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Abstract

This paper considers the problem of Maximum a Posteriori (MAP) sequence
equalization over a frequency selective channel when the channel is not perfectly
known at the receiver. The imperfect channel estimate is provided by a least squares
estimator using a training sequence (TS). The derivation of the MAP criterion tak-
ing into account the channel estimation error exists in the literature but no direct
practical implementation has been proposed. In this paper, we propose an approxi-
mate solution to the problem by using an iterative burst-by-burst equalizer based on
the Expectation Maximization (EM) algorithm. Simulation results show that the
performance of our iterative equalizer is significantly better than the performance of
the non iterative equalizer which does not take into account the channel estimation
error.

Keywords: MAP equalization, channel estimation, EM algorithm, frequency selec-
tive channel, turbo-detection, Soft Output Viterbi Algorithm.

1 Introduction

To combat the effects of intersymbol interference (ISI), an equalizer has to be used. In
practice, the receiver does not know perfectly the channel and has to estimate it. In
this paper, we consider the case where the equalizer has an imperfect channel estimate
provided by the channel estimator which uses a training sequence (TS). Most previous
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works use a suboptimal approach where the equalizer assumes perfect channel knowledge
and uses the channel estimate as if it was the true channel. The problem of equalization
for non-ideal channel knowledge has been tackled in [1, 2]. In [1], Tiichler et al. derived
the Maximum A Posteriori (MAP) criterion in the case of transmission over a frequency
selective channel, for Time Division Multiple Access (TDMA) systems. They suggested
to use sequential decoding or sphere decoding to solve it, since it was not feasible for a
direct practical implementation. In [2], an optimum MAP discrete-time rake receiver has
been proposed for Code Division Multiple Access (CDMA) systems when the channel is
not perfectly known. In this case, the algorithm can be implemented since the Probability
Density Function (PDF) involved in the derivation of the MAP criterion can be factored
unlike the PDF in [1].

In this paper, we consider, as in [1], a TDMA data transmission system over a fre-
quency selective channel. We propose an approximate solution to the problem of MAP
equalization with imperfect channel knowledge using an iterative burst-by-burst equalizer
based on the Expectation Maximization (EM) algorithm [3]. The EM algorithm is a gen-
eral procedure for iterative maximum likelihood or MAP estimation. When the channel
and the transmitted symbols are unknown, two applications of the EM algorithm can be
considered. Indeed, it can be used to iteratively estimate the channel [4, 5] or to itera-
tively estimate the transmitted symbols [6, 7, 8]. Here, we propose a new approach using
the EM algorithm to give an approximate solution to the intractable problem introduced
in [1]. The EM algorithm alternates between two steps, an Expectation (E) step and a
Maximization (M) step. In our case, the Maximization step of the EM algorithm is per-
formed by a Viterbi algorithm. In order to include our equalizer into a turbo-detector, we
propose a soft output version of it, based on the Soft Output Viterbi Algorithm (SOVA)
[9]. Simulation results show that our iterative equalizer performance is significantly bet-
ter than the performance obtained by using the approximate solution proposed in [1] and
than that of the suboptimal non iterative equalizer which does not take into account the
channel estimation error.

Throughout this paper, scalars are lower case, and vectors and matrices are bold
lower and upper case, respectively. The operators (.), (.)* and (.)" denote respectively
transposition, conjugation and transconjugation. The L x L identity matrix is denoted
by I I

2 System model

The input information bit sequence is mapped to the symbol alphabet A. We assume that
the transmission is organized into bursts of K symbols each. The transmitted symbols are
equiprobable. The channel is supposed to be invariant during one burst and can change
from burst to burst. Within one burst, the baseband signal sampled at the symbol rate
and received at time £ is

L
rk:Zhlsk,mek:sfhjka, VO<E<K+L-1
=0

where L is the channel memory length, s, for 0 < & < K — 1, are the transmitted
symbols with average energy Eg and sp = [Sg, - ,sk,L]T. The virtual symbols s, for
—L<k<—-1land K <k < K+ L —1, are assumed to be known at the receiver and
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can be assumed to be 0. In this expression, wy, for 0 < k < K + L — 1, are Additive

White Gaussian Noise (AWGN) complex samples with PDF N (0, 02), where 0 = N, and

Nc(a, 0?) denotes a circular complex Gaussian distribution with mean « and variance 0.

The channel realization vector h = [hq ... k)T is circularly symmetric complex Gaussian

distributed with PDF N (0, Ry,), where Ry, is the channel covariance matrix. The PDF
of h is given by

(h) = _ (-h'R;, 'h) (1)

b det(rRy) P o

Let s = [sg_1,...,5 1] be the (L + K)-long vector of symbols and S be the associ-

ated (K + L) x (L + 1) Hankel matrix with last column [sx_y,---,s_]" and last row

[S0, -+, $_r]. The received signal model can be rewritten in a matrix form as r = Sh+w,

with r = [rgin_1,...,70]7 and W = [wg 1, ..., wo]". Tt follows that:

K+L-1
1 |7 — sthl?
p(rfh;s) = (ro?)K+L eXp <_ Z o2

k=0

IR B (_(r — Sh)f(r - Sh)) |

. ¢l
The initial channel estimate h is provided to the equalizer by a least squares estimator
using a training sequence (TS) § = [S4y17311_1, - Sto) . of length Ty + L, with 0 < ¢ <
K —Ty— L [10]. We assume that the training symbols have the same average energy Fg as
the transmitted information data symbols. Let S be the T x (L + 1) Hankel matrix with
first column [Sy 7y 40-1, - - » Storr]” and last row [sy41,- - - , S¢,] . The channel estimate h
can then be modeled as h = h + b, with b being circularly symmetric complex Gaussian

- ~\ —1
distributed with PDF Ng(0, Ry) and Ry = o (STS) Tt follows that

plBfh) = G enp (~(B— )R}~ b)) 3
and
p(h) = det(ﬂ(th TRy exp <_BT(Rh + Rb)_lﬁ) : (4)

3 Problem statement

When the channel is perfectly known at the receiver, the data estimate according to the
MAP sequence criterion is given by

§ = arg max P(s|r,h), (5)

which can be solved efficiently by the Viterbi algorithm [11]. Here, however, an estimate h
but not the true channel h is available at the receiver. Replacing h by h in the equalization
algorithm leads to a loss in signal to noise ratio (SNR) for which a closed form expression
is derived in [12]. This loss is significant when the channel estimate is noisy (the TS is
short). Hence, in this paper, we consider the exact MAP criterion that takes into account
the channel estimation error:

§ = arg max P(s|r,h). (6)

This criterion was first derived in [1] but no efficient implementation was proposed yet.
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4 Proposed approximate solution: EM algorithm

We propose to use the EM algorithm [3, 13] to iteratively approach the solution of the
problem (6) with a reasonable complexity. Each iteration of the algorithm consists in two
steps:

E : Q (s,si) = /logP <s|r,h, ﬁ)p <h\r, ﬁ,si> dh (7)
M : s =argmaxQ (s,s’) (8)

where E stands for the Expectation step and M for the Maximization step of the EM
algorithm. When the EM algorithm is used to estimate continuous parameters, it was
proved in [13] that it converges to a local maximum. However, for discrete parameter
estimation, as it is the case in our work, the EM algorithm is not guaranteed to converge
to a maximum [14]. Thus, the solution we propose is an approximate solution to the
problem introduced in [1]. In the following, we detail a possible implementation of the
EM algorithm.

4.1 Expectation step
By noticing that P <s\r, h, ﬁ) = p(r|s,h) P(s) /p(rjh), the function @ in (7), at the

(i + 1) iteration, can be simplified as:

Q (S,Si) = /logp(r\s, h)p<h|r,fl, si) dh + log P (s) —/10gp(r|h)p<h\r, fl’si> dh |

. /
v~
(07

Since « is independent of s, we focus on the computation of [logp (r|s,h)p <h|r, h, si> dh.

Using the independence between (h,h) and s’, and between r and h given (h,s’), the
Bayes’ rule reads:

p(x/h, s')p(h[h)
p(r|h,s’)

We proceed by computing p(h|h). Again, using the Bayes’ rule and the expressions of the

PDFs (1), (3) and (4), we obtain

P <h|r, h, si) = (9)

p(hlh) =

- e (W o), (10)

with 27! = R, ' + R;; ! and u = R, 'h. The derivation of p(r|h,s’) needs an additional
expectation since

p(rff, ) = / p(r|h, s')p(h|R)dh.
Using (2) and (10), we obtain

plolh.s) = g enp (~r— e R (=€) (1)
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with
R = o%x,.,+S'=S" (12)
i -1
¢ = RZSQ( S'S' + 3~ ) >y, (13)
g

S’ being the (K + L) x (L + 1) Hankel matrix associated to s defined as S. Finally, by
using the Bayes’ rule in (9) and the PDFs in (2), (10) and (11), the desired PDF is given
by:

p <h|r, h, si) - m exp <—(h —d)' R (b — di)> (14)
with
R, = %S“Si +R; !+ R;! (15)
d' = R/, (%S"TerRb‘lﬁ). (16)
We have

K+L 1

/logp(r|s,h)p <h|r,f1, si> dh = —— /|7‘;€ s; h|? p h|r h,s ) dh—(K+L)log(mo?).

The terms of the sum can be computed using (14) and we obtain

/ |7 — st h|?p <h\r, h, Si) dh = |r, —sid'|* + si Rlsj.

Finally, the function @ is given by:

K4+L-1
Q(s,s) = L Z (Jre — spd’)> + spRisy) — (K + L) log(mo?) + log P(s) — a.. (17)

o2
k=0

Remark 1: Notice that the channel estimation d* obtained while deriving the EM
algorithm is the mean of the a posteriori probability p <h|r,f1, si). This estimation is
thus the Minimum Mean Square Estimation of the channel.

4.2 Maximization step

From (17), the maximization step (8) can be performed recursively by using the Viterbi
algorithm with branch metric (|r, — sf d’|* + s]Ris}) and states (si, ..., Sk—r+1)-

4.3 Estimation of the channel noise variance and the channel
covariance matrix
We assumed in the previous derivation of the EM algorithm that the channel noise variance

o? and the channel covariance matrix Ry, are perfectly known at the receiver. If they are
not known (as it is usually the case in practical systems), they must be estimated.
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The channel noise variance o2 can be estimated using the EM algorithm we derived

previously by replacing the parameter to be estimated s by 6 = (s, 0?). The function Q
is then given by:

Q (9, Oi) = /logP (s,02]r, h, fl) P <h\r, h,s’, (ai)2> dh

= /logp (r[s,0 h) p <h|r, h, s, (0’)2) dh+1logP(s)— [

K+L—1
1 , .
=-= Z (|re —spd'|> + s Ris;) — (K + L) log(mo®) + log P(s) — 8 (18)
k=0

with R}, and d’ being given by (15) and (16) where o is replaced by ¢*, the estimate of o
at the i iteration, and (3 is independent of . At the (i + 1) iteration, the maximization
of the function () with respect to o leads to the noise variance estimate:

1 K+L-1
i AT iT i oi*
(U +1)2 = m kz_% <‘Tk — Sk} d ‘2 + Sk dsk) . (19)

The equalizer needs also an estimate of the channel covariance matrix Ry. It can be
obtained by averaging (by using a moving average) over a certain number B of bursts
using the channel estimates based on the TS.

4.4 Summary of the algorithm

e Initialization: The first estimate s® of s is obtained by the Viterbi algorithm using
the initial channel estimate h. The estimate of the channel noise variance (¢%)? is

obtained using the Ty + L training symbols: (0%)* = 7 ZOLOTOJ:ZLA <|rk — s£ﬁ|2>

The channel covariance matrix is estimated over B bursts.

e For each iteration index 7 +1

1. E-step: Compute R}, and d* defined in (15) and (16), respectively, with ¢ used
instead of o.

2. M-step: Perform a Viterbi equalizer with branch metric
|, — st d’|? + s} Ris;.

The metric minimizing sequence at the output of the Viterbi equalizer is s**!.
Compute (o"™)? using (19).

Remark 2: Notice that the inversions and multiplications of the matrices in the
Expectation step have complexities which do not depend on K or increase linearly with
K. Thus, the overall complexity of the algorithm increases linearly with K. It is worth
mentioning that the complexity of the algorithm can be reduced, when K is sufficiently
high, by approximating "' S? in (15) by (K 4 L)I ;. In this case, the inversion of R}, "
leading to R}, is done once and for all the bursts when the covariance matrices of the
channel and the noise, R; and Ry, do not significantly change.
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Remark 3: Notice also that our derivation of the EM algorithm is similar, from a
mathematical point of view, to the one presented in [8]. However, the problem we consider
is different. Indeed, in [8], Perry et al. propose an approximate solution, using the EM
algorithm, to the problem § = arg max P(s|r). The initialization of the EM algorithm in

8] is based on the channel statistics and does not use a training sequence (blind detection).
In this paper, we propose to use the EM algorithm to give an approximate solution to
the intractable problem (6) of MAP sequence equalization with an imperfect channel
estimate introduced in [1]. To initialize our algorithm, we use this channel estimate h.
As will be seen in the simulation section, when this initialization is enough reliable, the
performance of our iterative equalizer approaches the performance obtained when the
channel is perfectly known at the receiver.

5 Simulation results

We consider the transmission of BPSK symbols over a frequency selective channel. The
channel memory length is set to L = 4. The different channel taps are modeled as
independent zero mean complex Gaussian random variables with variance 1/ (L + 1).
The channel is assumed to be invariant during a burst and to change independently from
burst to burst. The channel estimate h is obtained by a least mean square error estimator
using a T'S of length Ty + L [10]. The channel covariance matrix is estimated over B = 20
bursts. The channel noise variance is estimated at each iteration of the EM algorithm
using (19).

5.1 Uncoded transmission

We first consider the case of an uncoded transmission, as described in Section 2. The
burst length K is equal to 512. Figures 1 and 2 show the Bit Error Rate (BER) obtained
using the EM algorithm from one to five iterations, with respect to SNR = FE,;/Ny in
dB, respectively when Ty = 7 and Ty = 12. The training sequences are chosen randomly.
The performance of the suboptimal MAP equalizer which does not take into account
the channel estimation error (using h as if it was the true channel h) is similar to our
iterative equalizer performance at the first iteration. Simulations show that using our
iterative equalizer, which takes into account the channel estimation error, leads at the
fourth iteration to a gain of 3.3dB when Ty = 7 and 2.5dB when Ty = 12. Simulations
also show that when Ty = 12, the performance of the EM algorithm at the fourth iteration
approaches the performance obtained when the equalizer has perfect channel knowledge
(dotted curve). However, when the TS is too short (7 = 7), there is a gap in terms of
performance compared to the case of perfect channel knowledge. Thus, the TS length
and then the quality of the initial channel estimate affect the asymptotic performance.
This can be explained by the fact that the EM algorithm is used here to estimate discrete
parameters and is then not guaranteed to converge to a local maximum [14]. Notice also
that the exact MAP criterion derived in [1] cannot be implemented here in a practical way
since the PDF involved in the derivation of the MAP criterion cannot be factored. The
curves labeled "Approximation [1]” show the performance obtained using the approximate
rule proposed in ( [1, eq(7)]). However, it leads to an improvement of only 0.2 dB compared
to the one obtained at the first iteration of our iterative receiver when 75 = 12 and 0.4
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dB when Ty = 7.

Now, we want to compare the performance of our equalizer with the performance of
the iterative receiver using semiblind least squares channel estimation (LSCE) and Viterbi
detection. In this receiver, at each iteration, the channel estimator uses the decisions on
the transmitted symbols at the output of the Viterbi detector to improve its estimation.
In Figure 3, solid curves show the performance obtained while using the proposed EM
algorithm and dotted curves show the performance obtained while using the iterative
receiver based on semiblind LSCE and Viterbi detection, from one to four iterations,
when Ty = 12. We notice that our receiver performance is slightly better at high SNR.
Thus, the iterative equalizer we propose in this paper improves the global performance
in terms of BER with respect to a non iterative equalizer, but it does not significantly
improve the performance with respect to the iterative receiver using semiblind LSCE and
Viterbi detection.

BER

10 "H — iterl
-6 iter2
—*— iter3
- iterd
—— iter5
— - Perfect channel knowledge
—0— Approximation [1]

2

10"
SNR

Figure 1: BER performance for one to five iterations of the EM algorithm when 7Ty = 7
and the TS is chosen randomly.

5.2 Coded transmission

We consider now a coded data transmission system over a frequency selective channel
depicted in Figure 4. The input bit sequence b is first encoded with a nonrecursive non-
systematic convolutional encoder with rate r.. The sequence of coded bits ¢ at the output
of the encoder is interleaved, mapped to the symbol alphabet A leading to the sequence
of modulated symbols s. We consider at the receiver the turbo-detector consisting of a
MAP equalizer and a MAP decoder which exchange extrinsic probabilities on the coded
bits during the iterations [15]. The MAP decoder uses the BCJR algorithm [16]. In order
to include our MAP equalizer presented in Section 4 into the turbo-detector, we need a
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BER

3

—— iterl
-6 iter2
—*— iter3
8- iter4
—— iterb
— - Perfect channel knowledge
—— Approximation [1]

-4

10 Il L Il L Il

Figure 2: BER performance for one to five iterations of the EM algorithm when Ty = 12
and the TS is chosen randomly.

10™ T

BER

—+ iterl-EM
-6 iter2-EM
—*— iter3-EM
8- iter4-EM
iter1~LSCE
iter2-LSCE
iter3-LSCE
iter4-LSCE

10"

T

o O +

107 I I I

Figure 3: BER performance of the EM algorithm (solid curves) and of the iterative receiver
using semiblind LSCE and Viterbi detection (dotted curves), for one to four iterations,
when 7, = 12 and the TS is chosen randomly.
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Input
sequence Data
| VAP estimate
nter- Deinter—| Decod
— | Encoder i ecoder I
b . leaver Modulation s Channel Equalizer leaver
Channel Inter-
estimate leaver

Figure 4: Coded data transmission using a turbo-detector at the receiver

soft output version of it. Since each M-step is performed by the Viterbi algorithm, we
propose to use the SOVA [9]. At each iteration of the turbo-detector, an iteration of the
EM algorithm is performed. The M-step is performed by a SOVA with branch metric

i — s d'[* + sy Risy + log P(st).

The calculations of R}, and d* are performed by using (15) and (16), where the matrix
S’ is obtained by using the estimate of the coded sequence based on the A Posteriori
Probabilities (APPs) on the coded bits at the output of the MAP decoder. We assume
that thanks to the interleaver, the APPs calculated by the decoder on the coded bits are
independent. Thus, P(sy = s), s € A, can be computed as the product of the APPs on
the coded bits provided by the decoder and corresponding to s = s.

In the simulations, the input bit sequence of length 512 (510 information bits and 2
tail bits set to 0 to end the trellis of the decoder) is encoded using the rate r. = 1/2
convolutional code with 4 states and generator polynomials (7,5). In Figure 5, the curves
with solid lines show the BFER obtained from one to five iterations of the turbo-detector,
with respect to SN R in dB for Tj = 10, when the TS is chosen according to [10] (optimum
TS in terms of signal to estimation error ratio). Here, SNR = E,/Ny where E, is the
energy per information bit (before coding) and Ny = o2 is the channel noise variance.
Notice that in this case, no performance gain is obtained at the sixth iteration. Thus, the
turbo-detector converges at the fifth iteration. However, when the channel is perfectly
known, only three iterations are needed by turbo-detector to converge. The curves with
dotted lines show the BER obtained from one to three iterations of the turbo-detector
when the equalizer knows perfectly the channel. At the convergence, the performance of
the turbo-detector with imperfect channel knowledge reaches at high SNR the performance
of the turbo-detector with perfect channel knowledge.

6 Conclusion

In this paper, we considered the problem of MAP sequence equalization when the channel
is not perfectly known at the receiver. The MAP criterion was first derived in this case in
[1] but no exact practical implementation was proposed. In this paper, we proposed an
approximate solution using the EM algorithm. Each M-step is performed by the Viterbi
algorithm. In order to include our equalizer into a turbo-detector, we proposed to use a
soft output version of it based on the SOVA. Simulation results showed that our iterative
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10 T
—+ iterl
o iter2
—*— iter3
- iterd
—— iter5 j
1 + - iterl perfect channel knowledge

© - iter2 perfect channel knowledge |
* - iter3 perfect channel knowledge

BER

8 85 9 9.5 10 10.5 11 115 12 12‘.5 13
SNR
Figure 5: BER performance of the turbo-detector: for one to five iterations when 7y = 10

and the TS is chosen according to [10] (solid curves), for one to three iterations when the
channel is perfectly known (dotted curves).

receiver leads to a significant improvement in terms of BER performance compared to the
suboptimal non iterative equalizer which does not take into account the channel estimation
error. They also showed that when the initial channel estimate is enough reliable, after a
few iterations, our receiver performance approaches the performance achieved when the
channel is perfectly known.
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