INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst. 2007; 20:889-908
Published online 18 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/dac.850

A taxonomy of distributed query management techniques
for wireless sensor networks

S. Chatterjea*" and P. Havinga*

Department of Computer Science, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

SUMMARY

In the not too distant future, wireless sensor networks are envisioned to proliferate through the entire
spectrum of the ‘environmental monitoring’ market allowing users to monitor a multitude of
environments. Thousands or even millions of sensor nodes may span vast geographical areas enabling
various environmental parameters to be monitored with significantly higher spatial and temporal
resolutions than what is achievable using existing monitoring technologies. In order to manage the large
amount of data that will be generated by these numerous sensor nodes, novel querying methods are needed
to extract the required information in an energy-efficient manner. This paper studies the techniques used to
manage the queries in a distributed manner and classifies the current state-of-the-art in this field into four
main categories: in-network processing, acquisitional query processing, cross-layer optimization and data-
centric data/query dissemination. This taxonomy not only illustrates how query management techniques
have advanced over the recent past, but also allows researchers to identify the relevant features when
designing sensor networks for different applications. Copyright © 2006 John Wiley & Sons, Ltd.

Received 20 January 2006; Revised 15 June 2006; Accepted 30 June 2006

KEY WORDS: distributed query processing; sensor networks

1. INTRODUCTION

The last few years have seen the field of wireless sensor networks (WSNs) transform into a
multi-faceted research area spanning across a wide range of disciplines within the field of
computer science. With the pioneering work focussing on the hardware aspects, the data-centric
nature of WSNs and various communication-protocol-related issues, sensor network research is
gradually branching out into other diverse fields.

*Correspondence to: S. Chatterjea, Department of Computer Science, University of Twente, P.O. Box 217, 7500AE
Enschede, The Netherlands.

TE-mail: supriyo@cs.utwente.nl

YE-mail: havinga@cs.utwente.nl

T @WILEY

o , . InterScience’
Copyright © 2006 John Wiley & Sons, Ltd. S SisCovin someTRiNG GREAT

890 S. CHATTERJEA AND P. HAVINGA

Researchers from the database community have added yet another interesting perspective by
introducing the idea of viewing a WSN from the point of view of a database management
system. The primary motivation for this approach is to help create an abstraction between the
end-user and the sensor nodes thus allowing the user to solely concentrate on the data that needs
to be collected rather than bothering with the intricacies of mechanisms deciding sow to extract
data from a network in the most energy-efficient manner.

While there are many concepts from the field of databases that can be beneficial to the area of
sensor networks, the unique nature of sensor networks gives rise to a whole new set of issues that
makes it inappropriate to apply concepts from databases directly. However, it is possible to
adapt existing database solutions to a certain extent to suit the requirements of WSNG.

This paper introduces the reader to the various distributed query management techniques
designed specifically for WSNs proposed thus far and classify them into specific categories.
After giving a brief introduction describing the characteristics of WSNs we highlight the four
essential building blocks which constitute a distributed query management framework for
WSNs, Table I. We then go on to describe the state-of-the-art for each category and discuss the
salient points of the various query management methods. We conclude the paper in Section 4.

2. CHARACTERISTICS OF WSNS

Wireless sensor networks are typically made up of battery-powered nodes that have built-in
wireless transceivers. The nodes usually have a small form-factor and can have a host of sensors
attached to them depending on the application they will be used for. Instead of simply having
sensors equipped with wireless transceivers transmitting directly to a base station, what
differentiates wireless sensor nodes is the fact that every node possesses a small amount of
computation capability due to the presence of an on-board CPU running at a few MHz and
limited memory (Figure 1). The nodes can be deployed in a dense network and communicate
with one another via a multi-hop network. This helps to minimize energy consumption and
allows the network to cover a large geographic area. The high-density deployment allows WSNs
to monitor environments at extremely high spatial and temporal resolutions, which are
impossible using conventional monitoring techniques.

While the limited source of energy from the battery contributes to severe power constraints,
WSNs have a number of other properties, which make the problem of distributed data
management even more challenging. Regardless of which WSN application scenario might be
considered, such as various forms of environmental monitoring, asset tracking, and surveillance,
etc., sensor nodes need to be completely self-configuring. This implies that whether they have
been deployed randomly or in an ordered manner, with a static or dynamic network topology,
the nodes should be able to configure themselves automatically during network start-up and
begin performing their intended task the moment they are powered up without anyone having to
tend to each node individually. Furthermore, once operation begins, nodes need to be able to
adjust their operation on-the-fly to ensure that they continue to operate in an energy-efficient
manner that best suits the current dynamics of the network. It should be noted that the self-
configuring property is not only vital for the efficient operation of networking-related attributes,
but also for the distributed query management components residing on a node. These
components should be able to adapt their decision-making operations to suit the dynamics of
the network, its usage patterns and the environment being monitored.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

891

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS

Kouoaye| sesearoul
Inq ‘A310Ud soARS

SUOISI[[00 DVA dZIIui 00T ‘[9]
P X 0} po[npayds SApoN X X SurnpayogoaL A\
s[eudis aseq
Suisn pojyerouad
SSUIpLAI pajel %00t ‘] v 12
P -1 X X X -ixordde syrwsuelry, spyeuuRISIOq
Papa2dX?
SI proysaiy) payroads
-19sn uaym AJuo
panrwsuel) surpedy
SUOIB[ALI0D
~ X X X Jerodway syojdxy €00T ‘[r] VNIL
sjuowaainbar yooda
JUSIQPIP YuMm sarronb
juanINduod o[dnnu SJUOAD [BOIIUIPI
10J 9[qESnUN QWAYIS * ordnnu jo Surdnoin
IOVIN :uoneziwmndo Aronb-nny
UO UdPINQg SIZIWIUIN * sayeorpard
Apider 0oy sagueyo junod doy Sursn ordnnw unengead
AnquIe paInseauwr SOA[ISWIAY) S[NPAYIS uaym Josuas }sadeayd 019 ‘GOVIAAV
J1 A[1s0o 003 2q Aewr Uo 9pIdAP 0} Jqe SOPON * 01 UdAIS Ajuonlg ‘INNOD ‘NS
WYILI0S[B OUBUIUIBIA * mop eiep weansdn BJEPEIOW PIJIS[[0D UO XVIN ‘NI se
souronb a3uer 10§ paudisog ¢ 10j Aqurewnd Surnpayos paseq uonezrundo yons siojerado 700C
- P Sunnol sonuewag uonedunwwo)) , Aronb pazienua) Jo uonenpeay ‘[e] agAury,
Suidiow joyorg °
SIopeI 19)SN[d 0002
- X X X Je uonesaIdsy el avHnod
JUIs 03 20INOS WOJJ
BJEP AINOI 0] Pasn SJupeID) *© sagessaw deordnp 6661
BJEP paweu uo paseq [dV Jo uorssaxddng e ‘1] worsngiq
P ~ aquosqns /ysyqng X X SIONY Sas() payoang
SSB[O SSB[D SSB[D UONE] UONBUIWNASSIP BIRp/A1onb uoneziundo Suissaooid A1onb Suissaooxd (e) JoIN®
-Od -vdd -0 -hwig oLudd-BIR(19Ke]-ss01D) [euonismboy J10M)u-U] wisiueyodw/oefoxd
uojeld saInjed) [enydoouos [enuassg 343 Jo StEN

SON)SLIAIORIRYD)

'SNISA 10J sanbruyod) juswddeuew Bjep panquysip Jo Argwwns y [9[qeL

Int. J. Commun. Syst. 2007; 20:889-908

2006 John Wiley & Sons, Ltd.

Copyright

DOI: 10.1002/dac

S. CHATTERJEA AND P. HAVINGA

892

yiomiou uoneordde
9y} jo syued jueAdal 0) Jo sjuowaambar uo paseq 00z ‘1]
P Aquo sauanb sang , DVIN Jo uonerddo sydepy X X JDVIN'TIV
A[NPAYDS INO SYIOM 100Y
UOISSIWSUET)
®)Ep JO 13pI0 Ful[o1u0d ¥00¢ ‘[e1]
A A X sonu sauyep vI1d X X v.id
J[NPAYDs INO SYIOM 100y
ad£} JuaAd yora 10§ SI0[S
QW) WEAIISUMOpP pue
weansdn soxoidnnuw pue
s1BOO[[® AJ[RoIRUAp €00¢ ‘[zl
A X 19[NPAYDS JUIAT X X Sd4d-dlL
RRENINY
19919p 01 J[qY *
[opou [B1IUAD YIIM
PaZIUOIYJUAS [opowu 9002
A X X X 1eoo] doay sapoN Trr] uoy
SUOIB[1100 [eneds
pue [erodwd) AJnuapy
s[opour [edNSNB)S
pasieIIuad Juisn
s3urpear Josuds Sunorpaid
P X X Kq Surdwes azrwiur X ¥00t ‘[01] Ogd
SOpOU 10SUdS
pUE S9[qE) [BUIAIXD 5002 ‘[l
A A X X X ‘O11BIS UQAMIdQ Sulof aday
soguel
[erodwa) pue [eneds uo 00z ‘8]
-1 paseq papiemlIoj sau_nd X X X [p o uewion)
Juowedeld 1ojerado €00z [£]
P X X X K1onb pazirenuaseq “Ip j2 sjyuog
SSB[O SSB[O SSB[® UONE[UONBUIWASSIP Biep/A1onb uoneziundo Surssaooad K1onb Sursseooad (e) zoyIne
-Od -vdd Q0N -nwig JLudd-BIR(10KR[-$S01D) [euonisimboy yI1omlau-uf wistueydaw/109ford
wIojeld saInjed) [enjdaouod [enuassy O JO SHEN

SOTISLIoORIRYD)

ponuyuo) [3qeL

Int. J. Commun. Syst. 2007; 20:889-908

2006 John Wiley & Sons, Ltd.

Copyright

DOI: 10.1002/dac

893

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS

ssou)snqox
soroxdwr awayds YDV

QABJ/I9JUS SOPOU

UM S9UOZ SUFISSe-0y

areme

UOI}BO0] 2q ISNW SIPON

QUOZ © 0} JUQAD SAYSEH

soronb

- -~ oSues opdnnw syroddng

$asso[joxoed

pue saInjrej apou Yim
AJj9renbape [eop jou saog

areme

UuonBIO[9q ISNW SIPON
$9)RUIPIO-09

oyder3oad ojur anjeA pue

Qwreu JInqLIe SAYseHq

- soranb afuer sjzoddng

SJUIAD [BOIIUPI
ordnnur jJo 20ud1IN20

Suunp syoud0q

eurwr(d 03 uonesrdar

paInjons sasn

$SaUISNqoI

aroxdur 03 [0o0301d

ysaajor 1oowiiad sasn)

dreme

UOI1Bd0[2q SNl SIPON

SOJRUIPIO-09

oryderdoad ojur

P ~ QwiBU INqLIE SAYSBH

onjeA pue dweu Anque
U0 Paseq PajoaIIp SaLIaN()

J10M1dU JO

SBAIR QAIORUI UI J[OAd-AINp
mo] yum sajerado YN °

K1onb remonted

® 10J ORI} Pajdadxo

Uo paseq uoneoo[e
yipimpueq panqiisiq ¢

£00T
Te1l Wia

£00T
‘o1l sd1a

2002
‘Is1] LHD

SSB[O SSB[O SSE[D UONE] UONEBUNUASSIp eiep/A1onb
-Od -vdd -0 -nuag oudd-BIR

uoneziundo Surssaooad K1onb Sursseooad
10KR[-$S01D) [euonisimboy yI1omlau-uf

uroje[d

saInjedy [en1doouod enuassy

SOTISLIoORIRYD)

(q) 1oyne
wistueydaw/109ford

oY) jo aweN

ponuyuo) [3qeL

Int. J. Commun. Syst. 2007; 20:889-908

2006 John Wiley & Sons, Ltd.

©

Copyright

DOI: 10.1002/dac

894 S. CHATTERJEA AND P. HAVINGA

4K RAM,
, 868MHz radio

Figure 1. An example of a typical wireless sensor node.

With the current state of technology, sensor nodes are notorious for their unreliability. For
example, the signal strength of nodes varies greatly with time due to a host of parameters, e.g.
varying environmental conditions, noisy radio channels, etc. The sensors attached to nodes also
contribute to the system’s unreliability as they are prone to Byzantine errors especially when
battery levels run low or the nodes are exposed to hostile environmental conditions. The degree
of impact of such errors can be quite substantial if the level of acceptable fault tolerance defined
by the user is set to a low threshold. Thus it is imperative to ensure that reliability is taken into
account when developing data management schemes.

3. ESSENTIAL CONCEPTUAL BUILDING BLOCKS

While there are a host of features that are necessary to form a full-fledged distributed data
management system for WSNs, we highlight four essential conceptual building blocks in
Figure 2 that have been widely mentioned in the existing literature. Below, we provide a very
brief overview of each building block and describe their specific roles. This is followed by a
discussion detailing how the various components are related to each other thus enabling the
reader to visualize how the various components fit into the ‘bigger picture’.

® In-network processing
This involves moving various types of computation that are traditionally done on the
server-side to within the sensor network itself. It is generally used for filtering and
processing of messages flowing within the network thus preventing the transmission of
unnecessary information.

® Acquisitional query processing
Energy consumption in sensor nodes depends on two main factors: Operation of the
transceiver and operation of the sensors. Acquisitional query processing helps minimize
energy consumption by targeting the sensors, i.e. sampling of the various attached sensors is
carried out in an energy-efficient manner. For example, a user may be presented with sensor
readings generated using certain statistical methods rather than actually sampling sensors.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 895

Cross-Layer Optimisation

In-network Processing [Query processor schedules
[] Sensor nodes process data qriense o sl iow; (ons SERGe
internally before transmitting communication
Results in a reduction of the ‘ IZ] Reduces chances of message
v number of messages Query Management collisions
transmitted System for Wireless
Sensor Networks [¥] Reduces burden of the MAC
Acquisitional Query r .
Processing Data-Centric Data/Query
] Query processar indicates Dissemination
how sampling of sensors [Decides how to route datalquery
should be performed in an lo anly the relevant paris of
energy-efficient manner the network
[Saves energy by eliminating [¥] Prevents the need to flood
unnecessary sampling of the entire network

SENsors

Figure 2. Essential building blocks of a distributed query management system for
wireless sensor networks.

® Cross-layer optimization
Unlike conventional computer networks which can generally be used to perform a wide
variety of tasks, WSNs are usually designed for a particular application. This makes it
possible to design the various components of the WSN architecture, e.g. the routing and
MAC protocols specifically for the application in mind. This could mean that the MAC
and routing protocols may be able to adapt to the changing requirements of the
application. This is fundamentally different from the conventional OSI model used for
typical networks where the lower-layer protocols operate completely independently from
the higher layer protocols.

® Data-centric data/query dissemination
Unlike conventional routing protocols which do not actually bother about the content of
the data message being transmitted, the path taken by a message being routed by a data-
centric data/query dissemination protocol for a WSN is completely dependent on the
contents of the message. This allows messages to be routed more efficiently.

While Figure 2 illustrates the pertinent features of every building block, it does not illustrate
the relationship between them. We present this relationship in Figure 3. Probably the most
noticeable feature is that we have placed acquisitional query processing, cross-layer
optimization and data-centric data/query dissemination all within the class of in-network
processing. The reason for this can be traced back to the way data is usually collected in
conventional databases using the warehousing approach. Under this model, data is initially
collected from various sources (e.g. sensors with wireless transmitters) and stored at a central
location. The data is then processed centrally to extract the required information. This model is
highly unsuitable for WSNs as it involves excessive transmission overhead, and also prevents
users from accessing real-time, streaming data. The only viable alternative is to migrate from
off-line processing to processing the data within the network as close to the data source as
possible. The practice of processing data at the sensor nodes themselves is known as in-network

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

896 S. CHATTERJEA AND P. HAVINGA

In-Network Processing

Cross-Layer
Optimisation

Acquisitional
Query
Processing

Data Centric
Data/Query
Dissemination

Figure 3. Relationship between the building blocks.

processing and can result in a significant reduction in the number of messages transmitted. The
ability to perform in-network processing is a cornerstone of WSNs.

In order to distinguish between sensors attached with wireless transmitters and wireless sensor
nodes, which are actually capable of performing simple computations within them, and also
because in-network processing is a very generic term (i.e. it could essentially refer to any sort of
processing that takes place within a node) we have placed acquisitional query processing, cross-
layer optimization and data-centric data/query dissemination all within the class of in-network
processing. All these three sub-classes require a sensor node to analyse the data it has at hand
and make certain decisions based on the outcome of the analysis instead of transmitting all the
data to a central server for off-line processing or centralized decision-making. Such processing is
not possible in normal sensors that only have attached wireless transmitters. The kind of
processing that can take place within a wireless sensor node varies greatly, which is why we have
these three other sub-categories.

Cross-layer optimization generally refers to schemes where the application influences the
operation of the routing or MAC layers. Data-centric data/query dissemination is classified as a
sub-class of cross-layer optimization as it involves creating links between the application and
routing layers. In the cross-layer optimization category, we cover literature which studies the
relationship between the MAC and the application layers.

In order to simplify matters, and also because the features present in a particular class are not
present in its super class, we analyse each building block separately in the following subsections.
However, the reader should keep in mind the existing relationships indicated in Figure 3. The
following subsections describe each category in greater detail and illustrate the different
methods that have been employed to incorporate the various features.

3.1. In-network processing

While the precise manner in which in-network processing is carried out on sensor nodes may
differ between various publications, the fundamental objective is still the same — to save energy
by reducing message transmissions. Directed diffusion [1] performs in-network processing using
filters. When a node receives a message that matches its filter, the message is first handed over to
the application module within the node for processing instead of forwarding it to the next node.
For example, the application might carry out a suppression of duplicate messages indicating the
detection of the occurrence of an event so as to prevent a sudden burst of identical messages
when a bunch of nodes detect the same event. The main drawback of directed diffusion

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 897

however, is that it has a non-declarative interface, and thus does not rank very highly in terms of
usability.

COUGAR [2], which was one of the first projects to view a sensor network as a distributed
database with a declarative interface, uses a clustered approach to in-network processing. A
network may consist of several clusters, each of which is made up of a single leader node and a
group of child sensor nodes belonging to the leader. Child nodes periodically send their readings
to the leader node which then aggregates the received readings and only continues to forward
the computed result toward the root of the network. Computation at the leader only takes place
once all the child nodes have responded. Additionally, since sending multiple small packets is
more expensive than sending one larger packet (due to the packet header payload and the cost
of reserving the medium) COUGAR performs packet merging by combining several packets into
one. This method is particularly beneficial when servicing queries that generate holistic
aggregates where intermediate nodes cannot perform any partial aggregation and all data must
be brought together to be aggregated by the node evaluating the query, e.g. the median operator
or even the collection of raw sensor readings. It is important to note however, that while
COUGAR claims to be designed for WSNs, it was deployed on PDA-class devices that had
significantly larger processing power and could even run Windows CE and Linux [18]. Their
design does not consider the impoverished power and computational constraints of
conventional sensor nodes, e.g. XML, which is known for its verbosity, is used to encode
messages. Apart from packet merging, Cougar lacks any other features that make it energy
efficient. It also fails to address the issues of reliability and self-organization and relies instead on
the underlying 802.11 MAC protocol.

TinyDB [3] supports a number of aggregation operations (e.g. MIN, MAX, SUM,
COUNT, AVERAGE, etc.) over certain user-specified sample intervals. As sensor
readings flow up the communication tree, they are aggregated by intermediate nodes that
are able to meet the requirements of the query (Figure 4). Without aggregation, every node in
the network needs to transmit not only its own reading, but also those of all its children.
This causes a bottleneck close to the root node, and also results in unequal energy consumption,
i.e. the closer a node is to the root node, the larger the number of messages it needs to
transmit which naturally results in higher energy consumption. Thus, nodes closer to the root
node die earlier. Losing nodes closer to the root node can have disastrous consequences on the
network due to network partitioning. Using in-network aggregation however, every
intermediate node aggregates its own reading with that of its children and eventually transmits
only one combined result. This also naturally implies that the size of the message remains
constant as it traverses from the source nodes to the root. TinyDB also illustrates how
aggregation can be extended to perform more complex tasks such as vehicle tracking and isobar
mapping [19]. TinyDB depends on MAC-level acknowledgements and runs a tree-maintenance
algorithm continuously in order to ensure that communication between nodes can continue
seamlessly at all times.

The temporal coherency-aware in-network aggregation (TiNA) [4] scheme improves upon
TinyDB as it allows users to specify a threshold which in turn is used to reduce the amount of
information that is transmitted by individual nodes. Instead of transmitting every reading at
fixed intervals (like in TinyDB), TiNA exploits temporal correlations of readings to suppress
certain messages, i.c. if the newly acquired reading differs from the previous reading by an
amount that is less than the user-specified threshold, the reading is not transmitted. In order to
ensure reliability, nodes in TiNA send periodic heartbeat messages to their parent nodes so that

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

898 S. CHATTERJEA AND P. HAVINGA

P ol =0

Query injected into the network:

SELECT count(*) FROM sensors
SAMPLE PERIOD 10s

\—_——_W__—/

Epoch Count = 10
Hap count level = 2
}\
Interval 5 intarval 4 Interval 3 Intarval 2 Interval ® @

* . 2/"\{**JPM"'N3

B o r (2

. Nodes Sleeping - i @ ®

D I Y omm| @ @@ 0z Lt —— A tp countlevel = ¢
s, | L IR T
e
[1] 4 3 M .
gF " @
Z | ftaciidednaloly

G

Communication Topology

KEY

Node with 1D "G”

Partial aggregate
message with Count

Time I or f/'
I

Radio in Transmit mode

Radio in Listen mode

Figure 4. An aggregation operation using interval-based communication scheduling [4].

the parent node knows that the child node is alive during periods when the acquired readings are
fairly constant and fall within the user-specified threshold.

Similar to TiNA, Deligiannakis et al. [5] also present a scheme where approximated readings
are transmitted to the querying node thus resulting in energy savings. The main idea is to first
generate a base signal that captures the prominent features of the sampled data. The acquired
data is subsequently partitioned into intervals that can be efficiently approximated as some
linear projections of some part of the base signal. While their scheme presents better accuracy
and robustness when compared to other approximation schemes, the feasibility of their scheme
is questionable as it was tested on a computer with a 300 MHz processor, which is nearly 19
times faster than the sensor node shown in Figure 1.

Bonfils and Bonnet [7] describe another form of in-network processing that allows a node to
run a completely localized algorithm (based on information from one-hop neighbours) that
ensures that in-network processing is carried out in an efficient manner. This is done by placing
aggregation operators such that the amount of data that needs to be transmitted is minimized.
Once the operators have been placed on an arbitrary node, the localized algorithm ensures that
the operator progressively reaches its local optimal placement by greedily moving to the
neighbour with the lowest estimated cost. This method is particularly suited for handling holistic
aggregates. It is also useful for carrying out join operations between tables stored on pairs of

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908

DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 899

sensors in a network. While the work allows nodes to take decisions in a decentralized manner,
there is no mention of any fault tolerant operator placement algorithms.

Rather than focussing on joins between pairs of sensors, REED (robust, efficient filtering and
event detection in sensor networks) [9] concentrates on joins between static external tables (i.e.
tables stored outside the network) storing filter conditions and sensor nodes within the network.
External tables are typically injected into the network along with the query. If a receiving node is
able to store the entire table in its limited memory, the node performs a join operation and
returns the result to the root node. In the event that the external table is too large to be
accommodated within a single node, REED partitions the table horizontally into smaller
fragments. The fragments are then disseminated to a group of nodes (which are within close
proximity of one another) such that each node in the group stores a single fragment. The join
operation is performed within the group and the result is subsequently returned to the root.
REED can also transmit fragments of the table into the network, forcing nodes which do not
have entries in the table to be joined externally. Timeouts and periodic advertisements are used
to improve the robustness of the system.

While the majority of the literature in this category focuses on utilizing different strategies to
ensure energy-efficient operation, none of the authors investigate the performance of unreliable
message transmissions. As current sensor nodes are known to be unreliable and the performance
of the various in-network processing schemes can change dramatically with varying degrees of
reliability, this remains as a topic which is open to further research.

3.2. Acquisitional query processing

In conventional database systems, when posing a query to the system, a user need not bother
about how the data should be extracted in the most efficient way. The same concept holds true in
distributed database systems where the requested data might be stored in small fragments
spanning the entire network. In this case, the user does not require knowledge of where the data
resides. In other words, the techniques used to locate data or the methods followed to extract
data in an efficient manner, are processes that are completely transparent to the user. The user
simply injects the query into the network and waits for the result to appear. It is the
responsibility of the query processing system to handle the above-mentioned tasks and act as an
interface between the user and the data sources.

One of the tasks of a query processor for WSNs is to generate an optimized query execution
plan that outlines an energy-efficient strategy to execute a query. While conventional database
query optimization techniques calculate the cost of executing a query based on a number of
parameters such as CPU instructions, I/O operations, messages transmitted, etc. the model
necessary for WSNs is slightly different due to its unique characteristics described earlier. The
tight power constraints of WSNs have driven researchers to find novel ways to minimize the two
main sources of power consumption on a sensor node — the operation of the radio transceiver
and the sampling of the sensors to obtain readings. The idea of managing sensor sampling as
one of the tasks of the query processor was first introduced in TinyDB [3] and was termed as
acquisitional query processing.

TinyDB carries out query optimization at the root node. Metadata such as the energy and
time required to sample a particular sensor, information about the costs of processing and
delivering data, etc. are periodically copied from the nodes to the root for use by the query

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

900 S. CHATTERJEA AND P. HAVINGA

optimizer. The optimizer also has the task of initializing, merging and updating the final value of
partial aggregate records as they propagate through the network towards the root.

Before a query is injected into the network through the root node, the query optimizer can
optimize the query in various ways using the collected metadata. For example, since the
difference in power consumption of sampling various sensors on a single node can differ by
several orders of magnitude, the order in which sensors are sampled when evaluating a query
can have a substantial impact on network lifetime.

Consider the scenario where a user requires readings from a light sensor when the temperature
and humidity sensors reach thresholds ¢ and 4, respectively. If the node uses a humidity sensor
that requires 100 times more energy to sample than the temperature sensor, in most cases, it
would be a lot more energy efficient to sample the temperature sensor first to check if the
threshold has been met and proceed with the sampling of the humidity sensor only if the result of
the temperature threshold check is found to be True. In fact, in such a scenario, sampling the
humidity sensor first could be up to an order of magnitude more expensive.

TinyDB also performs multi-query optimization on event-based queries in order to reduce
costs due to sensor sampling and transmission. Consider a query Q that requests temperature
readings only when a certain event E occurs. The occurrence of a string of event Es within a
short time interval would trigger multiple instances of the query to run simultaneously. This
results in high energy consumption as every instance of a query performs its own sensor
sampling and transmission of results. To alleviate this problem TinyDB optimizes such queries
by rewriting them so that all occurrences of event E of the last k seconds are buffered. When a
sensor reading is obtained, it is compared against the buffered events and the temperature
readings are returned. Thus, no matter how frequently events of type E are triggered, only one
query is required to run.

Deshpande et al. [10] extend the initial acquisitional query processing concepts introduced in
TinyDB by utilizing certain statistical modelling techniques. The Barbie-Q (BBQ) query system
creates models that provide answers that are more meaningful, and also help to extend the
lifetime of the network by returning approximated results coupled with probabilistic
confidences. There are three major steps involved in query processing in the BBQ architecture:

Building the model. This involves the collection of raw data from every node. This
historical data is used to build a model based on time-varying multivariate Gaussians and allows
one to observe the correlations and statistical relationships between sensor readings on various
nodes.

Generating an observation plan. Users inject queries that are similar to SQL except for the fact
that they are allowed to include error tolerances and target confidence bounds that specify the
degree of uncertainty a user is willing to accept. Using the probabilistic model mentioned earlier,
coupled with the accuracy specifications of the injected query, the system takes the liberty of
determining the most efficient way of servicing the query and generates the corresponding
observation plan. Depending on the specified error tolerance, the observation plan may only poll
a small proportion of all the sensors that are actually capable of servicing the query. It may even
retransform a query by querying a different sensor from the one specified in the original injected
query, if it is more energy efficient and both sensor readings are found to be correlated.

Updating the model. BBQ relies on Markovian models to keep the model updated regarding
changing environmental parameters and to ascertain any temporal correlations. This helps to
generate a probability density function (pdf) of all parameters at time 7+ 1 given the
pdf at time ¢.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 901

Thus, unlike TinyDB and COUGAR, BBQ does not interrogate all sensors every time a query
is injected into the network. Instead, sensors are used to acquire data only when the model itself
is not sufficiently rich to answer the query with acceptable confidence. As time passes, the model
may update its approximations of sensor readings to reflect expected temporal changes in the
data.

As BBQ builds a statistical model centrally, it is unable to detect sudden changes that may
occur within the network, e.g. spikes in temperature readings or changes in network topology.
Ken [11], which is similar in certain respects to BBQ, tackles the problem of detecting outliers,
by storing models within the sensor nodes instead of storing them centrally. Every node also
transmits its model to the central server. When a node acquires a reading, it checks the acquired
reading against the locally stored model. If the acquired reading falls outside the reading
predicted by the model by a margin that is larger than the user-specified threshold, the node re-
computes a new model and transmits this new model together with the newly acquired reading.
Ken too however, is unable to adapt to changes in the network topology. It should be noted at
this juncture that Ken however, does not actually fall in the class of acquisitional query
processing. Instead, it should fall in the super class, in-network processing, as Ken does not
actually deal with sensor sampling. Instead, it aims to minimize communication by making use
of dynamic probabilistic models. We have however, mentioned it here as its operation is very
closely linked to BBQ.

3.3. Cross-layer optimization

Traditional system architectures are commonly known to adhere to the layered protocol stack
design where every layer operates in a completely independent manner. The Internet browser on
a PC, for example, does not require any knowledge about the kind of network connectivity
available. It works regardless of whether the user is connected via Ethernet or 802.11b. Such a
layered approach however, is not optimal from the energy efficiency point of view especially
when considering WSNs. This is because unlike the network being used in an office LAN, WSNs
are typically application-specific networks. Thus, it only makes sense to try and make the various
components of the WSN architecture more application-aware by performing certain cross-layer
optimizations thereby helping to improve network lifetime. Note however, that while the term
‘cross-layer optimization’ in the field of sensor networks might refer to the optimization between
the application and routing layers for instance, in this case we refer to the more radical approach
where optimization is performed between the application and MAC layer.

As usage of the transceiver is an energy-consuming task, it is imperative that maximum
benefit is derived during the time it is operational. Thus, rather than encountering energy-
wasting collisions during data transmission or actively waiting for messages that do not arrive,
current cross-layer optimization techniques use a variety of methods to try and schedule tasks in
an energy-efficient manner. We now review a number of these techniques.

TinyDB [3] uses an interval-based communication scheduling protocol to collect data where
parent and child nodes receive and send data (respectively) in the tree-based communication
protocol. The cross-layer optimization in TinyDB involves (i) reducing the burden on the MAC
using specifications from the injected query and (ii) routing data from the source nodes to the
root. Each node is assumed to produce exactly one result per epoch (time between consecutive
samples), which must be forwarded all the way to the base station. As shown in Figure 4, every
epoch is divided into a number of fixed-length intervals which is dependent on the depth of the

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

902 S. CHATTERJEA AND P. HAVINGA

tree. The intervals are numbered in reverse order such that interval 1 is the last interval in the
epoch. Every node in the network is assigned to a specific interval, which correlates to its depth
in the routing tree. Thus, for instance if a particular node is two hops away from the root node,
it is assigned the second interval. During its own interval, a node performs the necessary
computation, transmits its result and goes back to sleep. In the interval preceding its own, a
node sets its radio to ‘listen’ mode collecting results from its child nodes. Thus, data flows up the
tree in a staggered manner eventually reaching the root node during interval 1.

While TinyDB’s slotted scheduling protocol does help conserve energy by keeping nodes
asleep a significant proportion of time, it is primarily designed for servicing a single query posed
to the entire network. The scheme is unusable if there are multiple concurrent queries with
different epoch requirements.

WaveScheduling [6] is a scheme that helps minimize collisions at the MAC layer by
carefully scheduling nodes. While the scheme results in energy savings, the drawback
is that latency is increased. The solution is however, a bit ‘rigid’ as the nodes need
to be arranged in a grid in order to operate properly. This may not be feasible in all
applications.

Cetintemel et al. [12] describe Topology-Divided Dynamic Event Scheduling (TD-DES), which
is an event-based communication model for WSNs that allows a node to switch its radio to a
low-power standby mode when it is not interested in certain queries/events that have been
disseminated into the network. However, rather than being a MAC layer itself, TD-DES is
intended as an application overlay to a CSMA/CA wireless MAC layer. TD-DES sets up a
wireless multi-hop network tree where the root node generates a data dissemination schedule
describing when nodes should switch on their transceivers to capture certain events. This
schedule is disseminated throughout the entire network so that nodes can follow it. The schedule
is divided into fixed-sized time slots. Each slot is further divided into three sections, a control
event receive slot, a control event send slot and an event data slot.

Every node in the network has a specific subscription profile that describes the list of
measured parameters or events that the node is interested in. The node may either be a
subscriber, i.e. it is interested in a particular event or a generator of certain events. The control
event send slot holds scheduling information of events and is transmitted to neighbouring nodes.
A node listens out for scheduling information from a neighbouring node during the control event
receive slot and the event data slot is used to transfer data regarding the actual event. A node
listens to the relevant portion of the event data slot in receive mode only if it discovers an event
that is of interest to itself or one of the nodes in its sub-tree listed in the scheduling information
received from a neighbouring node in the control event receive slot.

TD-DES differs from TinyDB’s scheduling scheme in the sense that TD-DES addresses both
upstream and downstream data dissemination while TinyDB focuses solely on upstream
aggregation. Also, while TinyDB assumes that every node in the network takes part in servicing
the injected query, in TD-DES, nodes not subscribing to an event do not own any
scheduled slot.

Zadorozhny et al. [13] describe a framework that helps to extend the synergy between the
MAC layer and query optimization. This is achieved with the help of a data transmission algebra
(DTA) that provides the semantics for defining rules that control the order in which nodes
transmit data. For example, if there is a node that needs to perform Task A and another node
that needs to perform Task B and both tasks require the use of the RF medium, the DTA is used
to work out a schedule such that both tasks are performed with minimal chance of collisions

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 903

from occurring. The DTA includes three basic operations that combine the two transmissions
schedules of tasks A and B as follows:

® Fither Task A is scheduled to perform before Task B or Task B before Task A

® Task A MUST be performed before Task B

® Task A and Task B can be performed simultaneously (e.g. when nodes involved are not
within transmission range of one another)

The primary aim of this framework is for the root node to work out schedules for all nodes in
the network using the DTA scheduler. It is then up to the nodes to decide how to behave within
a set of constraint intervals specified by the schedule. As the number of possible schedules grows
exponentially with the number of sensor nodes, heuristic-based pruning methods are used to
eliminate suboptimal alternatives.

The above-mentioned scheduling techniques clearly indicate that current cross-layer
optimization schemes stop just short of actually altering the operation of the MAC protocol
itself. Instead, the schemes simply employ different strategies to turn the MAC on and off at
different times therefore decreasing the burden placed on the MAC. If collisions still do occur, it
is the responsibility of the MAC to recover from them.

Chatterjea et al. [14] however, describe an adaptive, information-centric and lightweight M AC
protocol for wireless sensor network (AI-LMAC) that adapts its operation based on the
requirements of the application. The amount of bandwidth that is allocated to a node is
proportional to the amount of data that is expected to flow through it in response to the query it
is servicing. Bandwidth allocation is done in a distributed manner and is not static but changes
depending on the injected query. Information about the expected data traffic through a node is
obtained using a completely localized data management framework that helps capture
information about traffic patterns in the network. A major advantage of this approach is that
the MAC protocol reduces its duty cycle on nodes that are not taking part in servicing the query,
thus improving energy-efficiency and limiting communication activity only to areas of the
network where it is actually required. The data management framework is also used for efficient
query dissemination (i.e. directing queries to only the relevant parts of the network) and query
optimization. Thus cross-layer optimization in AI-LMAC addresses the entire spectrum of data
management issues, i.e. operation of the MAC, routing, and query optimization.

3.4. Data-centric datalquery dissemination

Deciding how to route or disseminate data within a communication network is typically
performed using IP-style communication where nodes are identified by their end-points, which
can be directly addressed using an address that is unique to the entire network. Such addressing
schemes are used in the Internet or office LAN. Due to their application-specific nature
however, WSNs tend to use a data-centric addressing scheme where ‘names’ are used to create
an abstraction of node network addresses. For example, instead of requesting the reading of a
node with a particular ID, a typical query usually requests for an attribute of a phenomenon
instead. Data dissemination schemes generally address three main issues:

® How queries are routed only to the relevant nodes from the node injecting the query into
the network (flooding a query to all nodes is not energy-efficient)
® How results are routed back to the querying node

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

904 S. CHATTERJEA AND P. HAVINGA

® Robustness: how the scheme copes with dynamic network topologies, i.e. node failures and
node mobility

We review a number of data dissemination schemes which use distributed techniques to
ensure that queries only propagate towards sensors capable of serving the injected queries.

Directed diffusion [1] is one of the pioneering data-centric data dissemination paradigms
developed specifically for WSNs. It is based on a publish/subscribe API where the sink injects an
interest (e.g. interest for a particular type of named data, such as the ‘Detection of a bird’) into
the network. Every receiving node keeps a copy of the interest in its cache. The entry in the
cache also stores a gradient that indicates the identity of the neighbouring node that originally
sent the interest. Gradients are formed gradually at every node as the interest propagates from
one node to another eventually flooding the entire network (Figure 5). When a source node is
able to service the interest, it sends data back to the sink along the path of the gradients set up
initially by the interest. In the event data starts flowing toward the sink along multiple gradient
paths, the source node reinforces one or a subset of these paths. Reliable paths are usually
reinforced while unreliable ones are removed by expiration due to lack of reinforcements or
explicit negative reinforcements. Such gradients allow the /local repair of failed or degraded
paths and do not require the re-flooding of the interest. However, it is necessary to perform
flooding when a new interest is injected into the network.

While directed diffusion performs routing based on named data, TinyDB performs routing
using a semantic routing tree (SRT), which is based on the actual values of sensor readings. It is

O““-—-—-..O O“"-—--O

/ Node O Node
1) Propagation of interest 2) Setting up of gradients

O 0
noce @
\ Source

O «— Node

3) Transmission of data

Figure 5. Seting up of gradients in directed diffusion.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 905

useful for servicing range queries. An SRT is an index built over some constant attribute 4 and is
stored locally at every node in the network. The index at a node consists of a one-dimensional
interval representing the range of 4 values being generated not just by the node itself, but also
by all its descendants. When a node encounters a query, it only forwards it to its immediate
children which are reported to be transmitting values matching the required range specified in
the query. The readings may have been generated either by any of the immediate children or by
any of the nodes within the sub-trees rooted at the immediate children. Additionally, a node
executes a query by itself if it can be serviced locally and subsequently transmits the result to its
parent. The result eventually propagates up the tree towards the root. If the query cannot be
serviced by the node or any of its children, it is dropped. The entry of a child node expires from
the SRT of a parent node if the parent node does not receive any updates from the child within a
predefined timeout period. The parent then updates its interval information by querying its
children, and also informs nodes higher up the hierarchy if any changes are detected. While the
SRT-maintenance algorithm is capable of reflecting changes in the network dynamics (e.g. death
of a node), the cost of updating ranges could be prohibitive if the value of the measured
attribute changes too rapidly.

Coman et al. [8] present a framework for processing queries that specify the spatial area and
the temporal range the answers must belong to. The framework has two phases. In the first
phase, a path is searched from the query originator to a sensor node located within the query’s
spatial window. Next, the located sensor assumes the role of query co-ordinator and gathers
results from all the relevant sensors from within the spatial window and transmits the results
back to the query originator. Note that it is assumed that all the nodes are location aware.

Unlike directed diffusion and TinyDB’s SRT, Ratnasamy et al. [15] deal not just with the
data-centric routing aspects but also integrate it with the issue of storage within the network.
They propose using data-centric storage (DCS) where all events are named. A vital assumption
is that all nodes are location aware. There are two main operations within DCS — storing and
retrieving data. When a node detects a particular event, it stores the data by name in a node
within the network. The geographic hash table (GHT) scheme performs a hashing on the name
of the data into geographic co-ordinates thus deciding in which part of the network data should
be stored. GHT is also used in a similar manner when retrieving data. In order to address the
issue of robustness, GHT uses the perimeter refresh protocol. This protocol replicates the event
data at nodes around the location to which the hashing was originally made thus ensuring that
queries can still be serviced even if certain nodes fail. The occurrence of multiple identical events
(i.e. events with the same name) would all hash to the same location thus creating a bottleneck in
the network for both store and retrieve operations. In order to alleviate this problem, GHT
employs structured replication such that events hashing to the same node are mirrored in
different parts of the network.

GHT is effective in saving unnecessary transmissions by preventing the need to flood the
entire network with queries by performing hashing on an attribute. However, DIFS [16]
achieves even greater savings by also including support for range queries, i.e. queries where only
events with attributes in a specific range are required. This is because events defined by
attributes with values that fall within a specified range are by definition less common. For
example, while there may be many humidity sensors in a network, there may only be a small
fraction, which have readings higher than a certain threshold. DIFS constructs a multi-rooted
hierarchical index where non-root nodes can have multiple parents. Thus, if a child node has p
number of parents and maintains a range of values r, each index of a parent node maintains an

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

906 S. CHATTERJEA AND P. HAVINGA

equal proportion of r, i.e. r/p. However, the narrower the value range covered by a node, the
wider the spatial extent an index node knows about. In other words, higher-level nodes cover
smaller value ranges detected within large geographic regions while lower-level nodes cover a
wider range of values from within a smaller geographic region. DIFS also reduces the possibility
of bottlenecks occurring close to the root node as queries can be injected into any node in the
tree. Unlike GHT which can hash to any part of the network, the DIFS hash function restricts
its output to the area that a node in the hierarchy has to cover. The function outputs a location
upon receiving the following inputs: event name, event value and event location. DIFS however,
does not deal adequately with the issue of node failures and packet losses.

The distributed index for multi-dimensional data (DIM) [17] goes a step further by building on
top of the above-mentioned methodologies by including support for queries that specify
multiple range conditions. For example, a query might require all events to be reported that fall
within a particular temperature range and a particular humidity range. Such queries can be
particularly useful for correlating multiple events and subsequently triggering certain actions.
DIM runs a distributed algorithm on every node that eventually divides the sensor field such
that there is a single node in each zone. Next, using the values of multiple attributes, the hashing
function hashes the event to a zone. The event is subsequently routed to the node that owns the
zone and is stored there. DIMs include the following features to address the issue of robustness:

® usc of a mechanism to help re-assign zones when nodes join or leave the network

® use of a distributed algorithm to minimize the chance of data loss by carrying out
replication of data

® an ACK scheme to improve resilience to packet loss

Query and data dissemination schemes that prevent the need to flood the entire network have
progressed markedly in the recent past. From initially just considering event types or ranges of
actual sensor readings, they currently support multiple range queries and use various hashing
functions to direct queries to the appropriate sections of the network using the attribute types
and values as inputs. Furthermore, they incorporate in-network storage as an integral part of
the query dissemination mechanism. However, these newer schemes assume that all nodes are
location aware thus increasing the complexity of the system.

4. CONCLUSION

As time progresses, WSN deployments are gradually going to grow larger and certain
deployments may even be enlarged in stages. This makes it increasingly necessary to improve
support for heterogeneous networks, multiple roots and optimization of multiple simultaneous
queries that may overlap partially over sensor types, readings, and spatial and temporal
parameters. Cross-layer optimizations from the application layer also need to dig in deeper into
the network layers and attempt to eventually influence the operation of the MAC. Query
optimizations need to be pushed into the network to prevent large amounts of metadata being
sent back to the root. An interesting observation from the summary presented in Table I shows
that only a handful of the projects have actually been implemented on sensor node platforms.
This clearly reflects that while certain projects have begun making inroads into the various
essential conceptual features mentioned in this paper, current distributed data management
techniques only touch the tip of the iceberg.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

DISTRIBUTED QUERY MANAGEMENT TECHNIQUES FOR SENSOR NETWORKS 907

REFERENCES

1. Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F. Directed diffusion for wireless sensor networking.
ACM/IEEE Transactions on Networking 2002; 11(1):2—-16.

2. Yao Y, Gehrke J. Query processing for sensor networks. Proceedings of the Ist Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, U.S.A., January 2003.

3. Madden SR, Franklin MJ, Hellerstein JM, Hong W. TinyDB: an acquisitional query processing system for sensor
networks. ACM Transaction on Database Systems 2005; 30(1):122—-173.

4. Beaver J, Sharaf MA, Labrinidis A, Chrysanthis PK. Power-aware in-network query processing for sensor data.
In proceedings of second hellenic data Management Symposium (HDMS), Athens, Greece, September 2003.

5. Deligiannakis A, Kotidis Y, Roussopoulos N. Compressing historical information in sensor networks. Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, France, 2004.

6. Trigoni N, Yao Y, Demers A, Gehrke J, Rajaraman R. WaveScheduling: energy-efficient data dissemination for
sensor networks. Proceedings of the 1st International Workshop on Data Management for Sensor Networks, Toronto,
Canada, 2004.

7. Bonfils, BJ, Bonnet P. Adaptive and decentralized operator placement for in-network query processing. Proceedings
of the 2nd International Workshop on Information Processing in Sensor Networks (IPSN), Palo Alto, CA, U.S.A.,
2003.

8. Coman A, Sander J, Nascimento MA. An analysis of spatio-temporal query processing in sensor networks.
Proceedings of the Ist IEEE International Workshop on Networking Meets Databases, Tokyo, Japan, 2005.

9. Abadi D, Madden S, Lindner W. REED: robust, efficient filtering and event detection in sensor networks.
Proceedings of VLDB, Trondheim, Norway, 2005.

10. Deshpande A, Guestrin C, Madden S, Hellerstein JM, Hong W. Model-driven acquisition in sensor networks.
Proceedings of VLDB, Toronto, Canada, 2004.

11. Chu D, Deshpande A, Hellerstein JM, Hong W. Approximate data collection in sensor networks using probabilistic
Models. Proceedings of ICDE, Atlanta, GA, U.S.A., 2006.

12. Cetintemel U, Flinders A, Sun Y. Power-efficient data dissemination in wireless sensor networks. Proceedings of the
3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access, San Diego, CA, U.S,A.,
2003.

13. Zadorozhny VI, Chrysanthis PK, Krishnamurthy P. A framework for extending the synergy between MAC layer
and query optimization in sensor networks. Proceedings of the 1st International Workshop on Data Management for
Sensor Networks, Toronto, Canada, 2004.

14. Chatterjea S, van Hoesel LFW, Havinga PJM. AI-LMAC: an adaptive, information-centric and lightweight MAC
protocol for wireless sensor networks. Proceedings of the Ist international Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Melbourne, Australia, 2004.

15. Ratnasamy S, Karp B, Shenker S, Estrin D, Govindan R, Yin L, Yu F. Data-centric storage in sensornets with
GHT, a geographic hash table. Mobile Networks and Applications (MONET) 2003; 8(4):427—442.

16. Greenstein B, Ratnasamy S, Shenker S, Govindan R, Estrin D. DIFS: a distributed index for features in sensor
networks. Ad Hoc Networks 2003; 1(2-3):333-349.

17. Li X, Kim YJ, Govindan R, Hong W. Multi-dimensional range queries in sensor networks. Proceedings of the Ist
International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, U.S.A., 2003.

18. The COUGAR Sensor Database Project, http://www.cs.cornell.edu/boom/2002sp/extproj/www.cs.cornell.edu/
database/cougar/default.htm, 2002.

19. Hellerstein J, Hong W, Madden S, Stanek K. Beyond average: Towards sophisticated sensing with queries.
Proceedings of the First Workshop on Information Processing in Sensor Networks (IPSN), Palo Alto, CA, U.S.A.,
2003.

AUTHORS’ BIOGRAPHIES

Supriyo Chatterjea is currently a full-time PhD student at the Department of
Mathematics, Electrical Engineering and Computer Science at the University of
Twente. After graduating from Nanyang Technological University, Singapore, with
a Bachelor’s degree in Electrical Engineering in 2001, he obtained a Master’s degree
with distinction in Computing and Internet Systems from King’s College London,
U.K., in 2002. He was also awarded the ‘Best MSc Project” award for his work on
service discovery in mobile ad hoc networks at IBM Research Laboratory, Zurich,
Switzerland. His research interests lie in the field of distributed data management for
wireless sensor networks.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908
DOI: 10.1002/dac

908

S. CHATTERJEA AND P. HAVINGA

Dr Paul J.M. Havinga is an associate professor in the Computer Science department
at the University of Twente in the Netherlands. He received his PhD on the thesis
entitled ‘Mobile Multimedia Systems’ in 2000, and was awarded with the ‘DOW
Dissertation Energy Award’ for this work. His research interests are in the area of
large-scale, heterogeneous wireless systems, sensor networks, energy-efficient
architectures and protocols, ubiquitous computing, personal communication
systems, and wireless communication networks. This research has resulted in over
180 scientific publications in journals and conferences.

He is the project manager of the Bsik project Smart Surroundings, on ambient
intelligence, the European project EYES, on energy-efficient sensor networks, the
Dutch projects Featherlight on distributed system software, and CONSENSUS, on

application support for collaborative sensor networks. He is the workpackage leader in the EU IST
projects CoBis, e-Sense, Aware, and co-ordinates research exchange in Embedded WiSeNts on sensor
networks and applications.

He is the editor of several journals and magazines. He is involved as program committee chair, member,
and reviewer for many conferences and workshops. He has been a visiting researcher at the University of
Pisa in 1998, and the Communications Research Laboratory in Yokosuka Japan in 2000.

He regularly serves as an independent expert for reviewing and evaluation of international research
projects for the EU, the U.S., and international governments.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:889-908

DOI: 10.1002/dac

