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. INTRODUCTION

Information transmission over channels with known intesfee at the transmit-
ter has recently found applications in various communicaproblems such as digital
watermarking [1] and broadcast schemes [2]. A remarkaldaltreon such channels
was obtained by Costa, who showed that the capacity of théhadavhite Gaussian
noise (AWGN) channel with additive Gaussian i.i.d. integfece where the sequence of
interference symbols is known non-causally at the trartemigs the same as the capacity
of the AWGN channel [3]. Therefore, the Gaussian interfeeethoes not incur any loss in
the capacity. This result was extended to arbitrary (randoeterministic) interference
in [4] by using a precoding scheme based on multi-dimensitatice quantization.
Following Costa’s “Writing on Dirty Paper” famous title [3foding for the channel
with non-causally known interference at the transmittereferred to as “dirty paper
coding” (DPC). By analogy, coding for the channel with cdlysenown interference at
the transmitter is sometimes referred to as “dirty tapermgdiDTC). The result obtained
by Costa does not hold for the case that the sequence ofdrgade symbols is known
causally at the transmitter.

Recently, dirty paper coding has emerged as a building blookultiuser communi-
cation. In particular, there has been considerable relsetinclying the application of dirty
paper coding to broadcast over multiple-input multipleépoti (MIMO) channels. In such
systems, for a given user, the signals sent to other usersoasdered as interference.
Since all signals are known to the transmitter, successlirgy“paper” cancelation can be
used in transmission after some linear preprocessing i#as shown that DPC in fact
achieves the sum capacity of the MIMO broadcast channel[§¢$],[7]. Most recently,
it has been shown that the same is true for the entire capesgfipn of the MIMO
broadcast channel [8].

These developments motivate finding realizable dirty papding techniques. Build-

ing upon [4], Erez and ten Brink [9] proposed a practical cddsign based on vector



guantization via trellis shaping and using powerful chamoeles. Due to the complexity
of implementation, their scheme uses the knowledge of faremce up to six future
symbols rather than the whole interference sequence. Bamaiaal. [10] gave another
design based on superposition coding and successive atinnedlecoding. Their design
uses a trellis coded quantizer with memory length nine anoladensity parity check
(LDPC) code as channel code. Wei ¥ual. [11] gave a design based on convolutional
shaping and channel codes.

The schemes that use the interference sequence up to tlemtcaymbol can be
used as low-complexity solutions for the dirty paper prabl&or example, in [1], scalar
lattice quantization is proposed for data-hiding even gfoin that context, the host signal
in clearly known non-causally.

In this paper, we consider the problem of channel code dekigrthe M-ary
input AWGN channel with additive causally-known discretgerference. The discrete
interference model is more appropriate for many practigglieations. For example,
in the MIMO broadcast channel where the transmitter uses ite faonstellation, the
interference caused by other users is discrete rather thaimaous.

Our design does not rely on the suboptimal (in terms of capagiecoding scheme
based on scalar lattice quantization for the dirty tape obhifd], [12]. Instead, we
consider anew approach based on code design for the Shannasssciated channel
over all possible input symbols. Another distinction betweour work and the related
research in the field is that we consider a finite channel ighoihabet rather than a
continuous one.

This paper is organized as follows. In the next section, warsarize Shannon’s
work on channels with causal side information at the trattemiln sectionIll, we
introduce the channel model. In section 1V, we derive theecddsign criterion for the
AWGN channel with causally-known discrete interferencahat encoder. In sectidn]V,
we consider channels with binary input for which we show ttie design criterion

derived in sectiof IV reduces to maximizing the Hammingatise. In section VI, we



consider a special case for which the result for the binagnokl also holds for the
M-ary channel. In section MII, we consider a more general oshamodel for which the

main results of this work hold. We conclude this paper inisedVIII]

II. CHANNELS WITH SIDE INFORMATION AT THE TRANSMITTER

Channels with known interference at the transmitter areciapease of channels
with side information at the transmitter which were consedeby Shannon [13] in the
causal knowledge setting and by Gel'fand and Pinsker [14hénon-causal knowledge
setting.

Shannon considered a discrete memoryless channel (DMCgeninansition matrix
depends on the channel state. A state-dependent discratergiess channel (SD-DMC)
is defined by a finite input alphabét, a finite output alphabey, and transition prob-
abilities p(y|x, s), where the state takes on values in a finite alphab&t The block
diagram of a state-dependent channel with state informatiche encoder is shown in
fig. [.

In the causal knowledge setting, the encoder maps a message X" as

r=fi(w,s1,...,8), 1<i<n. Q)

Shannon showed that it is sufficient to consider the coditngmees that use only
the current state symbol in the encoding process to achieveapacity of an SD-DMC
with i.i.d. state sequence known causally at the encodgr [13

The SD-DMC can be used in the way shown in fi§y. 2 to transmitrinfdion. A
precoder is added in front of the SD-DMC. A messagé mapped intd/ ™, whereT
is a new alphabet. The output of the precoder ranges &vand depends on the current
interference symbol. The regular (without state) chanrahfl” to Y is defined by the

transition probabilities

aylt) =D p(s)p(ylr = t(s), 5). 2)

seS
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Fig. 1. SD-DMC with state information at the encoder.
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Fig. 2. Theassociated regular DMC.

where p(s) is the probability of the state. The DMC defined in[(2) is called the
associated channel. The codes for thassociated channel describe the codes for the
SD-DMC that use only the current state symbols in the engpdjperation. In order to
describe all coding schemes for the SD-DMC that use only thieent state symbol in
the encoding procesd, must include all functions from the state alphabet to theuinp
alphabet of the state-dependent channel. There are a fotaf|§! of such functions,
where|.| denotes the cardinality of a set. Any of the functions candprasented by a
|S|-tuple (z1, zs, ..., z5)) composed of elements of, implying that the value of the

function at states is z,,s =1,2,...,|S|.

[Il. THE CHANNEL MODEL

We consider data transmission over the channel

Y=X+S5+N, 3)



where X is the channel input, which takes on values in a real finite gl is the
channel output)V is additive white Gaussian noise with powet, and the interference
S is a discrete random variable that takes on values in a ratd fetS. The sequence
of i.i.d. interference symbols is known causally at the &®co

The above channel can be considered as a special case ofateedspendent
channel considered by Shannon with one exception, that lthenel output alphabet
is continuous. In our case, the likelihood functigp x s(y|z, s) is used instead of the
transition probabilities. We denote the input to tmssociated channel byT’, which can
be considered as a function frot to X. We denote the cardinality okt and S by
M and Q, respectively. Then the cardinality 6F will be M, which is the number all
functions fromS to X.

The likelihood function for theassociated channel is given by

frir(ylt) = Zp(S)me,s(y\t(S), s)

seS

= D _pls)fnly —t(s) =), (4)

seS

wherep(s) is the probability of the interference symbohnd fy denotes the pdf of the
Gaussian noisév.

Although in this work, we consider a fixed channel input alpdtal’, the transmitted
power is not fixed in general. In fact, for probability dibuition p(s) on S and for a
given coding scheme for thassociated channel which induces probability distribution
p(t) on the symbols off’, the transmitted power is given by

E[X?) = > p(t)p(s)E[X|t, 5]

teT seS

= S pt)p(s)Es). (5)

teT seS
Thus, in general, the transmitted power depends on the pilapadistribution on the

interference alphabet. The binary-input channel with= {—x,z} is an exception,

however, for which we havé’(s) = 2? for all s € S. Therefore, for any coding scheme



and any probability distribution on the interference alpdta the transmitted power is
equal toz?.

In this work, we do not impose any constraint on the power @f titansmitted
signal. However, in the performance comparisons givendatiaes[ and VI for different

scenarios, we ensure that the transmitted power is the samlé scenarios.

IV. THE CoDE DESIGN CRITERION

Any coding scheme for thassociated channel defined by [4) translates to a coding
scheme for the actual channel defined By x s(y|z,s). We use the pairwise error
probability (PEP) approach to derive the code design aoiteat high SNR. Since in
this work, we consider fixed channel input and interferenigdhabets, the high SNR
scenario is realized by making the noise powérsufficiently small. This is equivalent
to scale up the transmitted signal and the interference bysttme factor for a given
noise power.

Suppose that the messages and w, are encoded into codeword$ = tt, .. .t,
andr} = ryry...7,, respectively, where¢; andr; belong to the alphabét, i =1,... n.

In the absence of noise, transmission of the codewprdan result in many different
received sequences at the channel output depending ontdr&eiance sequencd =
$182 ... ,. In specific, all sequences i(t1(s1) + s1,t2(S2) + S2, . -+, tn(Sn) +8n) 1 8T €
S™} represent the transmitted codewafdat the channel output. On the other hand, all
sequences ifi(r1(s1)+s1, r2(82)+ 82, - . ., Tn(sn)+5,) : 87 € S"} represent the codeword

r7. Using maximum likelihood decoding, the probability of teeéent that message, is



decoded given messagg was sent is given by

Pr{w; — wy|wi} = Zp(s?)Pr{wl — walwy, s}

n
51

= ZP(S?)PV{JIY\T(Q?W) < fyie(yrlri)hoy, 81}

n
51

= ZP(S?)PV{H Sy (yilts) HfY\T Yilri) |w1,51}
i=1 i=1

n
51

- Zp(s?)Pr{H ZP(S)fN(yi —ti(s) —s8) <

n i=1 seS

HZP(S)fN(yi —1i(s) — s)|wy, 3?} )

i=1 seS

In appendiXll, we have shown that the above error probalilitligh SNR is given by

Pr{w; — wy|w} = O (Q <\/Z?:120§|(ti’ rl))) ) (7)
where
Q(z) = T ex (—y—Q) d (8)

anddg(t,r) (Sl stands for side information), the distance between twotisgmbols of

the associated channelt andr, is defined as

dsi(t,7) = min_|t(s1) + 51 — 7(S2) — Sa|. 9)

51,52€S

According to [T), at high SNR, the code design criterion igrtaximize the minimum

distance between the codewords with the distance measfinedién (9).

A. No Sde Information at the Encoder - A Comparison

In order to see how the knowledge of interference at the esrcodn result in
larger distances between codewords, consider the chanoa¢lnmtroduced in section
[Twith the exception that the interference sequence iskmatwn at the encoder. In this

case, the discrete interference is considered as noisedén to obtain the PEP for this



channel, suppose that messagesand v, are encoded inta} = z;---x, € X" and

2P =2+ -z, € X", respectively. Similarly, it can be shown that the PEP ahiNR

is given by
. d2 1y <1
Pr{v; — vlv1} = O <Q (\/212120 (@2 )>> ; (10)
whered(z, z), the distance between two symbalsand z of X" is defined as
d(zx, 2) :sfgirels\x—i-sl — 2z — S9l. (11)

Comparing [(®) and[(11), it becomes clear that larger digsramong codewords are
possible for the channel with side information at the encddefact, the distancé(z, z)

is equal tods(t,r) for t = (z,...,z) andr = (z,...,z). However,7 has many other
symbols, which may vyield larger distances. For examplesiclan the channel with’ =

S = {—1,+1}. For the case without side information at the encoder, wecoampute the
distances between symbols &faccording to[(11) ad(1,1) = d(—1,—1) =d(1,-1) =

0. Hence, according td_(10), it is impossible to transmit datar this channel with low
error probability even at high SNR. For the case with sidenmfation at the encoder,
the four symbols of thessociated channel can be representedws= (—1,+1),uy =
(+1,—-1),u3 = (+1,41),us = (=1, —1). Using [9), it is easy to check that the distances
between all pairs of the symbols are zero exceptdigfu,, us) which is 2. As will be
seen in section My; andu, can be used in the encoding to achieve arbitrarily low error
probabilities as SNR increases.

It is worth mentioning that the distance measures defingdl)ior((11) do not satisfy
the triangle inequality. For example, again consider trenalel withA’ = S = {—1, +1}.
The distances between all pairs of the input symbols ofaiseciated channel are zero
except fords(uq,uz) Which is 2. Therefore, the triangle inequality does not hold for

dsi(u1,us3), dsi(us, uz), anddg(uy, usg).
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V. THE BINARY CHANNEL

We call the channel introduced inl (3)kanary channel when the channel accepts
binary input, i.e.,M = 2. There is no constraints on the cardinality of the interiese
alphabet. For the binary channel, the size7ofis 2°. However, we may not need to
use all the symbols of the alphabet in the encoding. In thisie®e we show that it is
sufficient to use only two symbols @f in the encoding as far as the distance spectrum
of the code is concerned. We begin with the following lemmath binary channel.

Lemma 1. Forthe binary channel, there exist at least two symbols with nonzero
distance.

Proof: We may explicitly denote the channel input and interferealpdabets by
X ={z1,z2} andS = {s1,...,5¢0}, Wherez; < zy ands; < sy < --- < sg. From the
definition of distance in[{9), it is sufficient to show that thexist two elements and
r in 7 such that the corresponding multi-sgteof size®) {t(s1) + s1,...,t(sq) +so}
and{r(s1) + s1,...,r(sq) + sq} are disjoint. We prove this by induction @p.

The statement of the lemma holds f@r = 1 since we may takeé = (z;) and
r = (x9). Then the setz; + s;} and {z, + s;} are disjoint. Now suppose that the
statement of the lemma is true for sojeTherefore, the exist tw@-tuples composed of
elements oft’ (two input symbols of thessociated channel) such that the corresponding
multi-sets are disjoint. We prove that the statement of émenha hold for() + 1.

The element; + sy is larger than any element of the two multi-sets (of sipe
Hence, it does not belong to any of the multi-setsz;lf- s, does not belong to any of
the multi-sets too, then we can include the new elementssg; andxs + sg4+1 in the
multi-sets of siz&) arbitrarily (one elements in each multi-set). The resgltnulti-sets
of size @ + 1 will be disjoint. If z; 4+ s+, belongs to one of the multi-set of sizg,
we include it in that multi-set and include, + s¢-; in the other multi-set to form the

new disjoint multi-sets of siz&) + 1. The two (Q + 1)-tuples (the two input symbols

LA multi-set differs from a set in that each member may have hiptigity greater than one. For examplél, 3, 3, 7}

is a multi-set of size four wher& has multiplicity two.
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of the associated channel) are then obtained from the two multi-sets of gjze 1 by
subtracting the interference symbols from their elements. [ |

Lemmall is in fact a special case of theorem 2 in [15], which stased in the
context of capacity.

Let u; anduy be two input symbols of thassociated channel with the maximum
distance among all pairs of input symbols of @issociated channel. Sincels(uy, us) >
0 (according to Lemmall), we have(s) # us(s),Vs € S, otherwise, from [(9),
dsi(u1,uz) = 0. We choose an arbitrary interference symbok S to partition 7 as
follows. We putt € T in Ty if t(s) = uy(s), otherwise (i.e.f(s) = ux(s)) we putt in
7>. Note that the distance between any two symbolSins zero,j = 1,2.

Suppose that a codebook is designed for the binary chantielomtdewords com-
posed of elements of. We construct a new codebook from the original one by reptaci
the elements of the codewords that belong7ioby «; and replacing the elements of
the codewords that belong 6 by u,. Since the codewords of the new codebook are
composed of just two elements, we may call the new code abowie.

Theorem 1. The distance spectrum of the binary code constructed byrtheegure
described above is at least as good as the distance spedirina ariginal code.

Proof: Consider any two codewords,, ..., t,) and(ry,...,r,) from the original
codebook, where;, r; € 7. The squared distance between the two codewords is equal
to Y d3(ti,r;). For anyi € {1,2,...,n}, we consider two cases:

Case 1: t; andr; belong to the same partition. Thelg,(¢;, ;) = 0, so the replace-
ment will not change the distance.

Case 2: t; andr; belong to different partitions. Then sindg,(t;, r;) < ds(u1,us),
the replacement will not decrease the distance. [ |

According to theoreri]l1, as far as the distance spectrum ofdHe in concerned,
it is sufficient to use two symbols of with the maximum distance, namety and
ug, in the encoding for a binary channel. Singehas size2? for the binary channel,

a brute-force search for finding two symbols Th with the maximum distance will
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have exponential complexity with respect ¢ We have proposed an algorithm with
polynomial complexity for finding two symbols with the maxam distance in appendix
(]

Since it is sufficient to use; andu, in the encoding for the binary channel, we
can define the Hamming distance between any two codewordshvid the number
of positions at which the two codewords are different. Cdesitwo codewords; =
(t1,...,t,) @andcy = (rq,...,r,) with elements from the binary sét:;, u,}. The squared

distance between these codewords is given by
D dgi(ti 1) = dg(ur, uz)dp (e, c), (12)
=1

wheredy(c1, ¢o) is the Hamming distance betweenandc,. Therefore, the problem of
designing codes for the binary channel where the intertereequence is known causally
at the encoder reduces to the design of codes for the binamgnsyric channel. The only
difference is that the coding is over the det;, u»} rather than{0, 1}.

A. Comparison with the Interference-Free Channel

If we were to use a binary code for the interference-free rigilhannel with the
input alphabetY = {z,, 25}, then the Euclidean distance between any two codewords

¢ andc, of lengthn for the interference-free channel would be

dp(c1, ) = (z1 — 22)°dp(cr, 2), (13)

wheredy denotes the Euclidean distance.

Using (12) and[{13), we can compare the performance of a@eedinary code for
the binary channel with causal side information at the eacwedth the same zero-one
binary code for the interference-free binary channel. la tlase of channel with side
information, zero and one are mappedutoandu,, and in the case of the interference-
free channel, zero and one are mappegd;tandzx,, respectively. Note that; andu, are

functions from the interference alphakgtto the channel input alphabét = {x1, 25 }.
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It is clear from [[9) that
dsi(ur, uz) < |w1 — 2] (14)

Therefore, using[(12) and (I13), the distance spectrum ottite for the interference-
free channel is at least as good as the distance-spectruime afade for the channel
with known interference at the encoder. Of course, this tssooprising. However, it is
interesting to search for the conditions thHatl(14) is satisfivith equality.

If (I4) is satisfied with equality, the distance spectrumtaf two codes will be the
same. In other words, if (14) is satisfied with equality, tirmkledge of interference at
the encoder enables us to achieve the same performancen(is & order of probability
of error) as the interference-free case at high SNR.

We may explicitly denote the interference alphabet®y= {si,...,sq}, where
s1 < s9 < --- < s¢g. Then the following theorem holds.

Theorem 2: dg)(uy, us) = |x1 — x2| if and only if

min |s; — s; = |2y — 2.
Proof: If min|s; — s;| > |z1 — 22|, we may takeu; = (z1,z2,21,...) anduy =

(29, 21,9, ...). Then we have

dsi(u1,ug) = minfur(ss) + s; —uz(s;) — 4]
= min {|z; + sp — T2 — sk, [T1 + S2k, 11 — T2 — Sokyr1|ky 2k
|21 4 Soky+1 — L1 — Soko |k ks [T2 + Soky — T2 — Sokot1 |k ks |
= min {|z1 — T2/, |71 + Sor41 — T2 — S2kgt1|ky£kos |S2k1+1 — 52k |k ko } -

(15)

We also have

|T1 + Sopy+1 — Ta — Soker1| = |S2ky4+1 — Soket1| — X1 — X2
> 211’1111‘82‘—83"—|$1—.T2‘ for ]{71%]{?2
Z |£E'1 — .I'2| (16)



14

and

Soky+1 — Sok,| > min|s; — s;| YV ky, ke

Vv

|$1 - $2|- (17)

Therefore,ds(uy, us) = |21 — x9|.

For the other direction, suppose thatn |s; — s;| < |z1 — 2z2|. We will show that
dsi(u1, uz) < |r1 — z2|. Suppose that, s;4+1 € S achieve the minimum ofs; — s;| and
t; andt, are arbitrary elements 6f. We consider two non-trivial cases:

Case 1: t1(sk) = ti(sgr1) = w1 andts(sy) = ta(spr1) = xo. Thends(ty,ts) <
[t1(Ska1) + Skr1 — ta(sk) — s < |x1 — 22

Case 2: t1(sx) = 21, t1(Sgr1) = x2 @Ndiy(sg) = xo, ta(sky1) = x1. Thends(t, ta) <
[t1(sk) + sk — ta(Ska1) — Skr1| < |21 — 23] ]

As an example, consider a binary channel wlith=S = {—1,+1} and equiprob-
able interference symbols. The two symbols with the maxindistance in the input
alphabet of theassociated channel are;; = (—1,+1),us = (+1, —1). We have simulated
the error probability performance of the above uncodedesystith maximum likelihood
decoding. The error probability vs. SN(% 0—12) for the above channel is plotted in fig.
[3. The error probability curve for the interference-freamhel withX = {—1,+1} is
plotted for comparison. For the interference-free chanfek= Q(2). It is easy to check
that in this exampleds(u, us) = |x1 — 25| = 2. As it can be seen, the error probability
curves decay at the same rate with increasing SNR as expddtederror probability
curve for the scenario that the interference is not knowrhatdancoder, is plotted for
comparison. In this scenario, the error probability cureaches an error floor G}lf

Another example is illustrated in fig] 4. For this example,= {—1,+1},S =
{-1,0,+1}. We can find by inspection two symbols of tlassociated channel input
alphabet with the maximum distance as = (—1,—1,+1),us = (+1,+1,—1). Here,
we haveds(u1,us) = 1 < |z; — 9| = 2. Therefore, the error probability curve for

the channel with known interference at the encoder does ecdydas fast as the error
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Fig. 3. Error probability vs. SNR for the binary input AWGN arimel with/without known/unknown interference.
X=8={-1,+1}.

probability curve for the interference-free channel. Fa scenario that the interference

is not known at the encoder, the error probability curve meacan error floor og.

VI. THE M-ARY CHANNEL

In general, the statement of theoréin 1 is not extendablegadéise with)/ > 2
channel input symbols. In fact, by using more thahinput symbols of theassociated
channel, we can obtain a better codebook in terms of distapeetrum than any other
codebook composed of just/ input symbols of theassociated channel. An example
showing this is given in appendix]ll. However, under somaditton on the channel
input and interference alphabets, the statement of thefean be generalized to the
case withM > 2.

Theorem 3: As far as the distance spectrum of code is concerned, it fciguit to
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Fig. 4. Error probability vs. SNR for the binary input AWGN arimel with/without known/unknown interference.
X ={-1,+1}, S = {-1,0,+1}.

use M (out of M%) input symbols of theassociated channel in the encoding if

min _|s; — s;| > 2 max_|z; — ;.
5i,5;€S Zi,L;€X
Proof: Consider thel/ input symbols of theassociated channelu; = (x4, ..., z1),
us = (x9,...,29), ..., upyy = (zpr,...,x). We use these symbols to partition the
associated channel input alphabét as follows. Putt € 7 in 7; if the first element of
tisxz;, i=1,2,..., M. Note that7; has sizeM?~! and the distance between any two

symbols in7; is zero,i = 1,2,..., M. For anyp,q=1,..., M, we have

dsi(up, ug) = glkrzl |Tp + Sk — Tg — Siy|

= min{|xp_xq|’|xp+5k1 _xq_5k2|k1¢kz}- (18)
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We also have

|Tp + Sk — Tg = ko] 2 Sk — S| — |Tp — T
> 2max|x; — x| — |z, — x| for ky # ks
Z |xp_xq|7 (19)

Therefore ds(u,, u,) = |z, —z,|. Note that the distance between any two symbols from
T, and7, is at most|x, — x,| = dsi(up, ug).

Suppose that a codebook is designed with codewords compdspdssibly all
elements of7. We construct a new codebook from the original one by reptathe
elements of the codewords that belong7toby w;, : = 1,2,..., M. It is easy to check
that the distance spectrum of the new code is at least as gottealistance spectrum
of the original code. [ |

According to theorer]3, it is sufficient to use only the synshal, ..., u,, in the
encoding. But any of these symbols is a constant functiomfto to X'. Therefore,
the same symbol enters the channel regardless of the cumterference symbol. This
suggests that the knowledge of interference symbols atitbeder is not helpful in terms
of distance spectrum improvement provided that the carlitif theoren 3 is satisfied.

In fact, with the condition of theorem 3, we have
d5|(ui,uj) :d(l'i,l'j) :dE({lZ'Z',ZE'j), Z,] = ]_,...,M. (20)

whered(., .), defined in[(1l), is the distance measure when the inteddersmot known at
the encoder andg(., .) is the Euclidean distance measure. Therefore, the errbapility
performance of a code for the channel with known/unknowarfetence at the encoder
will be the same as the performance of the same code for tegerénce-free channel
at high SNR.

It is worth mentioning that for the above-mentioned threenseios the codes for
the interference-free channel, the channel with knownrfietence at the encoder, and

the channel with unknown interference use the same trateshpiower.
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VIlI. A M ORE GENERAL CHANNEL MODEL

Although we have considered the AWGN channel with additiveriference so far,

our treatment applies to more general channels charaatieby
Y = f(X,S)+ N, (21)

where f is an arbitrary function of two variables, is the channel state which is known
causally at the encodek’ is the channel input, andy is white Gaussian noise. Another

special case of this more general channel is the fast fadiagrel
Y =SX+N, (22)

wheres is the fading coefficient. For the general channel mddel, &) distance between

two symbolst andr of 7 is defined as

dsi(t,r) = min |f(t(s1),51) — f(t(s2), 52)| (23)

51,52

Theorend_L on the binary channel also holds for the generaingianodel. However,
the maximum distance among pairs of symbols7omay be zero; i.e., lemmad 1 does
not hold true in general. Theorems 2 dnd 3 do not hold for theengeneral channel
model in [21) and are specific to the AWGN with additive inéeeince channel model.

VIII. CONCLUSION

In this paper, we derived the code design criterion at higRR$dt the M -ary input
AWGN channel with additive))-level interference, where the sequence of interference
symbols is known causally at the encoder. The code designes an input alphabet
T of size M?. The performance of a code for our channel at high SNR is geekr
by the minimum distance between the codewords with elemfeots 7. We may not
need to use all symbols §f in the encoding. In particular, we showed that for the case
M = 2, as far as the distance spectrum of the code is concerned)sv@ged to use
two symbols of7 with the maximum distance among all pairs of symbols. Thikices
the code design problem for our channel to code design farpisymmetric channel

which has been well researched in the literature.
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APPENDIX |

DERIVATION OF CODE DESIGN CRITERION AT HIGH SNR

Define
A, = {ti(s)+s:s5€ S}, i=1,...,n, (24)
B, = {ri(s) +s:s5€S}, i=1,...,n. (25)
It is worth mentioning that the cardinality of; (or B;) can be less tha®, i =1, ... ,n,

since different interference symbols may yield the sammei# in A; (or ;). For any

1=1,...,n, we have
D ps) vy —ti(s) —s) = Y pla)fnly—a), (26)
SES a€A;
D ps) vy —ri(s)—s) = Y pb)fn(y—b), (27)
seS beB;

wherep(a) andp(b) are obtained fronp(s) according to

pla) = D pls), (28)
s€S:ti(s)+s=a
p) = > pls) (29)

s€S:ri(s)+s=b
For any sequenc€! = a;---a, € Ay x---x A, andb! = by ---b, € By x---x B,

we define the events

Ei(a}) = ( = arg mln |yz — a|) (30)

4
4

Ey(b}) = (b = arg Hlln \yz - b\) (31)

given thatw; has been sent and the interference sequefideas occurred. The event
E;(ay) simply means that; is the closest point to the received sigpalgiven w; has
been sent and the interference sequesfchas occurred) among all points gf; for all
1=1,...,n
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Any term in the error probability in_(6) can be written as

Pr{HZP(a)fN( i—a <H2p ) 4—b|w1781}

i=1 acA i=1 beB;

—ZZPf{HZ i—a <HZP )n(yi = b), Er(ay), Ez(b’{‘)lwm’{‘}

i=1 ac€A; =1 beB;

—ZZPr HfN a;) | pla; —i—Z ))

a€A; !
aFa;

< Tt =0 | o0 + X o0 =D g, B0, 57

:ZZPr{Z > (g — bi)* + Ko?, Ey(a}), Eg(b’f)|w1,s’f}, (32)
at by =1 i=1
where K = K (y},at, b}) is given by
n pla;) + Ztczsél p(a)%
K(yy,a}, b)) =2 log SR (33)

= Pl + Zg;lg; PO) 7y tui—50)

Given the eventd’, () and Ey(b}), it is easy to check thak'(y}, at, b}) is bounded as

n n 1
Kafa) =23 logplar) < K(of.af. b) < Kalt) =23 log
=1 i=1 i

As we consider the high SNR regime, we may assume that the poiger is sufficiently

(34)

small so that the error probability|(6) can be well approxiedaby

> wls ZZPf{Z i — ai) >Z E1a1>Ez<b?>|w1,s?}. (35)

i
at b
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Any term in the summatiori_(35) can be upper bounded as

Pr{z yi —a;)? > Z ? Eq(a}), Ez(b?)|w1>5?}
< Pr Z i —ci)? > Z 2 Ey(a}), E2(b?)|w178?}
Z _Cz > Z ‘wbsl}

IN
Y

IA
O
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V2 dg (i, T2)> 7 (36)

where
ci=ti(s;)+s;, 1=1,...,n. (37)
The first inequality is due to the fact that givén(a}), we have|y;, — a;| < |y; —¢i|,i =
1,...,n.
In the following, we show that the upper boundl(36) is tight fiee term(s) in the
summation[(35) satisfying

{ai,bi}:argmg}|a—b|, 1=1,...,n, (38)
bes.
and
a; = Cq, z:l,,n (39)

Any term in (3%) equals the integral of the joint probabildistribution of 4] =
Y1 - - yn (Qivenwy, st') over the region in the-dimensional Euclidean space defined by

{y{‘ Y (i 2> Z ‘ 2, Ex(a), Ez(b?)} : (40)

i=1
This region is illustrated by the shaded area ABCD in fig. 5 fior= 2. The
horizontal and vertical boundaries of ABCD correspond ®eéhentst; (a?) and Fy(b?).

The elements of4; and B; are shown byo and x, respectively. The other boundary
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Y2

O
Y

hn

Fig. 5. |lllustrating the regions of integration for dimemsin = 2.

of ABCD which corresponds t§_7_ (v — a;)> > Y27, (y; — b;)? is the perpendicular
bisector of the line segment connectiagto b?. We may consider an-cube inside this
region with sides equal to some> 0 as shown in figl 5 and perform the integration

over this smaller region to obtain a lower bound for the te)mif the summatior (35)

satisfying [(38) and[(39).
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In summary, for the terms i (85) which satisfy (38) ahd] (39¢, have

pr{i 2> Z 2, Ey(a}), E2(b?)\w1>5?}

i=1

[1-@(%)}"_1 ¢ (W)—@(Wﬂ

by —
~ Q(H al”) asc — 0
20

- Q (\/EZL:1 d%|(tia7"i)> 7 (41)

v

20

where the right hand side of the inequality in(41) equals ititegral of the joint
probability distribution ofy} = v, - - - v, (givenwy, st) over the smaller region, which is
obtained by using the fact thaf is Gaussian centered &t = a7 and by applying the

necessary rotation.

APPENDIX I
A POLYNOMIAL COMPLEXITY ALGORITHM FOR FINDING TWO SYMBOLS OF7 WITH

THE MAXIMUM DISTANCE

We propose an algorithm for finding two symbolsoiwith distance greater than or
equal to some, > 0. Then we explain how to find two symbols i with the maximum
distance. Consider the bipartite grapli’, V, E') shown in fig[6 with2@ vertices at each
part. Each of the non-intersecting séts - - - , Uy contains two vertices of the upper part
U and each of the nonintersecting séfs-- -,V contains two vertices of the lower
part V. The vertices of the setS; = {u;;,u;x} andV; = {v;, v} are labeled by the
elements of the set' +s; = {z1+s;, 22+ s;}, i = 1,...,Q. A vertex inU; is connected
to a vertex inV; if the absolute value of the difference of their labels isagee than or
equal tody, i,j =1,...,Q.

From the definition of distance ifnl(9), there exist two synshiol 7~ with distance
d > dy if and only if G has a complete bipartite subgraghy, o with exactly one vertex

in eachU; and eachV}. If such a subgraph exists, we label the edges of the subgraph
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Fig. 6. Graph representation for the problem of finding twmbgls of 7 with the maximum distance.

by 1 and we label the rest of the edges @fby 0. We denote the label of edgeby

y. € {0,1}. Such a labeling satisfies the following set of constraints

ooy = Q  i=1,....Q (42)
e:eNU;#¢

Yoy = Q  i=1,....Q, (43)
e:eNV;#¢
ve € {0,1}. (44)

Note that by definition, an edge of a graph is a set of two vestid herefore, the notation
enU; in (42) is meaningful. The equatiorls {42) and](43) state ttiatsum of the labels
of the edges going out of any; andV; is Q.

We devise an objective function for the constraintd (423),(4nd [44) such that the
objective function takes given maximum value only for a labeling with labélfor the

edges of the subgraphi, o and label0 for the rest of the edges. Consider the following
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optimization problem

2

TR % 31 B A IS 9 ol o}

ve =1 j=1 ewjj€e
subject to

Z Ye = Q, 1=1,...,Q,

e:eNU;#¢

Y owe=0Q, i=1..0Q,

e:eNV;#¢
ye € {0,1}. (45)

In the following, we find the maximum of the above optimizatiproblem for the

foregoing labeling. Given the constraints bf|(45), we have

2
Z Zye = Z ye:Qv iz]‘?“‘?Q? (46)

j=1 \ew;j€e e:eNU;#¢
2

Sl = Y ow=0 i=1..0Q (47)
j=1 \ew;;€e e:eNV;#¢

If the sum of two nonnegative variables is constant, thersthme of their squares takes its
maximum if one of the variables is zero. Therefore, for amy 1,...,Q, the maximum

of

and

will be @* and this maximum occurs if and only if one vertex in anylaf, ..., Ug
and Vj,...,Vy is connected ta) edges with labell and the other vertex in any of
Up,...,UgandVy, ..., Vg is not connected to any edge with lakdelThis is equivalent

to the existence of a subgraghy, . Then the maximum of the objective function in

@3) will be Q x Q% + Q x Q* = 2Q°.
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We may relax the integrality constrairit {44) and change Etyusigns in (42) and
(43) to inequality signs to obtain the following optimizati program
Q 2 29 o ?
mae Q0 | 2w 22| 2w

subject to

0<y <1. (48)

Using the same argument as in the previous paragraph, the 2@F is also achievable
for the above maximization problem if and only if a subgrafgh o of the graphG
exists. The above optimization problem igjaadratic programming problem [16] with
convex objective function and can be solved in polynomialeti[17] in terms of the
number of edges of/, which is at mostQ?.

In summary, we turned the problem of finding two symbols7/irwith distance at
leastd, > 0 into the quadratic programming problem48). If the maxinwatue of [48)
is 223, then two such symbols are obtained from the optimal salutio{48). Otherwise,
two such symbols do not exist.

To find two symbols i7" with the maximum distance, we need to run the described
algorithm for a few values forl,. We can obtain an upper bound on the number of
possible distances between symbols7ofFrom the definition of distance ihl(9), a loose
upper bound is\/2Q? = 4Q?. By using the binary search algorithm [18], the search over
possible distances can be done with logarithmic complexitia respect to the number
of possible distances.

It is worth mentioning that our proposed algorithm can beseded to findK > 2
symbols of7 with the maximum minimum distance amoiig symbols for the general

caseM > 2.
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APPENDIX I
AN EXAMPLE THAT SHOWS USING MORE THANM SYMBOLS OF 7 RESULTS IN

LARGER MINIMUM DISTANCE (M > 2)

Consider the channel with’ = {1,4,5,7} andS = {0,4}. Consider the following

codebook with six codewords of length two that uses severbsig1of theassociated

channel.
Codeword © ((4,1),(5,1))
Codeword 2 ((4,1),(1,5))
Codeword 3 ((5,4),(5,4))
Codeword 4 ((5,4),(4,5))
Codeword & ((1,5),(4,1))
Codeword & ((1,5),(1,4))

The minimum distance of the above code&idHowever, it can be verified by a computer
program that any code for this channel with codebook sizeastk length two that uses

any four symbols of thessociated channel yields a minimum distance less ttsan
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