
Social optimum in Social Groups with
Give-and-Take criterion

Saurabh Aggarwal, Joy Kuri

Department of Electronic Systems Engineering,
Indian Institute of Science, Bangalore, India,

Email: saggarwal@cedt.iisc.ernet.in, kuri@cedt.iisc.ernet.in

Rahul Vaze

School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai, India

Email: vaze@tcs.tifr.res.in

Abstract—We consider a “Social Group” of networked nodes,
seeking a “universe” of segments. Each node has subset of the
universe, and access to an expensive resource for downloading
data. Alternatively, nodes can also acquire the universe by
exchanging segments among themselves, at low cost, using a local
network interface. While local exchanges ensure minimum cost,
“free riders” in the group can exploit the system. To prohibit
free riding, we propose the “Give-and-Take” criterion, where
exchange is allowed if each node has segments unavailable with
the other. Under this criterion, we consider the problem of
maximizing the aggregate cardinality of the nodes’ segment sets.
First, we present a randomized algorithm, whose analysis yields
a lower bound on the expected aggregate cardinality, as well as
an approximation ratio of 1/4 under some conditions. Four other
algorithms are presented and analyzed. We identify conditions
under which some of these algorithms are optimal

I. INTRODUCTION AND RELATED WORK

We consider a “Social Group” [1] of networked nodes,
where each node is looking for a common set of data
files/segments (henceforth refereed to as the “universe”) [2],
[3]. The group has access to a common resource for down-
loading segments which is high cost, for example cost can
be delay, license fee, transmission power etc. On the other
hand, the nodes can exchange data among themselves at much
lower cost possibly because of physical proximity, mutual
self-help cooperation etc.. Initially, each node has a subset
of the universe, and it is interested in acquiring all other
pieces of the universe through the low cost local area network
rather than the high cost common resource to reduce the
overall download cost. Various popular applications based
on this concept include web caching, content distribution
networks, peer-to-peer networks, etc., with the common theme
of leveraging low-cost data exchange instead of consuming
expensive resources. More recently, device-to-device (D2D)
communication in cellular wireless networks is another exam-
ple of such a social group, where mobile phones can either
directly talk to other mobile phones without going through the
base station or help other mobiles in their communication.

Principle assumption in resource sharing is cooperation and
willing participation of all nodes. In particular, a node should
be willing to let other nodes obtain data from it. Typically,
selfish nodes are reluctant to provide data/help to others; on
the other hand, they are keen to grab as much as possible from

other nodes. In a peer-to-peer networking context, such selfish
nodes are termed free riders. In a scenario with a large social
group of nodes, it is very likely that nodes do not “know” one
another, and hence do not trust each other. This lack of trust
acts as a deterrent to sharing, to the detriment of the whole
community.

For rational nodes, free riding is the dominant strategy.
However, if every node engages in free riding, there will
be a complete breakdown of sharing. To discourage free
riding, various policies and methods have been proposed in the
context to peer-to-peer networks [4]–[10]. Policy counterparts
of these can be used to counter the free riding problem in
social groups also. Often, however, these policies suggest and
incentivize good behavior, but do not enforce it. Selfish users
manage to find weaknesses that can be exploited. Various types
of attacks (such as whitewashing, collusion, fake services,
Sybil attack [9], [11], [12]) are possible in P2P networks [9].
Similar attacks can be launched by nodes in social groups as
well.

To prohibit free riding, we propose the Give-and-Take (GT)
criterion for segment exchange. Essentially, the idea is that
a node A can download segments from another node B if
and only if A offers at least one new segment to B. Thus, a
notion of fairness is built into the GT criterion— A cannot get
anything from B unless she offers B something in return. Each
side has to contribute at least one segment that the other side
does not have. In this paper, we study the special case of “Full
Exchange,” in which nodes exhibit altruistic behaviour — A is
willing to provide all segments it possesses even if she gets just
one segment from B. Because of this, after an exchange, both
A and B will possess the union of their individual segment
sets before exchange.

Incorporating the GT criterion in our model, we study
the problem of scheduling exchanges complying with the
GT criterion, so that the aggregate number of data segments
available with all the nodes can be maximized. The motivation
is reduced cost of downloading—if the aggregate number of
data segments acquired through low cost local exchanges is
maximized, then the total number of segments to be down-
loaded using the high-cost resource is least.

Given data segment sets at each node, there may be several
pairs of nodes that satisfy the GT criterion and different

ar
X

iv
:1

30
8.

19
11

v1
 [

cs
.N

I]
 8

 A
ug

 2
01

3

2

choices for data exchange lead to different final aggregate car-
dinalities. Identifying the optimal schedule of data exchange
that maximizes the aggregate cardinality of data segments
available at all nodes is a combinatorial problem with exponen-
tial complexity (NP−hard). The complexity of the problem
can be accessed from a simple example illustrated in Fig.
1, where there are only 4 nodes and the universe size is 5,
and there are exponentially many data exchange schedules.
Finding the one with optimal final aggregate cardinality is a
challenging task.

This paper makes the following contributions.

• We propose the novel GT criterion, which prohibits free
riding in social groups. This, we believe, is a new con-
cept that will help understand the fundamental principles
of data sharing in local networks under fair exchange
models.

• We propose a Randomized algorithm, that works in
phases, where in each phase it randomly picks a pair
of nodes for exchange. If the chosen pair satisfies the GT
criterion, then the exchange happens, otherwise the two
nodes are kept aside and a new pair is chosen randomly
again. The phase ends when all pairs are exhausted.
We show that the randomized algorithm is optimal for
maximizing the aggregate cardinality when the number
of nodes is very large. We also show that the aggregate
cardinality obtained by the randomized algorithm is at
least 1/4 times of the optimal aggregate cardinality under
some conditions, thus providing a 4 approximation.

• We propose a Greedy-Links algorithm that, at each step,
pairs those nodes so that the number of possible ex-
changes in the next step is maximized. We show that
this algorithm is optimal for small number of nodes, e.g.
4.

• We propose shifted round-robin algorithm called the
Polygon algorithm, that in each phase exchanges seg-
ments between neighboring nodes (certain predefined
order of nodes), and then for the next phase, repeats the
process after circularly left shifting the order of nodes.
The polygon algorithm is shown to be optimal when each
node has at least one unique segment.

• We propose two more algorithms, the first (called the
Greedy-Incremental Algorithm) exchanges nodes that
maximize the aggregate cardinality in next phase, while
the second (called the Rarest First Algorithm) chooses
that pair for exchange such that subset of segments with
the minimum number of nodes is maximized.

• By means of extensive simulation results, we show that
the Greedy links algorithm performs the best, since it tries
to maximize the potential for nodes to exchange their
pieces. Rarest first algorithm comes a close second to the
Greedy links algorithm, while the Randomized algorithm
on an average outperforms Greedy incremental algorithm
and Polygon algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of nodes, M = {1, 2, · · · ,m} and a
universe N = {1, 2, · · · , n} of segments. Each node i ∈ M
has an initial collection of segments Oi ⊂ N .

Give-and-Take (GT) criterion: Two nodes i, j ∈ M with
segment sets Xi and Xj , respectively, can exchange segments
if and only if Xi ∩Xc

j 6= ∅ and Xc
i ∩Xj 6= ∅, i.e. node j

has at least one segment which is unavailable with node i and
vice versa. After exchange, both nodes have the segment set
Xi ∪Xj .

We consider the set of nodes M as the vertices in an
undirected graph G, where an edge or link exists between two
vertices i, j ∈M if and only if they satisfy the GT criterion.
We denote the link between nodes i and j by the unordered
2-tuple (i, j). By activating/pairing an edge/link we mean that
the two nodes on that edge exchange their segments.

Given an initial collection of segment sets Oi, a schedule S
is a repeated activation of links (exchange of nodes) in graph
G, in a given order. Note that since one link activation changes
the graph G, we denote the dynamic graph G as GS(r), where
subscript S stands for the schedule of node exchanges/link
activations over graph G and r stands for the rth step of
schedule S. Thus, GS(r) is a graph with vertex set M, and
where an edge between two vertices i, j ∈ M exists if they
satisfy the GT criterion at the rth iteration of schedule S.

For example, in GB(3) of Fig. 1(b), i.e. in 3rd step of
schedule B, links exist between node 1 and 4, node 3 and 4
and node 2 and 4. If link (2, 4) is activated, then node 2 gets
segment 5 from node 4, and node 4 gets segments 2, 3, 4 from
node 2. Thus, for GB(4) the graph is completely disconnected
since no two nodes satisfy the GT criterion.

We represent schedule S as a row vector of links in the order
of activation and |S| denotes the number of link activations
in the schedule S. We denote the set of available links after r
activations of a schedule S by L(S, r).

Let Oi(S, r) denote the set of segments with node i ∈ M
after the first r activations of schedule S. In this context,
Oi(S, 0) = Oi denotes the initial collection of segments with
node i ∈ M. Similarly, L([·], 0) denotes the set of links that
exist between the initial segment sets.

A Maximal Schedule is a schedule which cannot be ex-
tended by any other link activations, i.e. at the end of the
maximal schedule the GT criterion is not satisfied between any
pair of nodes. Let X denote the set of all Maximal Schedules.

For any schedule S, let [S, (i, j)] denotes the schedule which
follows all link activations in S, followed by activation of the
link between node i and j such that (i, j) ∈ L(S, |S|).

In Fig. 1(b), schedule SB is being followed for link
activation. We activate link (1, 3) and both the nodes 1
and 3 will have segment sets O1(SB , 1) = O3(SB , 1) =
O1 ∪ O3. We can activate either of links in L(SB , 1) =
{(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}. Now, activating link (1, 2)
followed by link (2, 4), leads us to graph GSB

(4) where
no links exist between any of the nodes. Hence, SB is
a maximal schedule which will be represented as SB =
[(1, 3), (1, 2), (2, 4)].

3

(a) Evolution of nodes’ segment set under schedule SA; Aggrgate cardinality
under schedule SA is 20

(b) Evolution of nodes’ segment set under schedule SB ; Aggrgate cardinality
under schedule SB is 17

Fig. 1. Evolution of nodes’ segment set under two different schedules.
Nodes are numbered in the rounded squares. Node set is M = {1, 2, 3, 4}
and Universe is N = {1, 2, 3, 4, 5}.

Assumptions

A1: We assume that the cost of exchange between nodes is
zero or negligible as compared to the cost of downloading
the segment from outside the set M similar to [3].

A2: Oi 6= ∅, and Oi 6= N , ∀ i ∈M.

Computing the Social optimum

The aggregate cardinality on completion of a maximal
schedule S is denoted by α(S) =

∑
i∈M |Oi(S, |S|)|. Our

objective is to find a schedule of link activations S∗, such that
the total number of segments available with the nodes, i.e.,
the aggregate cardinality on completion of S∗, is maximized.
Formally, we want to find

max α(S). (1)
Subject to: S ∈ X

Note that a trivial upper bound to α(S) ≤ mn for even-m
and α(S) ≤ mn − 1 for odd-m, that will be useful later in
the paper.

To understand the implications of solving (1), note that to
begin with, the number of “missing” pieces in the network is
(mn−

∑
i∈M |Oi|). After the completion of optimal schedule

S∗, at most (mn− α(S∗)) segments will need to be fetched
using the expensive resource, thus solving (1) minimizes the
social cost.1

The optimal schedule (solution) to (1) is the social optimum,
however, solving (1) has exponential complexity, that makes
it computationally infeasible. Even for simple examples, as
in Fig. 1, there are many possible schedules, and different
schedules lead to different aggregate cardinalities, e.g. with
schedule SA every node can get the universe while with
schedule SB only two nodes can get the universe. In the rest of

1There is a possibility for nodes to download few segments over the high
cost network after S∗ and again use the low cost network for exchanges
among themselves. This process might be repeated recursively.

the paper, we propose several polynomial-time algorithms to
solve (1) and bound their performance analytically and through
extensive simulations.

Next, we derive an important property of the the GT
criterion based segment exchanges in Lemma 1.

Lemma 1. For any maximal schedule S and Oi (⋃
j∈MOj ∀i, j ∈ M, at least two nodes will have

⋃
i∈MOi

towards the end of schedule S.

Proof: We reorder the nodes in ascending order
of cardinalities at the end of S and index them as
i1, . . . , im: |Oi1(S, |S|)| ≤ |Oi2(S, |S|)| · · ·

∣∣Oim−1
(S, |S|)

∣∣ ≤
|Oim(S, |S|)|. By the GT criterion, if a link does not exist
between the nodes i and j, then Oi ⊆ Oj or Oj ⊆ Oi.
Therefore,

Oi1(S, |S|) ⊆ Oi2(S, |S|) · · ·Oim−1
(S, |S|) ⊆ Oim(S, |S|).

Since the cardinalities of nodes im−1 and im are the
largest and second largest, and each link activation pro-
duces two nodes with same subset of segments, therefore
Oim−1

(S, |S|) = Oim(S, |S|). Since there is no link between
im−1, im and any other node, the segment sets of nodes im−1
and im are supersets of segments available with all other
nodes, therefore

Oim−1(S, |S|) = Oim(S, |S|) =
⋃
i∈M

Oi (S, |S|) =
⋃
i∈M

Oi.

Hence, at least two nodes will have ∪i∈MOi at the end of any
maximal schedule S.

Corollary 1. For any S ∈ X ,

α(S) ≥ 2

∣∣∣∣∣ ⋃
i∈M

Oi

∣∣∣∣∣+ ∑
i∈M\{im−1,im}

|Oi| ,

where im−1 and im are two nodes having the maximum
cardinalities at the end of schedule S.

Hence, Lemma 1, shows that for any maximal schedule at
least two nodes with get the whole realized universe, where
by realized we mean the union of segments available with all
nodes. In Lemma 2, we derive the probability that the realized
universe is equal to the universe, when each node gets k-
segments uniformly randomly drawn from universe N .

Lemma 2. Let each of the m nodes select k segments
uniformly at random from a universe N . Then

P

 m⋃
j=1

Oj = N

 =

{
pm,n,k ifmk ≥ n,
0 otherwise.

Proof: Evidently, if mk < n, then P
(⋃

j∈MOj = N
)
=

0. The interesting case is when mk ≥ n, for which

P
(⋃

j∈MOj = N
)

=
No of favourable cases

Total number of possibilities
. The

number of k element subsets of N =
(
n
k

)
. Total number of

possibilities=
(
n
k

)m

4

pm,n,k is defined here for the sake of convenience; it is used in Lemma 2.

pm,n,k =

(
n

k

)−m ∑
∑m−1

j=1 kj = mk − n
(k1, k2 · · · km−1)

m∏
j=1

(
(j − 1)k −

∑j−2
i=1 ki

kj−1

)(
n− ((j − 1)k −

∑j−2
i=1 ki)

k − kj−1

)
. (2)

Calculating the number of favourable cases: If mk >
n, some elements must appear in the segment sets of
several nodes. The total number of repeated elements is
given by (mk − n). Let us assume |O2

⋂
O1| = k1,

|O3

⋂
(O1

⋃
O2)| = k2, . . . ,

∣∣∣Om

⋂(⋃m−1
i=1 Oi

)∣∣∣ = km−1.

Therefore,
∑m−1

j=1 kj = mk − n. The number of ways of
choosing O1 =

(
n
k

)
. O2 has k1 elements in common with

O1, so k1 elements should be chosen from O1 (consisting of
k elements) and the remaining (k − k1) elements should be
chosen from the remaining (n − k) elements. This gives the
number of ways of choosing O2 as

(
k
k1

)(
n−k
k−k1

)
.

Similarly, O3 has k2 elements in common with O1 and O2,
so k2 elements should be chosen from O1 ∪ O2 (consisting
of (2k − k1) elements) and the remaining (k − k2) elements
from (n− (2k− k1)) elements. Thus, the number of ways of
choosing O3 is

(
2k−k1

k2

)(
n−(2k−k1)

k−k2

)
.

In the same way, the number of ways of choosing Oj is(
(j − 1)k −

∑j−2
i=1 ki

kj−1

)(
n− ((j − 1)k −

∑j−2
i=1 ki)

k − kj−1

)
.

Hence, the total number of ways of choosing
O1, O2 · · ·Oj · · ·Om for a given (k1, k2 · · · kj−1 · · · km−1) is

m∏
j=1

(
(j − 1)k −

∑j−2
i=1 ki

kj−1

)(
n− ((j − 1)k −

∑j−2
i=1 ki)

k − kj−1

)
.

To get the total number of favorable cases, we need to sum
over all possible values of (k1, k2 · · · kj−1 · · · km−1) for which∑m−1

j=1 kj = (mk − n). Therefore,

P

 m⋃
j=1

Oj = N

 =

{
pm,n,k ifmk ≥ n,
0 Otherwise.

Corollary 2. The probability that at least one node will have
the universe N at the end of any schedule S ∈ X is pm,n,k.

Proof: This follows from Lemma 1 and Lemma 2.

III. ALGORITHMS

A. Randomized Algorithm

We first present a randomized algorithm to solve (1). The
randomized algorithm works in phases. In each phase, two
nodes are uniformly randomly chosen for exchange. If they
have an edge between them in the corresponding graph, i.e.
satisfy the GT criterion, then they exchange their segments,
otherwise they are kept aside without any exchange. Once a

pair is chosen in a phase, with or without actual exchange,
it takes no further part in that phase. The phase ends when
choice of all pairs is exhausted, and then the new phase starts
all over again, forgetting what happened in earlier phases. The
algorithm terminates when there are no more links available
in the graph after the end of any phase.

Algorithm 1 Randomized Algorithm
1: r := 0, p := 1 and Srand := [·]
2: while L(Srand, r) 6= ∅ do
3: Mpick :=M
4: while Mpick 6= ∅ do % phase p begins
5: Select nodes i and j at random from Mpick

6: if (i, j) ∈ L(Srand, r) then
7: Activate link between nodes i and j
8: Srand ← [Srand, (i, j)]
9: r ← r + 1

10: end if
11: Mpick ←Mpick\ {i, j}
12: end while % phase p ends
13: p← p+ 1
14: end while

Theorem 1. If initial segment sets (Oi’s) are chosen uniformly
at random from N , with |Oi| = k, 1 ≤ k ≤ n− 1, ∀ i ∈M,

1) Then the randomized algorithm is asymptotically optimal
in m, i.e. for large m, E(α(Srand)) = nm, where nm
is the upper bound on (1).

2) The randomizeed algorithm is a 4 approximation to (1),

if k ∈
[
min

(
n

log2m
,
n

4

)
, n− 1

]
.

Proof: We define a phase as a round of link activations
in steps 4-12 of Algorithm 1. For notational convenience, let
sip = |O(i,p)|, where O(i,p) denotes the segment set with node
i at the beginning of phase p. At the start of phase 1, each node
has si1 = k segments, that are uniformly randomly picked from
the universe. Since the algorithm is randomized, we focus on
a particular node i for analysis, and let in phase p, assume
that node i and jp are paired, where jp is uniformly randomly
chosen among the other m− 1 nodes.

The segment set at ith node at the beginning of phase p

is O(i,p) =
{
e1, e2, · · · , e|O(i,p)|

}
. For every phase p, and

any segment e ∈ O(jp,p), we define the random variables
Xe(jp, p):

Xe(jp, p) =

{
1 e /∈ O(i,p),

0 otherwise.

5

Let M0 = {i} and Mp denote the subset of nodes that
have been influenced by node i by the end of phase p − 1.
The set of influenced nodes is inductively defined to be all
nodes that have had any pairings with node i until phase p−1.
For example, if node i and node 2 are paired in phase 1, and
nodes 2 and 4 are paired in phase 2, then M3 = {i, 2, 4}.
Note that |Mp| ≤ 2p−1 since in any phase only two nodes
are paired with each other and therefore influence of i grows
only two-folds in each phase.

For phase 1, node i’s segment set cardinality increase after
exchange, (si2 − si1), will equal the number of segments that
are available with node j1 but not with node i, i.e.

E
(
si2 − si1|j1 /∈M0

)
= E

 ∑
e∈O(j1,1)

Xe

∣∣∣∣∣∣ j1 /∈M0

 ,

(a)
=

∣∣O(j1,1)

∣∣P (Xe = 1) ,

(b)
= k

(
1− k

n

)
.

where (a) follows from linearity of expectation and since
M0 = {i} implying that {j1 /∈ M0} is always true, and
(b) follows from P (Xe = 1) = (1 − k

n) for every e. Moving
on to phase 2, similarly, E

(
si3 − si2

∣∣ j2 6∈ M1,
∣∣O(i,2)

∣∣ = c2
)

=E

 ∑
e∈O(j2,2)

Xe

∣∣∣∣∣∣ j2 6∈ M1,
∣∣O(i,2)

∣∣ = c2

 ,

=E(sj22)
(
1− c2

n

)
.

Then E(si3 − si2
∣∣ j2 6∈ M1),

=
∑
c2

E
(
si3 − si2

∣∣ j2 6∈ M1,
∣∣O(i,2)

∣∣ = c2
)
P(
∣∣O(i,2)

∣∣ = c2)

= E(sj22)

(
1− E(si2)

n

)
, (3)

where (3) follows from linearity of expectation, and more
importantly from the fact that for j2 6∈ M1, Oi,2 and Oj2,2

are independent, since initially all segments at all nodes were
drawn uniformly randomly and node j2 has had no exchange
with any node that had an exchange with node i, consequently,
si2 and sj22 are independent. Also note that since the algorithm
is randomized, sj22 and si2 are identically distributed, hence
E(sj22) = E(si2), and from (3)

E(si3 − si2
∣∣ j2 6∈ M1) = E(si2)

(
1− E(si2)

n

)
. (4)

Generalizing (4) for any phase p,

E(sip+1 − sip
∣∣ jp 6∈ Mp−1) = E(sip)

(
1−

E(sip)

n

)
, (5)

Since |Mp| ≤ 2p−1, P (jp 6∈ Mp−1) ≥

max
(
m− 2p−1, 0

)
m− 1

. Therefore, from (4)

E(sip+1 − sip) ≥ E(sip+1 − sip
∣∣ jp 6∈ Mp−1)P (jp 6∈ Mp−1) ,

≥ E(sip)

(
1−

E(sip)

n

)(
max

(
m− 2p−1, 0

)
m− 1

)
.

Therefore, the expected cardinality of node i at the end of
phase p is given by E(sip+1)

≥ E(sip) + E(sip)

(
1−

E(sip)

n

)(
max

(
m− 2p−1, 0

)
m− 1

)
(6)

∀ p ≥ 2. Expected aggregate cardinality at the end of phase p
is given by mE(sip+1).

For any m, we can find a natural number a such that
2a−1 < m ≤ 2a. Then, for iterations p = 2 to a − 1,(
max

(
m− 2p−1, 0

)
m− 1

)
>

1

2
. Thus, E(sip+1)

≥ E(sip) + E(sip)

(
1−

E(sip)

n

)(
max

(
m− 2p−1, 0

)
m− 1

)
,

≥ E(sip) +
E(sip)

2

(
1−

E(sip)

n

)
, p = 1, . . . , a− 1. (7)

Noting that a− 1 = blog2mc, we have E(siblog2 mc+1)

≥ E(siblog2 mc) +
E(siblog2 m)c

2

(
1−

E(siblog2 mc)

n

)
Now the sequence E(siblog2 mc) is monotonically nondecreas-
ing and bounded above by n; hence, the sequence converges to
n. Adding the cardinality of all nodes, we get α(Srand) ≥ nm.
Thus, asymptotically in m, i.e. for large number of nodes, the
randomized algorithm achieves the optimal solution to (1),
since nm is an upper bound on the aggregate cardinality of
(1). This proves part (1) of the Theorem.

For part (2), we note that function x
2 (1 −

x
n) is a concave

function for x = k, k + 1, . . . , n, with maximum at x = n/2,
and increasing from x = k, . . . , n/2. Hence from (7), either

E(sip+1) > n/4 or E(sip)

(
1−

E(sip)

n

)
> k for phases

p = 1, . . . , a − 1. In the former case, adding the cardinality
across m nodes, we have α(Srand) ≥ mn

4 . In the latter
case, E(sia) > ka

2

(
1− k

n

)
by adding for a phases, and

α(Srand) ≥ mka
2

(
1− k

n

)
. We only consider k < n

2 , since
otherwise we already have the 4-approximation, for which
case

(
1− k

n

)
> 1

2 . Since a = log2m, if k log2m > n, then
mka
2

(
1− k

n

)
= mk log2 m

2

(
1− k

n

)
> mn

4 as required. The
proof for k > n

4 is immediate.

B. Greedy-Links Algorithm

The Greedy-Links algorithm works by examining the impact
of a choice (i, j) on the number of links in the graph after i
and j are paired. At each decision point, the algorithm chooses
that pair for which the number of links in the resulting graph is

6

maximized. Ties are broken arbitrarily. The idea is motivated
by the observation that if the number of links in the graph is
large, then it is likely that the maximal schedule will be longer,
and closer to an optimal one. The resulting maximal schedule
is denoted by SGlink. Algorithm 2 shows the pseudo-code.
Time complexity for greedy-links algorithm is θ(m6).

Algorithm 2 Greedy-Links Algorithm
1: r := 0 and SGlink := [·]
2: while L (SGlink, r) 6= ∅ do
3: w(i,j) := |L ([SGlink, (i, j)] , r + 1)| ∀ (i, j) ∈
L (SGlink, r)

4: (i, j) = argmax
(i,j)∈L(SGlink,r)

w(i,j) % Ties are broken

arbitrarily
5: Activate link between node i and j
6: SGlink ← [SGlink, (i, j)]
7: r ← r + 1
8: end while

We next show that Greedy Links algorithm can be shown to
be optimal under certain cases. Even though the results stated
next are for very restrictive scenarios, however, we conjecture
that Greedy Links algorithm is close to optimal for all cases.

Proposition 1. For m = 4 nodes, if each node has a segment
set Oi consisting of exactly k segments. Then, the Greedy Links
algorithm is optimal.

Proof: The proof follows by examining all possible
equivalent graphs with 4 nodes having identical number of
k segments, and then checking for optimality by brute force.
We skip the details due to space constraints.

Proposition 2. For m = 4 nodes such that optimal aggregate
cardinality is 4n, i.e. all nodes can get all segments of
the universe with an optimal algorithm. Then the aggregate
cardinality achieved by the Greedy links algorithm is also 4n,
i.e., if α(S∗) = 4n then α(SGlink) = 4n.

Proof: Without loss of generality, we only consider the
case when none of the 4 nodes have all the segments of the
universe to begin with.

Claim 1: For the optimal schedule S∗, |L(S∗, `)| ≥ 4, where
for the first time after ` exchanges any two nodes can exchange
to get all the segments of the universe.

Consider the optimal schedule S∗. From the hypothesis of
the claim, the length of S∗ is ` + 2, |S∗| = ` + 2, since
for the optimal schedule all nodes can get all segments of the
universe and that can happen in two exchanges after `. For S∗,
after the ` + 1th exchange, the number of links available is
|L(S∗, `+ 1)| = 1, since two nodes have necessarily obtained
all segments of the universe and cannot have links to any other
nodes, and the only link present is between the remaining two
nodes. Without any loss of generality, let us assume that (1, 2)
link is still active after `+1 exchanges, L(S∗, `+1) = {1, 2}.

Hence, link (3, 4) was activated in the `+ 1th exchange in
S∗, such that O3(S

∗, `) ∪ O4(S
∗, `) = N . Also, O1(S

∗, `) ∪

O2(S
∗, `) = N as S∗ ensures that all nodes get all the

segments of the universe. Also note that (` + 1)th activation
yields first pair of nodes having universe.

Therefore, after ` exchanges, node 1 has an edge to node
2, and an edge to at least either of nodes 3 or 4, since
O1(S

∗, `) ⊂ N , O3(S
∗, `) ⊂ N , O4(S

∗, `) ⊂ N and
O3(S

∗, `) ∪ O4(S
∗, `) = N . Similarly, node 2 will have an

edge either to node 3 or 4. Therefore, |L(S∗, `)| ≥ 4.
Claim 2: For Greedy links algorithm schedule SGlink, if

all nodes do not get all the segments of the universe, then
|L(SGlink, `)| ≤ 3, where for the first time after ` exchanges
SGlink algorithm activates two nodes such that they get all the
segments of the universe.

Subclaim 2.1: Under the hypothesis of Claim 2, the length
of the SGlink schedule is `+ 1, i.e. |SGlink| = `+ 1.

The proof of Subclaim 2.1 is immediate since otherwise
SGlink algorithm (by definition) would not have activated two
nodes such that they get all the segments of the universe, and
from the fact all nodes do not get all the segments of the
universe.

At the `+ 1th exchange, let nodes 1 and 2 exchange their
pieces. Since |SGlink| = ` + 1, this will be the last possible
exchange. Therefore, after the `th exchange, if node 3 has
edge to both node 1 and 2, then node 4 cannot have an edge
to either node 1 or 2, since otherwise the SGlink algorithm
will not be at its last possible exchange. Hence, after the `th

exchange, the set of edges are either (1, 2), (1, 3), (1, 4) or
(1, 2), (2, 3), (2, 4), proving Claim 2.

The proof of the Theorem follows by a contrapositive
argument to Claim 2, i.e. if we show that |L(SGlink), `)| ≥ 4,
where for the first time after ` exchanges SGlink algorithm
activates two nodes such that they get all the segments of
the universe, then with SGlink algorithm all nodes get all the
segments of the universe.

The claim that |L(SGlink), `)| ≥ 4, follows from the fact
the the optimal algorithm does so (Claim 1) and the fact that
Greedy links SGlink algorithm keeps maximum number of
links alive, and using brute force we can verify that SGlink

will also have at least 4 edges when for the first time a pair
of nodes exchange to get all the segments of the universe.

C. Polygon Algorithm

The polygon algorithm is defined for a set of nodesMU ⊆
M, such that each node i ∈ MU has at least one unique
segment with itself, i.e., Oi\

⋃
j∈MU\{i}Oj 6= ∅ ∀i ∈MU .

Let us consider a row vector P which is a permutation of
nodes in MU . We define the left circular shift of the row
vector P : P =

[
i1, i2, i3, · · · , i|MU |

]
, LeftCircShift(P) =[

i2, i3, i4, · · · , i|MU |, i1
]
.

The proposed polygon algorithm in each round, picks two
neighboring nodes in P starting from left, and activates the
link between them and repeats this process until there are no
pairs left. In the next round, the above procedure is repeated
with LeftCircShift(P). Note that this algorithm critically
depends on the choice of starting permutation P . The starting
permutation used in round 1 is the one that has the smallest

7

number of unique segments placed at the right most location.
For the case when, MU ⊂M, for maximizing the aggregate
cardinality with the polygon algorithm, we need to find the
subset MU with the largest cardinality. This, however, is a
combinatorial problem and we use a greedy algorithm for this
purpose that has linear complexity. The complexity of polygon
algorithm is θ(m3). Algorithm 3a provides the pseudo-code.

Algorithm 3a Polygon algorithm
1: Find MU , Algorithm 3b,
2: while

∣∣MU
∣∣ ≥ 2 do

3: Let M be any permutation of MU % the GT
criterion is satisfied for any pair of nodes in MU

4: l := 0, r := 0, Spoly := [·]

5: while l ≤

⌊∣∣MU
∣∣− 1

2

⌋
do

6: for p = 2 : 2 :
∣∣MU

∣∣−1 do% p is a even number
7: i← (p− 1)th element in M, j ← pth element

in M
8: Activating link between i and j
9: Spoly ← [Spoly, (i, j)], r ← r + 1

10: end for
11: M ← LeftCircShift(M)
12: l← l + 1
13: end while
14: Find MU

15: end while

Algorithm 3b Find MU

1: Mpick :=M and MU := ∅
2: while Mpick 6= ∅ do
3: Choose a element i from Mpick

4: if Oi \ ∪j∈MUOj 6= ∅ and min
j∈MU

|Oj \Oi| 6= 0 then

5: MU ←MU ∪ {i}
6: end if
7: Mpick ←Mpick \ {i}
8: end while

For the special case of MU = M, i.e. each node has
an unique segment, we show that the polygon algorithm is
optimal for solving (1).

Proposition 3. If MU =M, then the polygon algorithm is
optimal for solving (1).

Proof: For lack of space, the proof is best described with
a figure. In Fig. 2, we consider m = 7 nodes and each node i
contains at least one unique segment denoted by i. Each node
can contain more segments, however, it is sufficient to just
consider the unique segments. The figure is self-explanatory
given the polygon algorithm, and in this odd-m case achieves
aggregate cardinality mn − 1, where except one node every
other node gets the universe, while for even-m case every
node gets the universe and achieves the aggregate cardinality
of mn, that is maximum possible for (1). If all segments of

the universe are not seen by at least one node, then replace n
by |∪i∈MOi|, and the algorithm is still optimal.

Fig. 2. Demonstration of Polygon algorithm.

D. Greedy-Incremental Algorithm

The Greedy-Incremental algorithm works at each decision
epoch, chooses that pair of nodes for exchange that has
maximum sum of newly added segments to each node after
the exchange. To each link (i, j) ∈ L (SGinc, r), we assign
a weight w(i, j) (in step 3 of Algorithm 4) given by the
increment of aggregate cardinality if (i, j) is activated. The
link with the maximum weight is selected for activation.
Ties are broken randomly. Greedy-Incremental algorithm has
complexity of θ(m4).

Algorithm 4 Greedy-Incremental Algorithm
1: r := 0 and SGinc := [·]
2: while L(SGinc, r) 6= ∅ do
3: w(i,j) := 2 |Oi(SGinc, r) ∪Oj(SGinc, r)| −
|Oi(SGinc, r)| − |Oj(SGinc, r)| ∀(i, j) ∈ L(SGinc, r)

4: (i, j) = argmax
(i,j)∈L(SGinc,r)

w(i,j) % Ties are broken

arbitrarily
5: Activate link between node i and j
6: SGinc ← [SGinc, (i, j)]
7: r ← r + 1
8: end while

E. Rarest First Algorithm

Rarest first algorithm activates the link so that availability
for the subset of segments with the minimum number of nodes
is maximally increased. The steps have been described in
detail in Algorithm 5. Rarest first algorithm has complexity
of θ(nm4).

In each round (Lines 2-9), universe N is divided in m
partitions such that pth partition Np of segments is avail-
able with p nodes. The function f (Np, (i, j)) evaluates the
increment in the availability of segments in Np if the link
between nodes i and j are allowed to exchange segments

8

Algorithm 5 Rarest first Algorithm
1: r := 0, Srare := [·]
2: while L(Srare, r) 6= ∅ do

3: Np :=

{
e ∈ N :

∑
j∈M

I{e∈Oj(Srare,r)} = p

}
∀1 ≤ p ≤ m

4: f(Np, (i, j)) :=
∑

e∈Np
I{e∈Oi(Srare,r)∩Oc

j (Srare,r)} + I{e∈Oj(Srare,r)∩Oc
i (Srare,r)} ∀1 ≤ p ≤ m, (i, j) ∈ L(Srare, r)

% Increment in the availaibility of segments in Np if link between i and j is activated
5: R(i,j) =

[
I{Oi(Srare,r)∪Oi(Srare,r) 6=N} f(N1, (i, j)) f(N2, (i, j)) · · · f(Nm, (i, j))

]
1×(m+1)

∀(p1, p2) ∈
L(Srare, r)

6: Define link activation preference matrix LA with R(i,j)∀(i, j) ∈ L as row vectors.
7: Sort rows of LA such that column 1 is descending order, then by column 2 in descending order, then by column 3 in

descending order and so on.
8: (i, j) := arg(Row at the top of LA)
9: end while

where 1 ≤ p ≤ m and (i, j) ∈ L (Srare, r). Then for each
of the links (i, j) ∈ L (Srare, r) we define a row vector
R(i,j) having m+ 1 entries. First entry indicates the whether
the nodes will have the universe if link (i, j) is activated.
Following entries record the increment in each of the partitions
of the universe if the link (i, j) is activated in increasing order
of p.

Then we arrange different rows in form of a link activation
matrix LA such that column 1 is in descending order, followed
by column 2 and so on. Sorting rows of LA in descending
order by column 1 deters activating links which can produce
nodes having universe. To break the tie among links having
same value in column 1, we sort in descending order by
column 2. This would give more preference to links activating
whom will increase the segments which are available with only
1 node or are rarest. To break the tie further we use column
3 so that availability of the segments which are with 2 nodes
can be increased. This process is continued for all columns.

After completion of this process link corresponding to the
top row is activated.

IV. PERFORMANCE COMPARISON

Fig. 3 shows a performance comparison of the various
algorithms. For a particular set of (number of nodes m,
universe size n, initial segment set size k) values, we generate
100 segment sets uniformly at random. For each such “sample
point” or “run” the optimal aggregate cardinality is computed,
and each of the five algorithms simulated. The average aggre-
gate cardinality values (over 100 sample points) are shown,
along with 95% confidence intervals.

If an algorithm achieves the optimal aggregate cardinality
corresponding to a sample point, the algorithm is said to
be “successful” on that run. Fig. 3 also shows the “success
rate” of an algorithm, which is the fraction of runs for which
the algorithm was successful. The average shortfall from the
optimal aggregate cardinality is shown as well. Lastly, Fig. 3
displays the value of pm,n,k, calculated using (2). We recall
that pm,n,k is the probability that after the initial choice of
segment sets uniformly at random, the universe N is available
among the nodes.

Our results show that the Greedy Links (GL) algorithm
performs the best—it is able to achieve an aggregate cardi-
nality close to the optimal consistently (success rate ≥ 95%).
It is followed closely by the Rarest First (RF) with similar
success rates and mean shortfalls. On an average, Randomized
algorithm (R) also performs better than Greedy Incremental
(GI) and Polygon (P) algorithms.

The aggregate cardinality achieved by the R algorithm is
very close to the optimal, but in most runs, it falls just a little
bit short. For this reason, we see in Fig. 3 that the heights of
the bars corresponding to the optimal and R algorithms match
almost exactly, yet the success rate of the R algorithm is quite
low. On the other hand, the GL algorithm enjoys a very high
success rate, and therefore, is nearly optimal. It is can be seen
that the mean shortfall corresponding to the GL algorithm is
zero.

The RF algorithm starts off on a very promising note, but
as the problem size gets bigger, there is a dip in performance.
As (m,n, k) increases from (15,20,5) to (40,50,5), the suc-
cess rate drops from 95% to 76%, while the mean shortfall
increases from 0.2% to 0.8%. It is noteworthy that the shortfall
of the R algorithm reduces as the problem size gets bigger.

Our results indicate that the GI algorithm does not per-
form well in general, even though it is a “natural” greedy
algorithm—it chooses to activate the link that yields the
largest immediate benefit (the largest increase in aggregate
cardinality). Similarly, even though the P algorithm can be
optimal under certain conditions, it does not do well in general.

The significance of pm,n,k is this: If pm,n,k is high, then
there is a good chance that the social group will need to
download only a few segments using the expensive resource.
A high value of pm,n,k means that with high probability, the
full universe N is scattered among the nodes in the group.
In such a situation, our results suggest that the GL or RF or
R algorithm is very likely to achieve near-optimal aggregate
cardinality, leaving only a few segments to be downloaded.

Remark: We note that the more complex algorithms exhibit
better performance than the less complex ones.

In Table I, we focus on the Randomized algorithm, and ex-

9

Fig. 3. Expected aggregate cardinality achieved by different algorithms, averaged over 100 randomly generated segment sets. Four different problem instances
((m,n, k)) are shown, with corresponding pm,n,k values. For each object set, the success rate and mean shortfall of each algorithm are shown as well.

amine the expected aggregate cardinality achieved for different
sets of (m,n, k). It can be seen that as the number of nodes
m increases, the expected aggregate cardinality approaches
mn; this is consistent with the asymptotic optimality and
approximation ratio results shown in Theorem 1.

TABLE I
BOUNDS FOR RANDOMIZED ALGORITHM

m n k E(α(Srand))
(Simulation)

Lower bound on mean
aggregate cardinality

60 100 3 5027.0± 347.9 3867.4
60 100 5 5715.7± 219.1 4829.2
60 100 7 5919.4± 127.6 5318
80 200 15 15959± 102 15106
100 300 15 29819± 254 27486

V. CONCLUSIONS AND FUTURE WORK

The problems studied in this paper were motivated by the
context of a social group, in which each group member was
interested in obtaining a universe of segments. The approach
was to study how mutual exchanges among the group members
can help in maximizing the aggregate cardinality of nodes’
segment sets, at low cost. To tackle the problem of free
riding that arises in such situations, we proposed the novel GT
criterion, and explored a number of algorithms for exchange
of segments, where each exchange had to be GT-compliant.
Analysis of the algorithms yielded interesting properties, and
performance was benchmarked against the optimal aggregate
cardinality.

The present model assumes that nodes arrive empty-handed
and download segments using the expensive resource, to kick-
start the process of GT-compliant mutual exchanges. After
this process is over, still more segments may need to be
downloaded; it will be interesting to understand the best
download strategy in the second round, utilizing the state of
the system at the end of the first. Further, a central scheduler
with a view of all the nodes’ segment sets has been assumed
in this paper; we would like to understand the issues when
nodes act on their own.

REFERENCES

[1] J. Scott, Social network analysis. SAGE Publications Limited, 2012.
[2] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, “Dis-

tributed selfish replication,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 17, no. 12, pp. 1401–1413, 2006.

[3] E. Jaho, M. Karaliopoulos, and I. Stavrakakis, “Social similarity favors
cooperation: The distributed content replication case,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 3, pp. 601–613,
2013.

[4] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding
and whitewashing in peer-to-peer systems,” in Proceedings of the ACM
SIGCOMM workshop on Practice and theory of incentives in networked
systems, ser. ACM PINS 2004.

[5] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-
to-peer systems,” SIGecom Exch., Jul. 2005.

[6] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in
bittorrent is cheap,” in In HotNets, 2006.

[7] R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, D. Epema, and
H. Sips, “Improving efficiency and fairness in p2p systems with effort-
based incentives,” in Communications (ICC), 2010 IEEE International
Conference on, may 2010, pp. 1 –5.

[8] H. Nishida and T. Nguyen, “A global contribution approach to maintain
fairness in p2p networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 21, no. 6, pp. 812–826, 2010.

[9] M. Karakaya, I. Korpeoglu, and O. Ulusoy, “Free riding in peer-to-peer
networks,” Internet Computing, IEEE, march-april 2009.

[10] J. J.-D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. Epema, and
H. J. Sips, “Give-to-get: free-riding resilient video-on-demand in p2p
systems,” in Electronic Imaging 2008. International Society for Optics
and Photonics, 2008, pp. 681 804–681 804.

[11] J. R. Douceur, “The sybil attack,” in Peer-to-peer Systems. Springer,
2002, pp. 251–260.

[12] H.-H. Dinger, J., “Defending the sybil attack in p2p networks: taxon-
omy, challenges, and a proposal for self-registration,” in Availability,
Reliability and Security, 2006. ARES 2006., 2006, pp. 8 pp.–.

	I Introduction and Related work
	II System Model and Problem Formulation
	III Algorithms
	III-A Randomized Algorithm
	III-B Greedy-Links Algorithm
	III-C Polygon Algorithm
	III-D Greedy-Incremental Algorithm
	III-E Rarest First Algorithm

	IV Performance Comparison
	V Conclusions and Future Work
	References

