)

ℎ𝑜𝑜𝑜𝑜(𝑝𝑝) 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝) ≤ Δ𝑑𝑑𝑑𝑑𝑑𝑑, 𝑟𝑟(𝑝𝑝) ≥ Δ𝑟𝑟 
 
in which, 𝑃𝑃(𝑠𝑠, 𝑑𝑑) is the set of feasible paths from a source node 𝑠𝑠 to a destination node 𝑑𝑑, Δ𝑑𝑑𝑑𝑑𝑑𝑑 is 
the maximum end to end delay to be guaranteed to the application flow, Δ𝑟𝑟 is the minimum data 
rate to be assured to the flow, 𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝) is the estimated delay of the path 𝑝𝑝 and 𝑟𝑟(𝑝𝑝) is the data rate 
estimated along the path 𝑝𝑝. The main issue of QOLSR is that such optimization problem is 
computationally expensive. This is usually solved through approximation, finding sub-optimal 
solutions. Another approach which considers QoS metrics is the OLSR with the Expected 
Transmission Rate (ETX) path metric (see, for instance, [31]). This simple routing path metric 
favours high-capacity and reliable links. The ETX is computed on the basis of the fraction of 
successful packets that are received from a neighbour within a window period. The path goodness 
takes into account, therefore, the reliability of all the links of the path. As far as energy awareness is 
concerned, several extensions have been proposed. [32] reports an extension to OLSR protocol with 
the aim of selecting an appropriate set of MPRs, taking into account the link transmission power. In 
[33] the authors proposed an energy-efficient routing algorithm (Energy Efficient OLSR, EE-
OLSR) based on a heuristic to set the willingness value of OLSR. Each node decides to attribute a 
low, a default or a high willingness variable depending on the node’s residual energy and predicted 
lifetime. [34] extends this last approach by proposing an adaptive energy-aware routing protocol for 
MANETs using fuzzy logic for adjusting such willingness parameter. In [35] OLSR is modified to 
select the paths according to the residual energy level of intermediate nodes. In particular, the node 
energy consumption is predicted using ARIMA model. [36] proposed an energy-aware clustering 
for the OLSR protocol, based on the residual energy of nodes. A set of criteria for the cluster head 
election has been provided and simulations shown the increase of performances, at different nodes’ 
speed (it results to be useless in our context, since nodes are considered fixed). In [37] the authors 
proposed an energy-aware multipath routing algorithm based on OLSR. This algorithm, named 
MBA-OLSR, assigns to each link a cost calculated on the basis of the residual battery of both nodes 
of the link. The residual battery of each node is contained into the OLSR Hello and TC messages. 
The higher the residual battery of a link, the lower is the cost associated to the link. Results have 
shown that network lifetime is increased compared with no energy aware multipath routing 
approaches. 

In conclusion, it has been assessed ([38]) that the scenario in which OLSR performs well is a 
dense network: in this kind of scenario, a low number of MPRs is able to reach a high number of 
nodes, minimizing the control overhead needed for the flooding of TC messages. In this case the 
algorithm is also scalable. The main shortcoming of this approach is that, in sparse or regular 



networks, the overhead is inacceptable (due to the data flooding) and OLSR does not scale to large 
networks. Moreover, the link state approach needs to maintain a data structure modelling the whole 
network topology and to compute computationally expensive optimization algorithms to compute 
the best paths. This constrain the nodes to be equipped with potentially high processing and 
memory resources, not compatible with the memory and processing constrained nodes such as the 
considered SWIPE nodes. 

3.2 AODV and its extensions 

Differently from the OLSR, the Ad-hoc Distance Vector (AODV) routing protocol [24] is a 
reactive protocol based on the concept of distance vector. This protocol belongs to the reactive 
family, thus, the routing tables are updated on-demand, i.e., when a flow requires to be routed 
within the network. AODV foresees three different control messages: Route Request (RREQ), 
Route Reply (RREP) and Route Error (RERR). When a source node wishes to communicate to a 
destination node, it starts a route search throughout the network by flooding a RREQ control packet. 
The path is computed when a RREQ message reaches the destination (or, alternatively, an 
intermediate node knows a “recent” path to reach the destination) and a RREP control message is 
delivered back to the source. When passing intermediate nodes, they update the routing tables, 
accordingly. In order to verify that a path is “stale”, a comparison between Destination Sequence 
Numbers (DSNs) is carried out. DSNs are used also to avoid the formation of loops, due to link 
failures.  

The standard AODV algorithm has been largely studied and extended in literature ([39], [40], 
[41]). Also when considering AODV protocol, QoS has been primarily introduced into the 
algorithm to take into account flow quality measurements and requirements. An example is the 
Radio-Metric AODV (RM-AODV) [25]. In this algorithm, the RREQ packet contains information 
on the QoS required by the application flow (for instance, minimal data rate, maximum delay, etc.). 
Moreover, in the RREQ message is inserted a value of accumulated metric (for instance the 
estimated delay of the path). Among all the RREQ packets reaching the destination (which surely 
satisfy the QoS constraints), the destination node chooses the path with the lowest accumulated 
metric (e.g., the lowest delay). [42] proposed an extension of AODV which aimed at re-routing 
around nodes low on battery power as far as possible, in order to prolong the network lifetime. The 
nodes are classified according to three different regions: Normal zone, Warning zone and Danger 
zone. To each zone is associated a fixed cost which is considered in the distributed path 
computation. Regarding protocol modification, [42] introduced the concept of Route Warning 
(RWARN) packet (if the residual battery sensibly changes and switches to a different zone) which 
is sent back to the source to update the routes according to the new level of battery. [43] proposed 
an adaptive energy-aware routing protocol for MANETs using Reinforcement Learning (RL), 
which was built over AODV. The RL is used to make each node learn the best rate of RREQ 
forwarding, on the basis of its residual battery lifetime. Such rate reflects the willingness of a node 
to be part of routes towards the destinations. Reinforcement Learning and distance vector-like 
approaches are also used in [9]. Energy-aware and fault tolerant metrics were used by the authors 
and aggregated in a multiplicative manner into a RL framework. 

In conclusion, AODV is quite good in networks in which the traffic is concentrated in a small 
sub-set of nodes and the mobility is low, principally as far as control overhead is concerned. In this 



case, in fact, a low amount of RREQ and RERR are disseminated throughout the network, since few 
nodes require to transmit data and few paths fail. For this reason, the AODV protocol (and its 
extensions) is not directly applicable in WSNs in which all nodes generate traffic towards the data 
sink(s) (traffic is not concentrated).  

3.3 The Hybrid Wireless Mesh Protocol (HWMP) 

The Hybrid Wireless Mesh Protocol (HWMP) [25] is a hybrid routing protocol for mesh 
networks which combines the reactive (on-demand) routing with the proactive maintenance of a 
tree, based on distance vector. A tree is proactively maintained to guarantee the communication 
with a single important node, named the root (for instance a gateway in a sub-network). This is 
particularly useful when the majority of the traffic is directed outside the sub-network, for instance 
to the internet. As explained in [25], there are two methods for the proactive tree building and 
maintenance. The first method uses a proactive Route Request (RREQ) message (as happens in 
AODV) sent by the root with destination set to a broadcast address. Using this flooding the routes 
between the root and all MPs in the network are periodically setup. The second method uses a Root 
Announcement (RANN) message which is flood throughout the network to announce to nodes the 
presence of the root. The actual routes to the root are built on-demand by the nodes by sending, in 
unicast, specific RREQ control message to the root. This method leads to a higher amount of 
overhead, since there is the need of a RREQ for each node of the network. As far as internal 
communications are concerned, the HWMP envisages the use of the RM-AODV (extension of 
AODV considering Quality of Service requirements, as illustrated in the previous Section) on-
demand protocol.  

It is clearly understandable that a tree-based approach could be very interesting in applications 
(e.g., see [46]) in which the majority of traffic is constantly directed to a specific node or a set of 
specific nodes (the on-demand feature is not suitable to connect nodes with the root) and there is not 
the need of maintaining routing information to allow communication between every couple of 
network nodes (as happens in link state approach such as OLSR), which require a lot of memory 
and computation resources in the nodes. Due to its hierarchical nature (with one or more roots 
representing the data sinks), the considered environmental monitoring scenario belongs to such 
category of applications. Concerning the communications with the data sinks, a proactive tree-based 
approach could be applied, enforced with reactive features to rapidly re-configure the tree(s) in case 
of node failure. For occasional communications among nodes, an on-demand approach is 
envisaged. 

4 Proposed approach 
As investigated in the previous Section, the considered planetary exploration scenario does not 

allow to directly utilize OLSR or AODV algorithms (and their extensions). In the first case, the link 
state approach needs to maintain a data structure modelling the whole network topology and to 
compute computationally expensive optimization algorithms to compute the best paths. This 
constrains the nodes to be equipped with potentially high processing and memory resources, not 
compatible with the memory and processing constrained nodes such as the considered low-mass 
and low-volume nodes. In the second case, the distribution of the application flows over all the 



network nodes makes the on-demand approach inapplicable, generating too much unneeded 
overhead, even over a reduced topology structured in a clustered fashion. 

The proposed routing approach extends the tree-based feature of the HWMP protocol, as follows: 
• Multiple distance vector trees are setup and dynamically maintained. Each data sink is a 

root of a distinct tree. This tree multiplicity, gives the nodes the possibility of rapidly 
switching from a data sink to another data sink in case of a neighbour node failure (fault 
tolerance) and to better distribute the traffic load among data sinks (any-sink approach). 

• A combined energy-aware and distance-based link cost is introduced to maximize the 
minimum node lifetime and the network disconnection time. The cost of the link must be 
judiciously designed to choose the most charged paths but, at the same time, to avoid that 
paths long in distance are chosen (even if the nodes involved in the path are really 
charged) because the more nodes are involved in one packet transmission the higher is the 
energy consumed. This could generate an opposite effect which could reduce the network 
lifetime. 

4.1 Setup and maintenance of multiple distance vector trees for any-sink communication 

The physical network can be modelled as a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) in which 𝑉𝑉 is the set of nodes and 𝐸𝐸 is 
the set of links of the network. Over such physical network, a clustered virtual topology may be 
built, especially to handle large scale networks [44]. The network, thus, can be structured in a set of 
clusters (each of which is led by a special node called Cluster Head – CH), connected through a 
virtual backbone, which can be viewed as a sub-graph of the original one. Since such sub-graph has 
not a star or a centralized structure, a routing algorithm is needed to allow communication between 
any couple of network nodes. In case of large scale networks, routing should be performed directly 
over the virtual backbone (in small networks it is not needed to setup a clustered topology). This 
paper does not focus on the problem of setting up the clustered topology which is assumed to be 
given.  

Due to the nature of the considered application scenario (i.e., periodic scientific and 
housekeeping delivery to specific network nodes named data sinks), it is not needed that paths 
connecting every couple of nodes are constantly kept available to the application. A specific subset 
of nodes is considered crucial for the considered application scenario: those nodes are the data 
sinks. Another subset of nodes which are crucial to report data back to the Earth are the exit points. 
The communication with those nodes is, however, less frequent and the routing approach governing 
their connectivity could be an on-demand approach such as the one used in AODV. A tree-based 
approach is used in to connect each node to a data sink. Multiple trees are setup to guarantee the 
connection of each node to the multiple data sinks available in the WSN. The following figure 
shows an example of such concept. 
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Figure 4 Multiple trees formation over a clustered topology. 

One main control packet is foreseen to allow the setup of one of the trees. This control packet is 
called Sink Route Request (SRREQ). Periodically, a data sink floods a SRREQ throughout the 
WSN, indicating its presence. Once a node received a SRREQ from a neighbour, setups a reverse 
path towards the originator node (i.e., the data sink), passing through the neighbour. The reverse 
path is based on the distance vector approach: this means that, for a specific data sink, only the 
indication of the next-hop as well as the distance to reach the sink must be saved in the internal 
memory of the node. The reverse path is updated only if the hop count of the path is less than the 
current one or if the SRREQ contains a higher Destination Sequence Number). The Destination 
Sequence Number is used as a logical timestamp to force the route to update (e.g., in case of 
proactive re-construction or response to a node/link failure, as will be clear hereafter). The 
following figure shows the behaviour of the tree formation: 
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Figure 5 SRREQ flooding and reverse path formation. 

The SRREQ generated by the data sink is received by its neighbours. Since the SRREQ contains 
a new Destination Sequence Number (DSN), then the neighbours are forced to update the routing 
table and re-broadcast the SRREQ with an incremented (by one) value of the hop count. This 



process is shown in Figure 5(a). If a node received for the second time a SRREQ (with the same 
DSN value), it updates its internal routing table and re-broadcasts the SRREQ with the updated 
value of the hop count, only if the hop count in the SRREQ incremented by one is lesser than the 
current one saved into the routing table. Thus, in the example of Figure 5(b), the circled node does 
not update the routing table and does not forward an updated SRREQ (the internal hop count is 1 
but the one tagged into the SRREQ incremented by one is 2). Another point to highlight is that there 
is not the need, for nodes receiving a SRREQ, to send back to the originator node a reply (e.g., such 
as the RREP in the AODV protocol), since the standard communication needed to achieve the 
reporting of scientific/housekeeping data to the data sink(s) is from the nodes to the data sink(s) 
(and not vice versa). This is another feature that leads to an overhead reduction compared to the 
AODV approach, very important feature in the considered WSN. 

The setup of the trees based on distance vector allows to guarantee a communication among data 
sinks and regular nodes. Moreover, it is important to point out that the tree multiplicity (one per 
sink) gives the nodes the possibility of rapidly switching from a data sink to another data sink in 
case of a neighbour node failure. This feature increases the fault tolerance of the algorithm, 
avoiding that a sudden node failure produces a loss of important measured information from a 
subset of the network nodes. If there is not any path that allows to reach any of the data sinks, it is 
needed to guarantee that the network is reconfigurable in case of node/link failures. In this case, the 
trees must be re-built in case sudden events verify and could affect the connectivity of the whole 
network. If the routing table does not modify, according to the failed nodes/links, then loops can be 
generated and/or a high amount of data packets can be lost (very bad consequence, especially 
considering that nodes cannot be manually reconfigured by operators, due to the extremely remote 
location). The protocol proposed in this paper foresees the introduction of a second control packet: 
the control packet is named Route to Sink Error (RSERR). A RSERR is sent in flooding as soon as 
a node becomes aware that a neighbour node, that permitted (in a multi-hop fashion) to reach a 
specific data sink, is no longer available. The RSERR includes, in its fields, the indication of the 
data sink currently no longer reachable. As the data sink receives the RSERR from a node, it will 
re-start a process for the setup of the tree for which it is the root. To guarantee the correct update of 
the routes inside the network nodes, the data sink increments by one the Destination Sequence 
Number and tags it into the new SRREQ. In the tree discovery process, therefore, nodes are forced 
to update their routing table and a new tree is built up and the network is reconfigured. As far as the 
time needed for the network reconfiguration is concerned, an evaluation through simulations of the 
latency for the reconfiguration is reported in Section 5.4, especially for large scale clustered 
networks. The details about the control packets as well as the pseudo-code of all the routing 
procedures are reported in Section 4.3. 

4.2 Combined energy-aware and distance-based link cost 

The routing process described in the previous Section is demonstrated (e.g., by the authors of 
[24] or [25]) to converge to a tree in which each node is connected to the root through the shortest 
path (i.e., the path with the minimum number of hops). The main issue of such approach is that the 
all the traffic generated by the regular nodes flows along fixed trees: it means that those “unlucky” 
nodes will discharge earlier than the other nodes. This implies that precious information will not be 
available at the data sinks (for instance no measurements from specific regions of the sensor field 



will be reported to the data sinks and, later, to Earth). On the light of the above consideration, there 
is the need to maximize the duration of the nodes, especially for those that have an active role in the 
forwarding of data generated by other nodes. There are several possible ways to achieve this 
objective, including the following ones: (i) by improving the efficiency of the node in terms of 
power consumption (for instance designing energy-efficient internal device components, such the 
radio equipment, the CPU, etc.); (ii) by aggregating the payload of the data packets during their 
traveling throughout the tree. This can be achieved through proper data aggregation techniques; (iii) 
by balancing the data forwarding effort among different dynamic trees, in order to uniformly 
distribute such load over the network; (iv) by choosing nodes in the path which are “close” in terms 
of distance each other. If the radio equipment is capable to tune the transmission power according to 
the distance of the destination neighbour node, a large amount of energy can be saved in this 
fashion. The proposed routing algorithm described in this Section focuses on the points (iii) and (iv) 
of the previous list.  

As far as energy balancing is concerned, one approach to achieve that objective could be to 
periodically switch to a new tree which excludes the nodes that, in the previous time interval, 
belonged to the tree. This switching could be done in a round robin fashion. This approach, 
however, is affected by two main issues: (i) there is the need to compute and maintain the set of 
trees to be alternated during the time, which could be onerous in terms of computation and memory; 
(ii) it does not take into account the fact that the batteries of the nodes could have different levels, 
both due to a heterogeneity of the batteries and, in particular, because they have the capability of 
being recharged thanks to the solar energy. This recharge is usually not uniform among all the 
nodes (for instance because the nodes are deployed in different regions of the remote surface, the 
ground differently absorbs/reflect the solar energy, etc.). Taking into account what said, the 
proposed approach considers the introduction of the residual battery into the paths computation 
process. The idea is to periodically (with a period of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 seconds) invoke the generation of the 
new trees according to a path cost different from the hop count. The main concept is the following. 
At each link (𝑖𝑖, 𝑗𝑗) is assigned a cost 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡), variable during time, that is the higher the lower is the 
residual battery 𝑒𝑒𝑗𝑗(𝑡𝑡) (in percentage with respect to the full battery level) of the destination node 𝑗𝑗 
of the link. The metric shall be able to balance between the shortest path (short and less nodes 
involved in the data forwarding) and the most charged path (nodes very charged but more nodes 
involved in the data forwarding). In this paper we propose the following link cost: 
 
𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) = 1 + log2 𝑒𝑒𝑗𝑗 (𝑡𝑡) (1) 

The term +1 is introduced to give a unit cost for the fact that a new hop is introduced in the path. 
The term + log2 𝑒𝑒𝑗𝑗 (𝑡𝑡) is the higher the lower is the residual battery of node 𝑗𝑗. This term assumes 
high values only when the residual battery is sensibly low: in this case longer paths will be used. 
The behaviour of this metric in function of the residual battery 𝑒𝑒𝑗𝑗(𝑡𝑡) is depicted in Figure 6. 

Another important aspect when talking about energy consumption is that the energy spent in 
transmission strictly depends on the distance of the next-hop node in the route (at least it depends 
on the square, as the first order radio model we use in the simulations). Thus, if the radio equipment 
has the capability to modulate the transmission power in function of the distance with the next-hop, 
a lot of energy can be saved. In this respect, it could be very intelligent to choose the path in which 



the distances between couples of nodes are minimized. To do so, we propose to substitute the factor 
+1 with a function of the distance between the nodes 𝑖𝑖 and 𝑗𝑗 of the link (𝑖𝑖, 𝑗𝑗). In this case, we 
propose a quadratic function as follows: 
 

𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑘𝑘𝑑𝑑 �
𝑑𝑑𝑖𝑖𝑖𝑖
𝑟𝑟
�
2

+ 𝑘𝑘𝑒𝑒 log2 𝑒𝑒𝑗𝑗 (𝑡𝑡) (2) 

 
where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance (in meters) between node 𝑖𝑖 and node 𝑗𝑗, 𝑟𝑟 is the maximum transmission 

range and 𝑘𝑘𝑑𝑑, 𝑘𝑘𝑒𝑒 are constant identifying the weight of each term in the cost. This quadratic 
function has sense since the energy consumption is at least quadratic with respect to the distance 
(for example the first order energy model used in the simulations of this paper, as we will define 
later). If all the nodes are at the same distance (or if the transmission power is fixed and cannot 
dynamically be modulated), thus, the cost is equal for any link the metric does not give any 
contribution. Both the metrics are illustrated in Figure 6 (𝑘𝑘𝑑𝑑 = 5, 𝑘𝑘𝑒𝑒 = 1). Until the destination 
node in the link is sufficiently charged, the distance-based cost assumes a relevance. As soon as the 
node starts to discharge (in the figure example when the battery is the 40% of its full level), the 
energy-based term starts to be preponderant. This behaviour is good since it is not convenient to 
balance the relaying effort too early, since longer (with charged nodes) paths could be chosen 
leading to an energy waste. 

 
Figure 6 Link cost terms behaviour. 

To be applicable, obviously, a node should be capable to compute the approximated distance 
with its neighbours using ranging techniques. In the simulations, for simplicity, we will give equal 
weight to the two cost terms (i.e., 𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑒𝑒 = 1).  

4.3 Algorithm details and pseudo-code 

This Section reports the low level algorithm details (including the control messages data 
structures) and the pseudo-code of all the triggered routing procedures. The nodes identifier length 
is set to 16 bits, allowing to address tens of thousands of nodes (a 32 bit address would increase too 
much the control overhead). 
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4.3.1 Description of control packets for routing 
Control packets for routing are detailed in Table 2. 

4.3.2 Routing data structures 
Routing data structures are detailed in Table 3. 

4.3.3 Routing events 
The relevant events in the routing process are detailed in Table 4. 

In addition to the presented pseudo-code, the “Neighbour n unreachable” event is triggered 
when no Hello messages are received by a neighbour for a certain amount of time. Moreover, the 
list_of_waiting_RSERRs data structure is reset after a timeout to avoid that a loss of a RSERR 
packet could affect the network connectivity. 

4.4 Memory and computational complexity 

This section reports an analysis of the required memory and the computational complexity of the 
proposed routing algorithm, which is also important for the selection of suitable hardware for the 
node (e.g., choice of the memory banks, CPU, storage, etc.). The following subsections report: 

• The size of the control packets exchanged for the trees maintenance (in bits). Those figures 
are useful for the quantification of the amount of memory required to store and analyse the 
packets. 

• The size of the internal data structures (routing table, etc.) to be stored in the memory 
locations.  

• The complexity of the various procedures of routes maintenance and route selection. 

4.4.1 Size of control packets and routing internal data structures 
The size of the control packets and of the routing internal data structures is reported, respectively, in 
Table 5 and Table 6. 
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the number of data sinks in the network and 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum degree of the 

network graph. According to the table, the total size of the internal routing data structures is 
determined to be not more than 178𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 24𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀  + 72. For instance if the 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 = 8 and 
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4, it is required an amount of memory for internal routing data structures of 976 bits. It is 
remarkable to highlight that the size of the internal routing data structures does not depend on the 
total number of nodes, but only on the maximum degree of the network which is considerably 
smaller. This allows to achieve scalability if the number of nodes in the network becomes very high. 

4.4.2 Complexity of routing procedures 
A characterization of the routing algorithm in terms of number of executions (in the worst case) of 
the routing procedures and basic operations (read, write, transmission, sum, etc.) is reported in 
Table 7 and Table 8. 

Similarly to what stated for the memory, also the computational complexity does not depend on 
the number of nodes but only (in a linear fashion) on the maximum network degree 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 and on 
the number of data sinks 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, achieving scalability with an increasing number of nodes. 



5 Simulations 
This Section reports the simulations proving the higher performances of the proposed any-sink 

energy-aware routing algorithm. The algorithm has been implemented in MATLAB ([18]) in an 
event-based fashion. This means that all the routing procedures, detailed in the previous section, 
have been implemented and the sending/receiving of packets simulated accordingly. Thus, the 
convergence and loop freedom of the algorithm have been verified. This Section is organized as 
follows. Section 5.1 illustrates the network and energy models used in the simulations to prove the 
feasibility and the performances of the proposed routing algorithm. Section 5.2 proved the 
capability of a balanced and efficient use of the battery capabilities of the nodes. Grid, clustered and 
uniform random network have been simulated. Section 5.3 provides an analysis of the performance 
both if the radio equipment is able or not to modulate the power in function of the distance with the 
next-hop node. It will be shown that modulating the power provides higher performances. 
Nevertheless, the proposed approach is also applicable in presence of fixed transmission ranges (the 
distance-based term of the cost link is useless). Section 5.4 provides an analysis of the time needed 
for the network re-configuration. Section 5.5 provides an analysis of the control overhead, to 
evaluate if it is modest and, thus, makes the proposed approach applicable in energy-constrained 
networks such the considered WSN. 

The following common parameters are used in all the simulations of the any-sink energy-aware 
routing algorithm. Nodes periodically (every 600s) send to the data sinks packets with payload size 
of 692bits (compliant to what proposed in the SWIPE project). Those packets include 
housekeeping, scientific data without any data fusion applied, data packaging and miscellaneous. 
The data sinks are supposed fixed and placed in a uniform spatial fashion in the sensor field. This 
differs from approaches in which data sinks are mobile (e.g., see [47]), although it is applicable also 
in this scenario (as a data sink migrates, a new tree must be rapidly instantiated). The tree 
reconfiguration timeout is set to 2 hours for all the data sinks. The consistency (when enabled) 
among data sinks is guaranteed through the exchange of the stored data (properly fused and grouped 
in packets of 1500 bytes) every 30 minutes. We hypothesize that each data sink has a specific data 
fusion ratio, applied to the collected data, that is defined as the size of the original data over the size 
of the fused data. A data fusion ratio of 3 means that the fused data is three times less than the 
original one. The routing control packets have the sizes defined in Table 2. A network header of 
128 bits is added to all data and control packets. No data aggregation is performed in the 
intermediate nodes of the paths. The data rate of the wireless links is set to 1Mbps. In this 
simulation section, the data sinks (besides the exit point) are equipped with larger battery capacities, 
than the regular nodes, to ease the analysis of the proposed routing approach. Nodes are considered 
as discharged if their residual battery is under the 1% of their initial battery capacity. Finally, every 
NLoS period (8449s), the exit point queries the data sinks to deliver the stored data to it, in order to 
be transmitted to the satellite. 

Three main parameters are evaluated: (i) the minimum node lifetime (expressed in days), (ii) the 
network disconnection time (expressed in days) and (iii) the total amount of information delivered 
to the data sink(s) (expressed in MB). Moreover, we will measure the control overhead (in terms of 
required bits per seconds) and the reconfiguration time, in milliseconds, to evaluate the impact of 
the routing algorithm in the network and its self-adaptation capability. 



5.1 Simulation network and energy models 

The simulations reported in this section are characterized by network sizes in line with the 
network topologies reported in Table 1. We simulate grid, random and clustered topologies. As far 
as clustered topologies are concerned, Figure 7 shows the three clustered topologies used to test the 
routing and data aggregation algorithms.  
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Figure 7 Clustered network topologies. (a) Minimal coverage; (b) Preferable coverage; (c) 

Extended coverage. 

There are 80, 400, and 1200 nodes in each network topology respectively, and the maximum 
transmission radius is set to 0.8 km. In each graphic, the symbols ‘*’ and ‘o’ denote the RNs and 
CHs respectively. The CHs are connected through a virtual backbone, which is highlighted in red 



on the figure. The data sink node(s) and the exit point are selected among the network nodes as 
described in the various simulations sections (e.g., in a spatial uniform fashion). 

A first order radio model (see [45]), is adopted in in the energy analysis, for simplicity. In this 
model, the radio dissipates 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 50 nJ/bit to run the transmitter or receiver circuitry and 𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 =
100 pJ/bit/m2 for the transmitter amplifier. The equations used to calculate transmission costs and 
receiving costs for a 𝐿𝐿-bit message and a distance 𝑑𝑑 are shown below: 

 
𝐸𝐸𝑇𝑇𝑇𝑇(𝐿𝐿,𝑑𝑑) = 𝐿𝐿 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐿𝐿 ∙ 𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑑𝑑2 (3) 

𝐸𝐸𝑅𝑅𝑅𝑅(𝐿𝐿) = 𝐿𝐿 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4) 

5.2 Energy balancing and efficiency 

5.2.1 Grid-based networks 
In this Section, we simulate the three low resiliency and accurate positioning scenarios (see 

Table 1). Since the number of nodes is low, to cover all the sensor field it is convenient to deploy 
the nodes in a grid topology. The nodes are placed at 500m of distance in each row and column of 
the grid. The range determining the neighbourhood of each node is put to 600m. The simulations 
are done considering the presence of one sink in the centre of the grid and an exit point in the north 
of the network. No aggregation is performed at the intermediate nodes travelled by packets towards 
the data sink. The initial battery of all nodes (except for the data sink and the exit point, which are 
equipped with a higher capacity battery) is 2.5kJ. Figure 8 shows the trend of the minimum residual 
battery, expressed in kJ, among the nodes of the network, in relation to the preferable coverage 
scenario. Such scenario envisages a network of 100 nodes, placed over a sensor field of 5km × 5km 
(25km2). A comparison between the shortest path algorithm and the proposed energy-aware routing 
algorithm has been performed. If the shortest path algorithm is used, we notice that the minimum 
residual battery decreases in a linear fashion with a high pendency. This happens because a subset 
of the nodes (the ones of the shortest paths) is always used until they discharge. The proposed 
energy-aware algorithm starts to balance the paths from the beginning: the pendency is lower in this 
case. Moreover, when the residual battery becomes very low, the strength of the proposed approach 
is higher: in fact, the log2 𝑒𝑒𝑗𝑗(𝑡𝑡) term of the cost expression of equation (2) produces high cost 
values for the links with low-charged nodes, and, thus, they are more judiciously chosen. The 
pendency, thus, becomes very low and allows to make the first node be discharged almost in 
correspondence of the network disconnection time. Since all nodes are placed at the same distance 
(considering the range of 600m), the part of the metric taking into account the distances among 
nodes does not give contribution. 



 

Figure 8 Min. residual battery (in kJ) of the preferable coverage scenario (low resiliency and 
accurate positioning). 

The values of the network disconnection time and the minimum node lifetime are reported in 
Table 9. The proposed energy-aware algorithm outperforms the shortest path, in terms of minimum 
node lifetime, of about the 160%. 

Table 10 reports the values of the evaluated parameters in the cases of the three low resiliency 
and accurate positioning scenarios. As before, a data sink is placed in the centre of the network and 
the exit point is placed in the most northern row in the centre. Using the proposed algorithm, we 
obtain an increase in the minimum node lifetime of about 90% in the minimal coverage scenario, 
and more than 160% in the other two scenarios. 
We proceed now to evaluate what is the behaviour of the algorithm in presence of 4 data sinks 
uniformly distributed over the sensor field. We suppose that consistency must be guaranteed among 
the 4 data sinks, and use data fusion ratios of 1 (no data fusion in the data sinks) and of 2. No data 
aggregation is foreseen in intermediate nodes during the paths from the sources to the data sinks. 
Table 11 reports the corresponding minimum node lifetime values (expressed in days). 

If we do not have fusion of data in the data sinks, in the minimal coverage scenario it is not 
convenient to deploy four data sinks since we obtain a lower minimum node lifetime (as well as the 
network disconnection time not shown in the table) than as in the one data sink case. In the other 
two scenarios, even without data fusion the minimum node lifetime is increased: this is due to the 
fact that with a quite small network diameter (which characterizes the low resiliency and accurate 
positioning scenarios), the data exchanged for consistency traverse short paths (in terms of number 
of hops) and few nodes are interested.  

5.2.2 Clustered network 
The previous Section has shown the energy balancing capabilities in the low resiliency and 

accurate positioning scenarios. In those scenarios, especially the minimal coverage one, two close 
failures could affect the network connectivity. In order to extend the tolerance to node failures and 
increase the resiliency of the network, high resiliency scenarios have been conceived in the project, 
as reported in Table 1. Moreover, the increased number of nodes can also increase the robustness in 
case of erratic positioning of network nodes. Since the density and the scale of the network are 
increased, it is convenient [44] to organize the network in a clustered form, through the setup of a 
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virtual backbone). The formation of the virtual backbone is not the scope of this paper. Hence, in 
this paper, we evaluate the energy balancing features of the any-sink energy-aware routing 
algorithm over a clustered topology, in the preferable scenario, characterized by high resiliency and 
erratic positioning of nodes. The initial battery of each node is set to 12kJ and the transmission 
range of the radio equipment is set to 800m. Four data sinks are deployed in a uniform way over the 
sensor field and the exit point is situated in the north of the network. No data fusion is performed in 
the data sinks. 

We consider the clustered topology provided in Figure 7. The results of the simulations carried 
out on this clustered scenario are illustrated in the histograms of Figure 9. As expected, the shortest 
path algorithm is the worst, in terms of all the three evaluated parameters. In particular it fails in 
providing sufficient node duration with the considered batteries (the first node discharges in less 
than 7 days). Very better results are obtained introducing the cost link which is function of residual 
battery of the nodes. In this case, the minimum node lifetime, the disconnection time and the 
received data are sensibly increased. The best results are given by the aggregated cost function 
(which takes also the distances between couples of nodes in consideration). It is worth highlighting 
that, with the proposed approach, the first node discharge in about 16 earth-days, which is higher 
than the duration of the night on the Moon on equator (about 14.25 earth-days). During the day, in 
fact, nodes are capable to recharge and the energy becomes a more available resource. 

  
Figure 9 Simulation comparison in the preferable clustered scenario (high resiliency and erratic 

positioning of nodes). 

5.2.3 Uniform random networks 
In this Section, the behaviour of the proposed routing algorithm is evaluated in uniform random 

networks. 𝑛𝑛 = 200 nodes are placed randomly (with a uniform distribution) in a squared scenario 
of 25km2 (analogous to the preferable coverage scenario with high resiliency and accurate nodes 
positioning). Four data sinks are uniformly deployed in the network and the exit point is situated in 
the north of the scenario. We evaluate the shortest path routing, the energy-aware routing without 
considering the distance of nodes (equation (1)) and the energy-aware routing with the aggregated 
metric (equation (2)). 10 simulation runs have been carried out and the results averaged over the 
simulation set. The initial battery of the nodes is set to 2.5kJ (except for the data sinks and the exit 
point). The results are illustrated in the histogram of the next figure. 
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Figure 10 Simulation comparison in random networks. 

The trend of the results of Figure 10 is quite similar to the ones presented in the previous 
Section, related to the clustered scenario and same considerations hold also in this case. The most 
important point to highlight is that the algorithm can handle any kind of topology (even completely 
random) and, thus, be adaptive if drastic changes of topology occur (e.g., several nodes fail because 
of external events derived from the harsh environment).  

5.3 Fixed transmission power vs. variable transmission power 

In the previous sections, we have shown how high are the potentialities of the proposed approach 
in scenarios in which the radio equipment of the nodes is capable to modulate the transmission 
power according to the distance to be covered (i.e., the distance to reach the next-hop in the path 
towards the destination). In case the nodes are not capable to modulate the transmission power, it is 
immediately clear that the results in terms of energy efficiency and balancing cannot be as good as 
the ones presented so far. To demonstrate this fact, we have simulated random networks exactly as 
the ones reported in the previous Section. The results are shown in the next histogram. 

  
Figure 11 Simulation comparison with fixed and variable transmission power in random networks. 

All the three evaluated parameters result to be increased if the radio equipment is capable to 
modulate the transmission power according to the distance from the next-hop node. Thus, 
modulating the power allows to save a lot of energy in comparison with a fixed transmission power. 
In terms of percentages, the three parameters increase of more than the 50%. 

5.4 Analysis of the time for the network re-configuration  

This Section reports an analysis of the time needed for the network re-configuration. For each 
link, we compute the transmission delay component of the total link delay. We neglect the 
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propagation delay, since it is negligible (the propagation delay is generally of the order of the 
microseconds whereas the transmission delay is of the order of the milliseconds). The bandwidth of 
all links is put to 1Mbps. Randomly, a node of the network fails and we compute the time the 
network takes to reconfigure, i.e., from the time of the node failure to the termination of the 
SRREQs flooding. The three high resiliency and erratic positioning of nodes scenarios are 
considered in this Section. A run of 10 simulations is carried out for each combination scenario-
number of data sinks. Results are depicted in Figure 12.  

 

 
Figure 12 Reconfiguration time analysis in the three scenarios with high resiliency and erratic 

nodes positioning. The networks are clustered. 

As expected, the reconfiguration time increases with the scale of the network and also with the 
number of data sinks deployed in the network (in fact, more trees must be maintained and re-setup). 
The reconfiguration time figures are very small (less than 10ms). 

5.5 Analysis of the control overhead 

This Section reports an analysis of the control overhead of the proposed routing algorithm, in 
terms of bps, considering a tree reconfiguration timeout of 2 hours for all the data sinks. The three 
high resiliency and erratic positioning of nodes scenarios are considered in this Section. The trees 
are re-established periodically with a period of 2 hours. The overhead results (in terms of bps) are 
reported in Figure 13, considering 1, 2 or 4 data sinks uniformly distributed in the network. 

 
Figure 13 Control overhead analysis in the three scenarios with high resiliency and erratic nodes 

positioning. The networks are clustered. 

As highlighted in the histogram, the control overhead of the proposed routing approach is very 
low and makes it applicable in energy-constrained networks such as the considered WSN. In fact, 
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this approach allows neither wasting the precious available bandwidth nor affecting the energy 
performances (as also proved in the previous sections). 

6 Conclusions 
This paper presented an ad-hoc routing algorithm applicable to WSNs for planetary exploration 

(such as the one of the SWIPE project), which is able to assure any-cast communication with 
multiple data sinks, deployed for redundancy purposes, to minimize the control overhead for the 
maintenance of the routing paths, to be light in terms of memory and computational requirements, 
in order to be installed into low-power and low-memory/processing devices, to be robust and rapid 
to reconfigure in presence of node failures and to optimize the choice of the routes, to achieve 
energy balancing and saving. A multi-sink proactive tree-based approach has been selected, 
together with a combined link cost, depending on the residual battery of the nodes and their mutual 
distances. Extensive simulations have demonstrated the effectiveness and the efficiency of the 
proposed approach, in terms of network lifetime, overhead and reconfiguration time. 

The proposed approach suggests interesting directions for further work. One idea could be to 
explicitly take into account possible interferences in the packets transmissions, due to the harsh 
environment, for instance including them into the link cost. Moreover, a simultaneous clustering 
and routing algorithm could be designed, to increase the overall network performances, also in 
terms of network throughput. 
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9 Tables 
 

 
Minimal coverage Preferable coverage Extended coverage 

Low 
resiliency 

High 
resiliency 

Low 
resiliency 

High 
resiliency 

Low 
resiliency 

High 
resiliency 

Surface (km2) 2.5 (5 × 0.5) 25 (5 × 5) 70 (10 × 7) 
Nb of nodes (accurate 

positioning) 20 40 100 200 280 560 

Nb of nodes (erratic 
positioning) 

(1) 80 (1) 400 (1) 1200 

(1) Erratic deployment is based on a high resiliency of nodes to prevent topologic failure owing to relief and roughness. 
Table 1 Number of nodes necessary to fulfil the mission goals depending on the coverage and 

resiliency. 
 
 
 

 

Name Description Fields (number of bits) 

Sink Route 
Request 
(SRREQ) 

Control packet used to setup a tree 
with a specific data sink as root node. 

- SRREQ_ID (32): the identifier of the SRREQ. Used to 
discriminate requests. 

- sink_ID (16): the global identifier of the data sink (i.e., 
the network address). 

- sink_DSN (32): the Destination Sequence Number of the 
data sink. 

- path_cost (16): the current cost to reach the data sink 
(extension of the hop count concept). 

Route to Sink 
Error (RSERR) 

Control packet used to trigger a new 
tree generation process, for a specific 
data sink. It is used to handle possible 
node failures. 

- RSERR_ID (32): the identifier of the RSERR ID. Used to 
discriminate if a node has already broadcasted the 
RSERR of neighbour (to avoid indefinite flooding). 

- source_ID (16): the global identifier of the node which 
requests the formation of a new tree. 

- sink_ID (16): the global identifier of the data sink in 
question. 

Hello 

Control packet, periodically 
broadcasted and used to compute the 
list of neighbours in the network (and 
their residual battery) of each node. 

- node_ID (16): the global identifier of the node 
generating the Hello packet. 

- residual_battery (8): the residual battery level (in 
percentage) of the node generating the Hello packet. 

Table 2 Description of control packets for routing. 

 
 
 

Data structure Description Sub-fields (number of bits) 

routing_table 
Table used to find a next-hop to 
deliver a data packet towards one of 
the available data sinks. 

Data structure with variable size. Each entry 
contains: 

- destination (16) 
- DSN (32) 
- active_route_flag (1) 
- valid_DSN_flag (1) 
- path_cost (16) 
- next_hop_ID (16) 

internal_SRREQ_ID 
Value (32 bits) contained in the 
data sinks used to discriminate 
SRREQs each other. 

- 

list_of_RSERR_IDs 
This list is used to avoid an 
indefinite flooding of a RSERR 
related to a specific data sink. 

Data structure with variable size. Each entry 
contains: 

- sink_ID (16) 
- RSERR_ID (32) 



internal_DSN 

Value (32 bits) of the Destination 
Sequence Number contained into 
the data sinks to keep trace of the 
logical timestamp of routes towards 
it. 

- 

list_of_waiting_RSERRs 
Structure to keep trace if the node 
has already sent a RSERR for a 
specific data sink. 

Data structure with variable size. Each entry 
contains: 

- sink_ID (16) 
- RSERR_ID (32) 

residual_battery 
The value (8 bits) of the internal 
power level of the node (in 
percentage). 

- 

list_of_neighbours 
List of the neighbours of the node, 
along with their residual battery 
levels. 

Data structure with variable size. Each entry 
contains: 

- neighbour_ID (16) 
- neighbour_residual_battery (8) 

Table 3 Routing node internal data structures. 

 
 
 

Event/routing 
procedure in each node 
with ID id 

Pseudo-code 

Initialization 
(event triggered at 
initial instant 𝑡𝑡0.) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

begin 
list_of_neighbours = ∅; 
pending_data_packets_buffer = ∅; 
list_of_waiting_RSERRs = ∅; 
routing_table = ∅; 
list_of_RSERR_IDs = ∅; 
internal_DSN = 0; 
internal_SRREQ_ID = 0; 

end 

Tree reconfiguration 
timeout  
(event triggered every 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 seconds in a data 
sink with ID id) 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

begin 
internal_SRREQ_ID = internal_SRREQ_ID + 1; 
internal_DSN = internal_DSN + 1; 
create a SRREQ packet p; 
p.SRREQ_ID = internal_SRREQ_ID; 
p.sink_ID = id; 
p.DSN = internal_DSN; 
p.path_cost = 0; 
send p in broadcast; 

end 

Hello timeout 
(event triggered every 
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 seconds) 

1 
2 
3 
4 
5 
6 

begin 
create a Hello packet p; 
p.node_ID = id; 
p.residual_battery = internal_residual_battery; 
send p in broadcast; 

end 

Handle Hello p from 
network 

1 
2 
3 
4 
5 
6 
7 

begin 
if list_of_neighbours already contains p.node_ID, 

update the residual battery of the entry; 
else 

list_of_neighbours = list_of_neighbours ∪ {p.node_ID, p.residual_battery}; 
end 

end 

Neighbour n 
unreachable 

1 
2 
3 
4 
5 

begin 
remove the entry related to n from list_of_neighbours; 
for each sink not present in list_of_waiting_RSERRs, with ID s_id, 

find the next-hop m to reach s_id in the routing table; 
if n == m, 



6 
7 
8 
9 
10 
11 
12 
 
13 
14 
15 
16 

set active_route_flag = 0 for the entry in question; 
list_of_RSERR_IDs[s_id] = list_of_RSERR_IDs[s_id] + 1; 
create a SRERR p; 
p.RSERR_ID = list_of_RSERR_IDs[s_id]; 
p.source_ID = id; 
p.sink_ID = s_id; 
list_of_waiting_RSERRs = list_of_waiting_RSERRs ∪ {s_id, … 
list_of_RSERR_IDs[s_id]}; 
send p in broadcast; 

end 
end 

end 

Handle data packet 
from the application 

1 
2 
3 
4 
5 
6 

begin 
find the sink with minimal path cost (with ID min_sink_id); 
retrieve the next-hop n to reach destination min_sink_id; 
perform eventual data aggregation; 
send the packet to node n; 

end 

Handle data packet 
from network 

1 
2 
3 
4 
5 

begin 
retrieve the next-hop n from the routing table; 
perform eventual data aggregation; 
forward the packet to node n; 

end 

Handle SRREQ p 
from neighbour n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 
25 
26 
27 

begin 
if n != p.sink_ID, 

Let rte be the routing table towards neighbour n (create it if does not exist); 
rte.destination = n; 
rte.next_hop_ID = n; 
if rte created now or rte.valid_DSN_flag == 0, 

rte. valid_DSN_flag = 0; 
rte.DSN = -1; 

end 
rte.path_cost = compute_cij(distance(id,n), list_of_neighbours[n].residual_battery); 
rte.active_route_flag = 1; 

else 
cost = p.path_cost + compute_cij(distance(id,n), 
list_of_neighbours[n].residual_battery); 
retrieve routing table entry with destination == p.sink_ID (let rte be this entry); 
if (rte == null) or (rte.active_route_flag == 0) or (rte.valid_DSN_flag == 0) or 
(p.sink_DSN > rte.DSN) or ((p.sink_DSN == rte.DSN ) and (cost < rte.path_cost)), 

rte.destination = p.sink_ID; 
rte.next_hop_ID = n; 
rte.path_cost = cost; 
rte.active_route_flag = 1; 
rte.valid_DSN_flag = 1; 
rte.DSN = p.sink_DSN; 
list_of_RSERR_IDs[p.sink_ID] = p.SRREQ_ID; 
remove the entry with p.sink_ID from list_of_waiting_RSERRs; 
send an updated SRREQ in broadcast, with the increased path cost (set equal 
to cost); 

end 
end 

end 

Handle RSERR p 
from neighbour  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

begin 
if id == p.sink_ID, 

if p.RSERR_ID >= internal_SRREQ_ID, 
internal_SRREQ_ID = p.RSERR_ID; 
internal_SRREQ_ID = internal_SRREQ_ID + 1; 
internal_DSN = internal_DSN + 1; 
create a SRREQ packet q; 
q.SRREQ_ID = internal_SRREQ_ID; 
q.sink_ID = p.sink_ID; 
q.DSN = internal_DSN; 
q.path_cost = 0; 



12 
13 
14 
15 
16 
17 
18 
19 
20 

send q in broadcast; 
end 

else 
if list_of_RSERR_IDs[p.sink_ID] < p.RSERR_ID, 

list_of_RSERR_IDs[p.sink_ID] = p.RSERR_ID; 
send p in broadcast; 

end 
end 

 end 

Table 4 Pseudo-code of the routing procedures. 

 
 
 

Name Size (bits) 
Sink Route Request (SRREQ) 96 
Route to Sink Error (RSERR) 64 
Hello 24 
 184 

Table 5 Size of control packets. 

 
 
 

Data structure Maximum size (bits) 
routing_table 82𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
internal_SRREQ_ID 32 
list_of_RSERR_IDs 48𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
internal_DSN 32 
list_of_waiting_RSERRs 48𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
residual_battery 8 
list_of_neighbours 24𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 

Table 6 Size of routing internal data structures. 

 
 

 

Table 7 Number of execution (in the worst case) of routing procedures. 

 

Routing procedure Complexity of operations for each routing procedure (in the worst case) 
Initialization 𝑂𝑂(1) writes 
Tree reconfiguration 
timeout  

𝑂𝑂(1) reads +  𝑂𝑂(1) writes +  𝑂𝑂(1) sums +  𝑂𝑂(1) message transmissions 
(of SRREQ packet) 

Hello timeout 𝑂𝑂(1) reads +  𝑂𝑂(1) message transmissions (of Hello packet) 
Handle Hello p from 
network 

𝑂𝑂(𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀) reads +  𝑂𝑂(1) writes 

Neighbour n 
unreachable 

𝑂𝑂(𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀) reads + 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) reads/writes/sums/message transmissions (of 
RSERR packets) 

Handle data packet 
from the application 

𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) reads +  𝑂𝑂(1) message transmissions (of data packet) 

Handle data packet 
from network 

𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) reads +  𝑂𝑂(1) message transmissions (of data packet) 

Handle SRREQ p from 
neighbour n 

𝑂𝑂(𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) reads + 𝑂𝑂(1) sums + 𝑂𝑂(1) writes + 𝑂𝑂(1) message re-
transmissions (of SRREQ packet) +  𝑂𝑂(1) link cost computation. 

Handle RSERR p from 
neighbour 

 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) reads + 𝑂𝑂(1) writes + 𝑂𝑂(1) message re-transmissions (of 
RSERR packet) 



 
 

Operation  Number of executions (in the worst case) 
Read 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀) 
Write 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  
Sum 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  
Link cost computation 𝑂𝑂(1) 
Message transmissions 𝑂𝑂(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Table 8 – Complexity of a single routing procedure in the worst case. 

 
 
 

Algorithm Minimum node lifetime 
[days] 

Network disconnection time 
[days] 

Amount of data received at the 
data sink [MB] 

Shortest path algorithm 6.67 17.92 21.83 

Proposed energy-aware algorithm 17.50 17.65 21.78 

Table 9 Minimum node lifetime (in days), network disconnection time (in days) and data received at 
the data sink (in MB) in the preferable coverage scenario (low resiliency and accurate positioning). 

 
 

 

Algorithm 
Minimal coverage Preferable coverage Extended coverage 

Min. Node. 
Lifetime 

Disc. 
Time 

Rec. 
Data  

Min. Node. 
Lifetime 

Disc. 
Time 

Rec. 
Data  

Min. Node. 
Lifetime 

Disc. 
Time 

Rec. 
Data  

Shortest path 
algorithm 32.2 59.06 13.65 6.67 17.92 21.83 2.29 6.41 21.90 

Proposed 
algorithm 61.79 61.87 14.64 17.50 17.65 21.78 6.15 6.31 21.93 

Table 10 Minimum node lifetime (in days) in the three low resiliency and accurate positioning 
scenarios. 

 
 

 

Algorithm 
Data 

fusion 
ratio 

Minimal 
coverage 

Preferable 
coverage 

Extended 
coverage 

1 sink in the centre 1 61.79 17.5 6.15 

4 sinks uniformly 
distributed 

1 42.33 21.56 7.29 
2 78.48 37.40 13.02 

Table 11 Minimum node lifetime (in days) in the low resiliency and accurate positioning scenarios, 
in function of the number of sinks. The proposed link cost is evaluated. 
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