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Abstract

The problem of channel code design for theM -ary input AWGN channel with additive

Q-ary interference where the sequence of i.i.d. interference symbols is known causally at the

encoder is considered. The code design criterion at high SNRis derived by defining a new

distance measure between the input symbols of the Shannon’sassociated channel. For the case

of binary-input channel, i.e.,M = 2, it is shown that it is sufficient to use only two (out of

2
Q) input symbols of theassociated channel in the encoding as far as the distance spectrum

of code is concerned. This reduces the problem of channel code design for the binary-input

AWGN channel with known interference at the encoder to design of binary codes for the binary

symmetric channel where the Hamming distance among codewords is the major factor in the

performance of the code.
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I. INTRODUCTION

Information transmission over channels with known interference at the transmit-

ter has recently found applications in various communication problems such as digital

watermarking [1] and broadcast schemes [2]. A remarkable result on such channels

was obtained by Costa, who showed that the capacity of the additive white Gaussian

noise (AWGN) channel with additive Gaussian i.i.d. interference where the sequence of

interference symbols is known non-causally at the transmitter is the same as the capacity

of the AWGN channel [3]. Therefore, the Gaussian interference does not incur any loss in

the capacity. This result was extended to arbitrary (randomor deterministic) interference

in [4] by using a precoding scheme based on multi-dimensional lattice quantization.

Following Costa’s “Writing on Dirty Paper” famous title [3], coding for the channel

with non-causally known interference at the transmitter isreferred to as “dirty paper

coding” (DPC). By analogy, coding for the channel with causally-known interference at

the transmitter is sometimes referred to as “dirty tape coding” (DTC). The result obtained

by Costa does not hold for the case that the sequence of interference symbols is known

causally at the transmitter.

Recently, dirty paper coding has emerged as a building blockin multiuser communi-

cation. In particular, there has been considerable research studying the application of dirty

paper coding to broadcast over multiple-input multiple-output (MIMO) channels. In such

systems, for a given user, the signals sent to other users areconsidered as interference.

Since all signals are known to the transmitter, successive “dirty paper” cancelation can be

used in transmission after some linear preprocessing [2]. It was shown that DPC in fact

achieves the sum capacity of the MIMO broadcast channel [5],[6], [7]. Most recently,

it has been shown that the same is true for the entire capacityregion of the MIMO

broadcast channel [8].

These developments motivate finding realizable dirty papercoding techniques. Build-

ing upon [4], Erez and ten Brink [9] proposed a practical codedesign based on vector
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quantization via trellis shaping and using powerful channel codes. Due to the complexity

of implementation, their scheme uses the knowledge of interference up to six future

symbols rather than the whole interference sequence. Bennatan et al. [10] gave another

design based on superposition coding and successive cancelation decoding. Their design

uses a trellis coded quantizer with memory length nine and a low density parity check

(LDPC) code as channel code. Wei Yuet al. [11] gave a design based on convolutional

shaping and channel codes.

The schemes that use the interference sequence up to the current symbol can be

used as low-complexity solutions for the dirty paper problem. For example, in [1], scalar

lattice quantization is proposed for data-hiding even though in that context, the host signal

in clearly known non-causally.

In this paper, we consider the problem of channel code designfor the M-ary

input AWGN channel with additive causally-known discrete interference. The discrete

interference model is more appropriate for many practical applications. For example,

in the MIMO broadcast channel where the transmitter uses a finite constellation, the

interference caused by other users is discrete rather than continuous.

Our design does not rely on the suboptimal (in terms of capacity) precoding scheme

based on scalar lattice quantization for the dirty tape channel [4], [12]. Instead, we

consider anew approach based on code design for the Shannon’sassociated channel

over all possible input symbols. Another distinction between our work and the related

research in the field is that we consider a finite channel inputalphabet rather than a

continuous one.

This paper is organized as follows. In the next section, we summarize Shannon’s

work on channels with causal side information at the transmitter. In section III, we

introduce the channel model. In section IV, we derive the code design criterion for the

AWGN channel with causally-known discrete interference atthe encoder. In section V,

we consider channels with binary input for which we show thatthe design criterion

derived in section IV reduces to maximizing the Hamming distance. In section VI, we
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consider a special case for which the result for the binary channel also holds for the

M-ary channel. In section VII, we consider a more general channel model for which the

main results of this work hold. We conclude this paper in section VIII.

II. CHANNELS WITH SIDE INFORMATION AT THE TRANSMITTER

Channels with known interference at the transmitter are special case of channels

with side information at the transmitter which were considered by Shannon [13] in the

causal knowledge setting and by Gel’fand and Pinsker [14] inthe non-causal knowledge

setting.

Shannon considered a discrete memoryless channel (DMC) whose transition matrix

depends on the channel state. A state-dependent discrete memoryless channel (SD-DMC)

is defined by a finite input alphabetX , a finite output alphabetY , and transition prob-

abilities p(y|x, s), where the states takes on values in a finite alphabetS. The block

diagram of a state-dependent channel with state information at the encoder is shown in

fig. 1.

In the causal knowledge setting, the encoder maps a messagew into X n as

xi = fi (w, s1, . . . , si) , 1 ≤ i ≤ n. (1)

Shannon showed that it is sufficient to consider the coding schemes that use only

the current state symbol in the encoding process to achieve the capacity of an SD-DMC

with i.i.d. state sequence known causally at the encoder [13].

The SD-DMC can be used in the way shown in fig. 2 to transmit information. A

precoder is added in front of the SD-DMC. A messagew is mapped intoT n, whereT
is a new alphabet. The output of the precoder ranges overX and depends on the current

interference symbol. The regular (without state) channel from T to Y is defined by the

transition probabilities

q(y|t) =
∑

s∈S

p(s)p(y|x = t(s), s), (2)
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Fig. 1. SD-DMC with state information at the encoder.
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Fig. 2. Theassociated regular DMC.

where p(s) is the probability of the states. The DMC defined in (2) is called the

associated channel. The codes for theassociated channel describe the codes for the

SD-DMC that use only the current state symbols in the encoding operation. In order to

describe all coding schemes for the SD-DMC that use only the current state symbol in

the encoding process,T must include all functions from the state alphabet to the input

alphabet of the state-dependent channel. There are a total of |X ||S| of such functions,

where |.| denotes the cardinality of a set. Any of the functions can be represented by a

|S|-tuple (x1, x2, . . . , x|S|) composed of elements ofX , implying that the value of the

function at states is xs, s = 1, 2, . . . , |S|.

III. T HE CHANNEL MODEL

We consider data transmission over the channel

Y = X + S +N, (3)
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whereX is the channel input, which takes on values in a real finite setX , Y is the

channel output,N is additive white Gaussian noise with powerσ2, and the interference

S is a discrete random variable that takes on values in a real finite setS. The sequence

of i.i.d. interference symbols is known causally at the encoder.

The above channel can be considered as a special case of the state-dependent

channel considered by Shannon with one exception, that the channel output alphabet

is continuous. In our case, the likelihood functionfY |X,S(y|x, s) is used instead of the

transition probabilities. We denote the input to theassociated channel byT , which can

be considered as a function fromS to X . We denote the cardinality ofX and S by

M andQ, respectively. Then the cardinality ofT will be MQ, which is the number all

functions fromS to X .

The likelihood function for theassociated channel is given by

fY |T (y|t) =
∑

s∈S

p(s)fY |X,S(y|t(s), s)

=
∑

s∈S

p(s)fN (y − t(s)− s), (4)

wherep(s) is the probability of the interference symbols andfN denotes the pdf of the

Gaussian noiseN .

Although in this work, we consider a fixed channel input alphabetX , the transmitted

power is not fixed in general. In fact, for probability distribution p(s) on S and for a

given coding scheme for theassociated channel which induces probability distribution

p(t) on the symbols ofT , the transmitted power is given by

E[X2] =
∑

t∈T

∑

s∈S

p(t)p(s)E[X2|t, s]

=
∑

t∈T

∑

s∈S

p(t)p(s)t2(s). (5)

Thus, in general, the transmitted power depends on the probability distribution on the

interference alphabet. The binary-input channel withX = {−x, x} is an exception,

however, for which we havet2(s) = x2 for all s ∈ S. Therefore, for any coding scheme
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and any probability distribution on the interference alphabet, the transmitted power is

equal tox2.

In this work, we do not impose any constraint on the power of the transmitted

signal. However, in the performance comparisons given in sections V and VI for different

scenarios, we ensure that the transmitted power is the same in all scenarios.

IV. THE CODE DESIGN CRITERION

Any coding scheme for theassociated channel defined by (4) translates to a coding

scheme for the actual channel defined byfY |X,S(y|x, s). We use the pairwise error

probability (PEP) approach to derive the code design criterion at high SNR. Since in

this work, we consider fixed channel input and interference alphabets, the high SNR

scenario is realized by making the noise powerσ2 sufficiently small. This is equivalent

to scale up the transmitted signal and the interference by the same factor for a given

noise power.

Suppose that the messagesw1 andw2 are encoded into codewordstn1 ≡ t1t2 . . . tn

andrn1 ≡ r1r2 . . . rn, respectively, whereti andri belong to the alphabetT , i = 1, . . . , n.

In the absence of noise, transmission of the codewordtn1 can result in many different

received sequences at the channel output depending on the interference sequencesn1 ≡
s1s2 . . . sn. In specific, all sequences in{(t1(s1) + s1, t2(s2) + s2, . . . , tn(sn) + sn) : s

n
1 ∈

Sn} represent the transmitted codewordtn1 at the channel output. On the other hand, all

sequences in{(r1(s1)+s1, r2(s2)+s2, . . . , rn(sn)+sn) : s
n
1 ∈ Sn} represent the codeword

rn1 . Using maximum likelihood decoding, the probability of theevent that messagew2 is
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decoded given messagew1 was sent is given by

Pr{w1 → w2|w1} =
∑

sn
1

p(sn1 )Pr{w1 → w2|w1, s
n
1}

=
∑

sn
1

p(sn1 )Pr
{

fY |T (y
n
1 |tn1 ) ≤ fY |T (y

n
1 |rn1 )|w1, s

n
1

}

=
∑

sn
1

p(sn1 )Pr

{

n
∏

i=1

fY |T (yi|ti) ≤
n
∏

i=1

fY |T (yi|ri)|w1, s
n
1

}

=
∑

sn
1

p(sn1 )Pr

{

n
∏

i=1

∑

s∈S

p(s)fN(yi − ti(s)− s) ≤

n
∏

i=1

∑

s∈S

p(s)fN(yi − ri(s)− s)|w1, s
n
1

}

. (6)

In appendix I, we have shown that the above error probabilityat high SNR is given by

Pr{w1 → w2|w1} = O

(

Q

(

√
∑n

i=1 d
2
SI(ti, ri)

2σ

))

, (7)

where

Q(x) =

∫ ∞

x

1√
2π

exp

(

−y2

2

)

dy, (8)

anddSI(t, r) (SI stands for side information), the distance between two input symbols of

the associated channelt andr, is defined as

dSI(t, r) = min
s1,s2∈S

|t(s1) + s1 − r(s2)− s2|. (9)

According to (7), at high SNR, the code design criterion is tomaximize the minimum

distance between the codewords with the distance measure defined in (9).

A. No Side Information at the Encoder - A Comparison

In order to see how the knowledge of interference at the encoder can result in

larger distances between codewords, consider the channel model introduced in section

III with the exception that the interference sequence is notknown at the encoder. In this

case, the discrete interference is considered as noise. In order to obtain the PEP for this
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channel, suppose that messagesv1 and v2 are encoded intoxn
1 ≡ x1 · · ·xn ∈ X n and

zn1 ≡ z1 · · · zn ∈ X n, respectively. Similarly, it can be shown that the PEP at high SNR

is given by

Pr{v1 → v2|v1} = O

(

Q

(

√
∑n

i=1 d
2(xi, zi)

2σ

))

, (10)

whered(x, z), the distance between two symbolsx andz of X is defined as

d(x, z) = min
s1,s2∈S

|x+ s1 − z − s2|. (11)

Comparing (9) and (11), it becomes clear that larger distances among codewords are

possible for the channel with side information at the encoder. In fact, the distanced(x, z)

is equal todSI(t, r) for t = (x, . . . , x) and r = (z, . . . , z). However,T has many other

symbols, which may yield larger distances. For example, consider the channel withX =

S = {−1,+1}. For the case without side information at the encoder, we cancompute the

distances between symbols ofX according to (11) asd(1, 1) = d(−1,−1) = d(1,−1) =

0. Hence, according to (10), it is impossible to transmit dataover this channel with low

error probability even at high SNR. For the case with side information at the encoder,

the four symbols of theassociated channel can be represented asu1 = (−1,+1), u2 =

(+1,−1), u3 = (+1,+1), u4 = (−1,−1). Using (9), it is easy to check that the distances

between all pairs of the symbols are zero except fordSI(u1, u2) which is 2. As will be

seen in section V,u1 andu2 can be used in the encoding to achieve arbitrarily low error

probabilities as SNR increases.

It is worth mentioning that the distance measures defined in (9) or (11) do not satisfy

the triangle inequality. For example, again consider the channel withX = S = {−1,+1}.

The distances between all pairs of the input symbols of theassociated channel are zero

except fordSI(u1, u2) which is 2. Therefore, the triangle inequality does not hold for

dSI(u1, u3), dSI(u3, u2), anddSI(u1, u2).
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V. THE BINARY CHANNEL

We call the channel introduced in (3) abinary channel when the channel accepts

binary input, i.e.,M = 2. There is no constraints on the cardinality of the interference

alphabet. For the binary channel, the size ofT is 2Q. However, we may not need to

use all the symbols of the alphabet in the encoding. In this section, we show that it is

sufficient to use only two symbols ofT in the encoding as far as the distance spectrum

of the code is concerned. We begin with the following lemma for the binary channel.

Lemma 1: For the binary channel, there exist at least two symbols inT with nonzero

distance.

Proof: We may explicitly denote the channel input and interferencealphabets by

X = {x1, x2} andS = {s1, . . . , sQ}, wherex1 < x2 and s1 < s2 < · · · < sQ. From the

definition of distance in (9), it is sufficient to show that there exist two elementst and

r in T such that the corresponding multi-sets1 (of sizeQ) {t(s1) + s1, . . . , t(sQ) + sQ}
and{r(s1) + s1, . . . , r(sQ) + sQ} are disjoint. We prove this by induction onQ.

The statement of the lemma holds forQ = 1 since we may taket = (x1) and

r = (x2). Then the sets{x1 + s1} and {x2 + s1} are disjoint. Now suppose that the

statement of the lemma is true for someQ. Therefore, the exist twoQ-tuples composed of

elements ofX (two input symbols of theassociated channel) such that the corresponding

multi-sets are disjoint. We prove that the statement of the lemma hold forQ + 1.

The elementx2+ sQ+1 is larger than any element of the two multi-sets (of sizeQ).

Hence, it does not belong to any of the multi-sets. Ifx1+sQ+1 does not belong to any of

the multi-sets too, then we can include the new elementsx1+ sQ+1 andx2+ sQ+1 in the

multi-sets of sizeQ arbitrarily (one elements in each multi-set). The resulting multi-sets

of sizeQ + 1 will be disjoint. If x1 + sQ+1 belongs to one of the multi-set of sizeQ,

we include it in that multi-set and includex2 + sQ+1 in the other multi-set to form the

new disjoint multi-sets of sizeQ + 1. The two (Q + 1)-tuples (the two input symbols

1A multi-set differs from a set in that each member may have a multiplicity greater than one. For example,{1, 3, 3, 7}

is a multi-set of size four where3 has multiplicity two.
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of the associated channel) are then obtained from the two multi-sets of sizeQ + 1 by

subtracting the interference symbols from their elements.

Lemma 1 is in fact a special case of theorem 2 in [15], which wasstated in the

context of capacity.

Let u1 andu2 be two input symbols of theassociated channel with the maximum

distance among all pairs of input symbols of theassociated channel. SincedSI(u1, u2) >

0 (according to Lemma 1), we haveu1(s) 6= u2(s), ∀s ∈ S, otherwise, from (9),

dSI(u1, u2) = 0. We choose an arbitrary interference symbols ∈ S to partition T as

follows. We putt ∈ T in T1 if t(s) = u1(s), otherwise (i.e.,t(s) = u2(s)) we put t in

T2. Note that the distance between any two symbols inTj is zero,j = 1, 2.

Suppose that a codebook is designed for the binary channel with codewords com-

posed of elements ofT . We construct a new codebook from the original one by replacing

the elements of the codewords that belong toT1 by u1 and replacing the elements of

the codewords that belong toT2 by u2. Since the codewords of the new codebook are

composed of just two elements, we may call the new code a binary code.

Theorem 1: The distance spectrum of the binary code constructed by the procedure

described above is at least as good as the distance spectrum of the original code.

Proof: Consider any two codewords(t1, . . . , tn) and (r1, . . . , rn) from the original

codebook, whereti, ri ∈ T . The squared distance between the two codewords is equal

to
∑n

i=1 d
2
SI(ti, ri). For anyi ∈ {1, 2, . . . , n}, we consider two cases:

Case 1: ti andri belong to the same partition. ThendSI(ti, ri) = 0, so the replace-

ment will not change the distance.

Case 2: ti andri belong to different partitions. Then sincedSI(ti, ri) ≤ dSI(u1, u2),

the replacement will not decrease the distance.

According to theorem 1, as far as the distance spectrum of thecode in concerned,

it is sufficient to use two symbols ofT with the maximum distance, namelyu1 and

u2, in the encoding for a binary channel. SinceT has size2Q for the binary channel,

a brute-force search for finding two symbols inT with the maximum distance will
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have exponential complexity with respect toQ. We have proposed an algorithm with

polynomial complexity for finding two symbols with the maximum distance in appendix

II.

Since it is sufficient to useu1 and u2 in the encoding for the binary channel, we

can define the Hamming distance between any two codewords, which is the number

of positions at which the two codewords are different. Consider two codewordsc1 =

(t1, . . . , tn) andc2 = (r1, . . . , rn) with elements from the binary set{u1, u2}. The squared

distance between these codewords is given by
n
∑

i=1

d2SI(ti, ri) = d2SI(u1, u2)dH(c1, c2), (12)

wheredH(c1, c2) is the Hamming distance betweenc1 andc2. Therefore, the problem of

designing codes for the binary channel where the interference sequence is known causally

at the encoder reduces to the design of codes for the binary symmetric channel. The only

difference is that the coding is over the set{u1, u2} rather than{0, 1}.

A. Comparison with the Interference-Free Channel

If we were to use a binary code for the interference-free binary channel with the

input alphabetX = {x1, x2}, then the Euclidean distance between any two codewords

c1 and c2 of lengthn for the interference-free channel would be

d2E(c1, c2) = (x1 − x2)
2dH(c1, c2), (13)

wheredE denotes the Euclidean distance.

Using (12) and (13), we can compare the performance of a zero-one binary code for

the binary channel with causal side information at the encoder with the same zero-one

binary code for the interference-free binary channel. In the case of channel with side

information, zero and one are mapped tou1 andu2, and in the case of the interference-

free channel, zero and one are mapped tox1 andx2, respectively. Note thatu1 andu2 are

functions from the interference alphabetS to the channel input alphabetX = {x1, x2}.
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It is clear from (9) that

dSI(u1, u2) ≤ |x1 − x2|. (14)

Therefore, using (12) and (13), the distance spectrum of thecode for the interference-

free channel is at least as good as the distance-spectrum of the code for the channel

with known interference at the encoder. Of course, this is not surprising. However, it is

interesting to search for the conditions that (14) is satisfied with equality.

If (14) is satisfied with equality, the distance spectrum of the two codes will be the

same. In other words, if (14) is satisfied with equality, the knowledge of interference at

the encoder enables us to achieve the same performance (in terms of order of probability

of error) as the interference-free case at high SNR.

We may explicitly denote the interference alphabet byS = {s1, . . . , sQ}, where

s1 < s2 < · · · < sQ. Then the following theorem holds.

Theorem 2: dSI(u1, u2) = |x1 − x2| if and only if

min
i 6=j

|si − sj| ≥ |x1 − x2|.
Proof: If min |si − sj| ≥ |x1 − x2|, we may takeu1 = (x1, x2, x1, . . .) and u2 =

(x2, x1, x2, . . .). Then we have

dSI(u1, u2) = min
i,j

|u1(si) + si − u2(sj)− sj |

= min {|x1 + sk − x2 − sk|, |x1 + s2k1+1 − x2 − s2k2+1|k1 6=k2

|x1 + s2k1+1 − x1 − s2k2|k1,k2, |x2 + s2k1 − x2 − s2k2+1|k1,k2}

= min {|x1 − x2|, |x1 + s2k1+1 − x2 − s2k2+1|k1 6=k2, |s2k1+1 − s2k2 |k1,k2} .

(15)

We also have

|x1 + s2k1+1 − x2 − s2k2+1| ≥ |s2k1+1 − s2k2+1| − |x1 − x2|

≥ 2min |si − sj | − |x1 − x2| for k1 6= k2

≥ |x1 − x2| (16)
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and

|s2k1+1 − s2k2 | ≥ min |si − sj | ∀ k1, k2

≥ |x1 − x2|. (17)

Therefore,dSI(u1, u2) = |x1 − x2|.
For the other direction, suppose thatmin |si − sj | < |x1 − x2|. We will show that

dSI(u1, u2) < |x1 − x2|. Suppose thatsk, sk+1 ∈ S achieve the minimum of|si − sj | and

t1 and t2 are arbitrary elements ofT . We consider two non-trivial cases:

Case 1: t1(sk) = t1(sk+1) = x1 and t2(sk) = t2(sk+1) = x2. Then dSI(t1, t2) ≤
|t1(sk+1) + sk+1 − t2(sk)− sk| < |x1 − x2|.

Case 2: t1(sk) = x1, t1(sk+1) = x2 andt2(sk) = x2, t2(sk+1) = x1. ThendSI(t1, t2) ≤
|t1(sk) + sk − t2(sk+1)− sk+1| < |x1 − x2|.

As an example, consider a binary channel withX = S = {−1,+1} and equiprob-

able interference symbols. The two symbols with the maximumdistance in the input

alphabet of theassociated channel areu1 = (−1,+1), u2 = (+1,−1). We have simulated

the error probability performance of the above uncoded system with maximum likelihood

decoding. The error probability vs. SNR
(

= 1
σ2

)

for the above channel is plotted in fig.

3. The error probability curve for the interference-free channel withX = {−1,+1} is

plotted for comparison. For the interference-free channel, Pe = Q( 1
σ
). It is easy to check

that in this example,dSI(u1, u2) = |x1 − x2| = 2. As it can be seen, the error probability

curves decay at the same rate with increasing SNR as expected. The error probability

curve for the scenario that the interference is not known at the encoder, is plotted for

comparison. In this scenario, the error probability curve reaches an error floor of1
4
.

Another example is illustrated in fig. 4. For this example,X = {−1,+1},S =

{−1, 0,+1}. We can find by inspection two symbols of theassociated channel input

alphabet with the maximum distance asu1 = (−1,−1,+1), u2 = (+1,+1,−1). Here,

we havedSI(u1, u2) = 1 < |x1 − x2| = 2. Therefore, the error probability curve for

the channel with known interference at the encoder does not decay as fast as the error
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Fig. 3. Error probability vs. SNR for the binary input AWGN channel with/without known/unknown interference.

X = S = {−1,+1}.

probability curve for the interference-free channel. For the scenario that the interference

is not known at the encoder, the error probability curve reaches an error floor of1
6
.

VI. THE M -ARY CHANNEL

In general, the statement of theorem 1 is not extendable to the case withM > 2

channel input symbols. In fact, by using more thanM input symbols of theassociated

channel, we can obtain a better codebook in terms of distancespectrum than any other

codebook composed of justM input symbols of theassociated channel. An example

showing this is given in appendix III. However, under some condition on the channel

input and interference alphabets, the statement of theorem1 can be generalized to the

case withM > 2.

Theorem 3: As far as the distance spectrum of code is concerned, it is sufficient to
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Fig. 4. Error probability vs. SNR for the binary input AWGN channel with/without known/unknown interference.

X = {−1,+1}, S = {−1, 0,+1}.

useM (out of MQ) input symbols of theassociated channel in the encoding if

min
si,sj∈S

|si − sj | ≥ 2 max
xi,xj∈X

|xi − xj |.
Proof: Consider theM input symbols of theassociated channelu1 = (x1, . . . , x1),

u2 = (x2, . . . , x2), . . ., uM = (xM , . . . , xM). We use these symbols to partition the

associated channel input alphabetT as follows. Putt ∈ T in Ti if the first element of

t is xi, i = 1, 2, . . . ,M . Note thatTi has sizeMQ−1 and the distance between any two

symbols inTi is zero,i = 1, 2, . . . ,M . For anyp, q = 1, . . . ,M , we have

dSI(up, uq) = min
k1,k2

|xp + sk1 − xq − sk2 |

= min {|xp − xq|, |xp + sk1 − xq − sk2|k1 6=k2} . (18)
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We also have

|xp + sk1 − xq − sk2| ≥ |sk1 − sk2| − |xp − xq|

≥ 2max |xi − xj | − |xp − xq| for k1 6= k2

≥ |xp − xq|, (19)

Therefore,dSI(up, uq) = |xp−xq|. Note that the distance between any two symbols from

Tp andTq is at most|xp − xq| = dSI(up, uq).

Suppose that a codebook is designed with codewords composedof possibly all

elements ofT . We construct a new codebook from the original one by replacing the

elements of the codewords that belong toTi by ui, i = 1, 2, . . . ,M . It is easy to check

that the distance spectrum of the new code is at least as good as the distance spectrum

of the original code.

According to theorem 3, it is sufficient to use only the symbols u1, . . . , uM in the

encoding. But any of these symbols is a constant function from S to X . Therefore,

the same symbol enters the channel regardless of the currentinterference symbol. This

suggests that the knowledge of interference symbols at the encoder is not helpful in terms

of distance spectrum improvement provided that the condition of theorem 3 is satisfied.

In fact, with the condition of theorem 3, we have

dSI(ui, uj) = d(xi, xj) = dE(xi, xj), i, j = 1, . . . ,M. (20)

whered(., .), defined in (11), is the distance measure when the interference is not known at

the encoder anddE(., .) is the Euclidean distance measure. Therefore, the error probability

performance of a code for the channel with known/unknown interference at the encoder

will be the same as the performance of the same code for the interference-free channel

at high SNR.

It is worth mentioning that for the above-mentioned three scenarios the codes for

the interference-free channel, the channel with known interference at the encoder, and

the channel with unknown interference use the same transmitted power.
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VII. A M ORE GENERAL CHANNEL MODEL

Although we have considered the AWGN channel with additive interference so far,

our treatment applies to more general channels characterized by

Y = f(X,S) +N, (21)

wheref is an arbitrary function of two variables,S is the channel state which is known

causally at the encoder,X is the channel input, andN is white Gaussian noise. Another

special case of this more general channel is the fast fading channel

Y = SX +N, (22)

whereS is the fading coefficient. For the general channel model (21), the distance between

two symbolst andr of T is defined as

dSI(t, r) = min
s1,s2∈S

|f(t(s1), s1)− f(t(s2), s2)|. (23)

Theorem 1 on the binary channel also holds for the general channel model. However,

the maximum distance among pairs of symbols ofT may be zero; i.e., lemma 1 does

not hold true in general. Theorems 2 and 3 do not hold for the more general channel

model in (21) and are specific to the AWGN with additive interference channel model.

VIII. C ONCLUSION

In this paper, we derived the code design criterion at high SNR for theM-ary input

AWGN channel with additiveQ-level interference, where the sequence of interference

symbols is known causally at the encoder. The code design is over an input alphabet

T of size MQ. The performance of a code for our channel at high SNR is governed

by the minimum distance between the codewords with elementsfrom T . We may not

need to use all symbols ofT in the encoding. In particular, we showed that for the case

M = 2, as far as the distance spectrum of the code is concerned, we just need to use

two symbols ofT with the maximum distance among all pairs of symbols. This reduces

the code design problem for our channel to code design for binary symmetric channel

which has been well researched in the literature.
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APPENDIX I

DERIVATION OF CODE DESIGN CRITERION AT HIGH SNR

Define

Ai = {ti(s) + s : s ∈ S}, i = 1, . . . , n, (24)

Bi = {ri(s) + s : s ∈ S}, i = 1, . . . , n. (25)

It is worth mentioning that the cardinality ofAi (or Bi) can be less thanQ, i = 1, . . . , n,

since different interference symbols may yield the same element inAi (or Bi). For any

i = 1, . . . , n, we have

∑

s∈S

p(s)fN(y − ti(s)− s) =
∑

a∈Ai

p(a)fN(y − a), (26)

∑

s∈S

p(s)fN (y − ri(s)− s) =
∑

b∈Bi

p(b)fN (y − b), (27)

wherep(a) andp(b) are obtained fromp(s) according to

p(a) =
∑

s∈S:ti(s)+s=a

p(s), (28)

p(b) =
∑

s∈S:ri(s)+s=b

p(s). (29)

For any sequencean1 ≡ a1 · · · an ∈ A1×· · ·×An andbn1 ≡ b1 · · · bn ∈ B1×· · ·×Bn,

we define the events

E1(a
n
1 ) =

n
⋂

i=1

(

ai = argmin
a∈Ai

|yi − a|
)

, (30)

E2(b
n
1 ) =

n
⋂

i=1

(

bi = argmin
b∈Bi

|yi − b|
)

, (31)

given thatw1 has been sent and the interference sequencesn1 has occurred. The event

E1(a
n
1 ) simply means thatai is the closest point to the received signalyi (givenw1 has

been sent and the interference sequencesn1 has occurred) among all points ofAi for all

i = 1, . . . , n.
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Any term in the error probability in (6) can be written as

Pr

{

n
∏

i=1

∑

a∈Ai

p(a)fN (yi − a) ≤
n
∏

i=1

∑

b∈Bi

p(b)fN (yi − b)|w1, s
n
1

}

=
∑

an
1

∑

bn
1

Pr

{

n
∏

i=1

∑

a∈Ai

p(a)fN (yi − a) ≤
n
∏

i=1

∑

b∈Bi

p(b)fN (yi − b), E1(a
n
1 ), E2(b

n
1 )|w1, s

n
1

}

=
∑

an
1

∑

bn
1

Pr











n
∏

i=1

fN(yi − ai)






p(ai) +

∑

a∈Ai
a6=ai

p(a)
fN(yi − a)

fN(yi − ai)







≤
n
∏

i=1

fN(yi − bi)









p(bi) +
∑

b∈Bi
b6=bi

p(b)
fN(yi − b)

fN (yi − bi)









, E1(a
n
1 ), E2(b

n
1 )|w1, s

n
1















=
∑

an
1

∑

bn
1

Pr

{

n
∑

i=1

(yi − ai)
2 ≥

n
∑

i=1

(yi − bi)
2 +Kσ2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

, (32)

whereK = K(yn1 , a
n
1 , b

n
1 ) is given by

K(yn1 , a
n
1 , b

n
1 ) = 2

n
∑

i=1

log

p(ai) +
∑

a∈Ai
a6=ai

p(a) fN (yi−a)
fN (yi−ai)

p(bi) +
∑

b∈Bi
b6=bi

p(b) fN (yi−b)
fN (yi−bi)

. (33)

Given the eventsE1(a
n
1 ) andE2(b

n
1 ), it is easy to check thatK(yn1 , a

n
1 , b

n
1 ) is bounded as

K1(a
n
1 ) = 2

n
∑

i=1

log p(ai) < K(yn1 , a
n
1 , b

n
1 ) < K2(b

n
1 ) = 2

n
∑

i=1

log
1

p(bi)
. (34)

As we consider the high SNR regime, we may assume that the noise power is sufficiently

small so that the error probability (6) can be well approximated by

∑

sn
1

p(sn1 )
∑

an
1

∑

bn
1

Pr

{

n
∑

i=1

(yi − ai)
2 ≥

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

. (35)
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Any term in the summation (35) can be upper bounded as

Pr

{

n
∑

i=1

(yi − ai)
2 ≥

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≤ Pr

{

n
∑

i=1

(yi − ci)
2 ≥

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≤ Pr

{

n
∑

i=1

(yi − ci)
2 ≥

n
∑

i=1

(yi − bi)
2|w1, s

n
1

}

= Q

(

√
∑n

i=1 |ci − bi|2
2σ

)

≤ Q

(

√
∑n

i=1 d
2
SI(ti, ri)

2σ

)

, (36)

where

ci = ti(si) + si, i = 1, . . . , n. (37)

The first inequality is due to the fact that givenE1(a
n
1 ), we have|yi− ai| ≤ |yi− ci|, i =

1, . . . , n.

In the following, we show that the upper bound (36) is tight for the term(s) in the

summation (35) satisfying

{ai, bi} = arg min
a∈Ai
b∈Bi

|a− b|, i = 1, . . . , n, (38)

and

ai = ci, i = 1, . . . , n. (39)

Any term in (35) equals the integral of the joint probabilitydistribution of yn1 ≡
y1 · · · yn (givenw1, s

n
1 ) over the region in then-dimensional Euclidean space defined by

{

yn1 :

n
∑

i=1

(yi − ai)
2 ≥

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )

}

. (40)

This region is illustrated by the shaded area ABCD in fig. 5 forn = 2. The

horizontal and vertical boundaries of ABCD correspond to the eventsE1(a
2
1) andE2(b

2
1).

The elements ofAi and Bi are shown by◦ and ×, respectively. The other boundary
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Fig. 5. Illustrating the regions of integration for dimension n = 2.

of ABCD which corresponds to
∑2

i=1(yi − ai)
2 ≥ ∑2

i=1(yi − bi)
2 is the perpendicular

bisector of the line segment connectinga21 to b21. We may consider ann-cube inside this

region with sides equal to someδ > 0 as shown in fig. 5 and perform the integration

over this smaller region to obtain a lower bound for the term(s) in the summation (35)

satisfying (38) and (39).
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In summary, for the terms in (35) which satisfy (38) and (39),we have

Pr

{

n
∑

i=1

(yi − ai)
2 ≥

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≥
[

1−Q

(

δ

2σ

)]n−1 [

Q

(‖bn1 − an1‖
2σ

)

−Q

(‖bn1 − an1‖+ δ

2σ

)]

≃ Q

(‖bn1 − an1‖
2σ

)

asσ → 0

= Q

(

√
∑n

i=1 d
2
SI(ti, ri)

2σ

)

, (41)

where the right hand side of the inequality in (41) equals theintegral of the joint

probability distribution ofyn1 ≡ y1 · · · yn (givenw1, s
n
1 ) over the smaller region, which is

obtained by using the fact thatyn1 is Gaussian centered atcn1 = an1 and by applying the

necessary rotation.

APPENDIX II

A POLYNOMIAL COMPLEXITY ALGORITHM FOR FINDING TWO SYMBOLS OFT WITH

THE MAXIMUM DISTANCE

We propose an algorithm for finding two symbols ofT with distance greater than or

equal to somed0 > 0. Then we explain how to find two symbols inT with the maximum

distance. Consider the bipartite graphG(U, V, E) shown in fig. 6 with2Q vertices at each

part. Each of the non-intersecting setsU1, · · · , UQ contains two vertices of the upper part

U and each of the nonintersecting setsV1, · · · , VQ contains two vertices of the lower

part V . The vertices of the setsUi = {ui1, ui2} and Vi = {vi1, vi2} are labeled by the

elements of the setX +si = {x1+si, x2+si}, i = 1, . . . , Q. A vertex inUi is connected

to a vertex inVj if the absolute value of the difference of their labels is greater than or

equal tod0, i, j = 1, . . . , Q.

From the definition of distance in (9), there exist two symbols in T with distance

d ≥ d0 if and only if G has a complete bipartite subgraphKQ,Q with exactly one vertex

in eachUi and eachVj. If such a subgraph exists, we label the edges of the subgraph
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Fig. 6. Graph representation for the problem of finding two symbols ofT with the maximum distance.

by 1 and we label the rest of the edges ofG by 0. We denote the label of edgee by

ye ∈ {0, 1}. Such a labeling satisfies the following set of constraints

∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q, (42)

∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q, (43)

ye ∈ {0, 1}. (44)

Note that by definition, an edge of a graph is a set of two vertices. Therefore, the notation

e∩Ui in (42) is meaningful. The equations (42) and (43) state thatthe sum of the labels

of the edges going out of anyUi andVi is Q.

We devise an objective function for the constraints (42), (43), and (44) such that the

objective function takes agiven maximum value only for a labeling with label1 for the

edges of the subgraphKQ,Q and label0 for the rest of the edges. Consider the following
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optimization problem

max
ye

Q
∑

i=1

2
∑

j=1





∑

e:uij∈e

ye





2

+

Q
∑

i=1

2
∑

j=1





∑

e:vij∈e

ye





2

subject to
∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q,

∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q,

ye ∈ {0, 1}. (45)

In the following, we find the maximum of the above optimization problem for the

foregoing labeling. Given the constraints of (45), we have

2
∑

j=1





∑

e:uij∈e

ye



 =
∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q, (46)

2
∑

j=1





∑

e:vij∈e

ye



 =
∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q. (47)

If the sum of two nonnegative variables is constant, then thesum of their squares takes its

maximum if one of the variables is zero. Therefore, for anyi = 1, . . . , Q, the maximum

of
2
∑

j=1





∑

e:uij∈e

ye





2

and
2
∑

j=1





∑

e:vij∈e

ye





2

will be Q2 and this maximum occurs if and only if one vertex in any ofU1, . . . , UQ

and V1, . . . , VQ is connected toQ edges with label1 and the other vertex in any of

U1, . . . , UQ andV1, . . . , VQ is not connected to any edge with label1. This is equivalent

to the existence of a subgraphKQ,Q. Then the maximum of the objective function in

(45) will be Q×Q2 +Q×Q2 = 2Q3.
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We may relax the integrality constraint (44) and change equality signs in (42) and

(43) to inequality signs to obtain the following optimization program

max
ye

Q
∑

i=1

2
∑

j=1





∑

e:uij∈e

ye





2

+

Q
∑

i=1

2
∑

j=1





∑

e:vij∈e

ye





2

subject to
∑

e:e∩Ui 6=φ

ye ≤ Q, i = 1, . . . , Q,

∑

e:e∩Vi 6=φ

ye ≤ Q, i = 1, . . . , Q,

0 ≤ ye ≤ 1. (48)

Using the same argument as in the previous paragraph, the value 2Q3 is also achievable

for the above maximization problem if and only if a subgraphKQ,Q of the graphG

exists. The above optimization problem is aquadratic programming problem [16] with

convex objective function and can be solved in polynomial time [17] in terms of the

number of edges ofG, which is at most4Q2.

In summary, we turned the problem of finding two symbols inT with distance at

leastd0 > 0 into the quadratic programming problem (48). If the maximumvalue of (48)

is 2Q3, then two such symbols are obtained from the optimal solution of (48). Otherwise,

two such symbols do not exist.

To find two symbols inT with the maximum distance, we need to run the described

algorithm for a few values ford0. We can obtain an upper bound on the number of

possible distances between symbols ofT . From the definition of distance in (9), a loose

upper bound isM2Q2 = 4Q2. By using the binary search algorithm [18], the search over

possible distances can be done with logarithmic complexitywith respect to the number

of possible distances.

It is worth mentioning that our proposed algorithm can be extended to findK ≥ 2

symbols ofT with the maximum minimum distance amongK symbols for the general

caseM ≥ 2.
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APPENDIX III

AN EXAMPLE THAT SHOWS USING MORE THANM SYMBOLS OFT RESULTS IN

LARGER MINIMUM DISTANCE (M > 2)

Consider the channel withX = {1, 4, 5, 7} andS = {0, 4}. Consider the following

codebook with six codewords of length two that uses seven symbols of theassociated

channel.

Codeword 1: ((4, 1), (5, 1))

Codeword 2: ((4, 1), (1, 5))

Codeword 3: ((5, 4), (5, 4))

Codeword 4: ((5, 4), (4, 5))

Codeword 5: ((1, 5), (4, 1))

Codeword 6: ((1, 5), (1, 4))

The minimum distance of the above code is3. However, it can be verified by a computer

program that any code for this channel with codebook size sixand length two that uses

any four symbols of theassociated channel yields a minimum distance less than3.
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