

Aalborg Universitet

A Mobile Application Prototype using Network Coding

Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank; Larsen, Torben

Published in:
European Transactions on Telecommunications

DOI (link to publication from Publisher):
10.1002/ett.1448

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen, M. V., Heide, J., Fitzek, F., & Larsen, T. (2010). A Mobile Application Prototype using Network
Coding. European Transactions on Telecommunications, 21(8), 738-749. https://doi.org/10.1002/ett.1448

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://doi.org/10.1002/ett.1448
https://vbn.aau.dk/en/publications/a5db083d-571f-49ea-abf9-a5a093872031
https://doi.org/10.1002/ett.1448

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
Eur. Trans. Telecomms. 2010; 21:738–749
Published online 11 October 2010 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/ett.1448

A mobile application prototype using network coding†

Morten V. Pedersen∗, Janus Heide, Frank H. P. Fitzek and Torben Larsen

Department of Electronic Systems, Aalborg University, Denmark

SUMMARY

This paper looks into implementation details of network coding for a mobile application running on com-
mercial mobile phones. We describe the necessary coding operations and algorithms that implements them.
The coding algorithms forms the basis for a implementation in C++ and Symbian C++. We report on prac-
tical measurement results of coding throughput and energy consumption for a single-source multiple-sinks
network, with and without recoding at the sinks. These results confirm that network coding is practical
even on computationally weak platforms, and that network coding potentially can be used to reduce energy
consumption. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Network Coding (NC) has received a lot of attention since
the term was coined by Ahlswede et al. [1]. Several research
works have investigated [2, 3] and implemented [4, 5] NC
to prove the feasibility of this novel technique. NC can be
applied in many communication scenarios such as multicast
or meshed networking, where NC delivers promising results
for throughput and reliability. While most codes are end-
to-end, with NC packets can be recoded at each node in
the network, which can be of special interest in multi-hop
networks.

The concept of NC has been proven to work in the-
ory, some current questions are how to design NC algo-
rithms and whether these algorithms are too complex for
a given platform. In References [6, 7], it has been shown
that NC can be applied to sensor networks and meshed
networks formed by mobile phones. One finding was that
NC techniques must be designed with care if they are
to be applied to the mobile or embedded domain. These
platforms have limited resources such as energy, mem-
ory and computational power in addition to the general

* Correspondence to: Morten V. Pedersen, Department of Electronic Systems, Aalborg University, Denmark. E-mail: mvp@es.aau.dk
†A previous version of this paper was presented in the 15th European Wireless Conference (EW 2009), Aalborg, Denmark.

problems in mobile networking such as limited wireless
capacity.

This paper introduces a mobile demo application using
NC that is running on the Symbian/S60 platform used on
most Nokia smartphones and by other manufactures such
as Motorola, Samsung and Sony Ericsson. The main idea
is that users wish to share content over short range wireless
technologies such as WiFi. Instead of uploading the con-
tent to social networks such as MySpace or Facebook, the
content can be conveyed directly to nearby mobile phones,
which would allow a user to easily share photos with his/her
friends ad hoc.

The use of NC is motivated by the fact that the trans-
mission from one source to many sinks must be done in a
reliable and efficient manner. NC enables this as it allows
for efficient spectrum usage and a low complexity error
control system. NC can be applied at different protocol lay-
ers, ranging from the physical layer over the network layer
to the application layer. In this work we focus on the ap-
plication layer. Furthermore, the paper provides some im-
plementation guidance on how to keep the complexity of
NC low.

Received 30 November 2009
Revised 12 July 2010

Copyright © 2010 John Wiley & Sons, Ltd. Accepted 14 July 2010

A NETWORK CODING PROTOTYPE 739

The remainder of this work is organised in the follow-
ing sections. Section 2 introduces different transmission
approaches. Section 3 introduces NC operations and algo-
rithms. In Section 4 the functionality and interface of the
application prototype is introduced. Section 5 presents the
obtained results. Section 6 provides a discussion on impor-
tant considerations when implementing NC. The conclusion
is presented in Section 7.

2. TRANSMISSION APPROACHES

Different approaches for transmitting the data are possible,
here we present some possibilities. We assume that a single
source s broadcast data to N sinks t1 . . . tN and that the
source has a direct wireless link to the sinks, as shown in
Figure 1. The data can be divided into a number of packets,
g. Transmitting packets over the wireless link may lead to
packet loss due to the characteristics of the wireless channel
thus an error control system is needed.

2.1. Unicast

The simplest solution is for the source to send the data in
a round robin fashion using a reliable unicast protocol e.g.
Transmission Control Protocol (TCP). Such an approach is

Figure 1. The basic PictureViewer setup.

fully reliable as each sink is served individually. Each sink
acknowledges received packets and therefore the source de-
vice can determine when all sinks have received all packets.
This solution is simple and the computational complexity
is low. However, if N is high the amount of redundant in-
formation sent from the source becomes significant.

2.2. Broadcast

Instead of sending to each device individually the source
could broadcast the data to the sinks. This approach is highly
efficient as long as no errors occur on the wireless link.
However, when packet losses occur some form of error cor-
rection is needed. To achieve reliability the source needs to
know which packets have been lost by one or more sinks
and those must be retransmitted, this introduces the need
for feedback information which consumes spectrum and
time. The amount of feedback information depends on N

and the Packet Error Probability (PEP). The feedback mes-
sages can be fairly small and as such do not require a lot of
spectrum. However, they potentially introduces collisions
in the network as both the source and sinks will attempt to
transmit packets simultaneously. Thus the performance of
such a broadcast approach depends on the effectiveness of
the Medium Access Control (MAC).

Furthermore, the retransmissions by themselves is sub-
optimal as not all sinks will lose the same packets, thus each
retransmitted packet will only be useful for a subset of the
sinks. For example, if mobile devices 1, 2 and 3 have lost
packet 17, 21 and 16, respectively, three broadcast packets
must be transmitted, and each retransmitted packet is only
useful for a single sink. Generally broadcast can be faster
than unicast if N > 1 and its performance is less sensitive
towards the number of sinks.

2.3. Pure network coding

One NC approach that lends itself to this scenario, is Ran-
dom Linear Network Coding (RLNC) [2]. With this ap-
proach coding is used to simplify the problem of correcting
lost packets at the sinks and furthermore reduces the re-
quirement for feedback. In NC, nodes can combine the in-
formation in the network to create new packets [8]. Hence,
the source codes g + r packets from the g original packets
and broadcasts these packets. r is the number of redundant
packets and should be chosen according to the PEP of the
link. Each sink only has to receive any g linear independent
packets, which can then be decoded to recreate the original
packets.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

740 M. V. PEDERSEN ET AL.

Table I. Estimates of the achievable capacity, C, decoding de-
lay, D, computational complexity, O, and energy consumption, E,
when N >> 1.

C D O E

Unicast Low Low Low High
Broadcast Med. Low Low Med.
Pure NC High Med. High Med.
Systematic NC High Med. Med. Low

The advantage of NC can be illustrated by the previous
example. In this case the source could code packets 16,
17 and 21 together into a new packet of the same length
as the original packets. This packet is broadcasted to the
three sinks, which each remove from the coded packet the
packets they already got and thus decode the packet into
the packet they lost. Thus, the retransmission that needed
three transmissions using broadcast can be done by a single
transmission using NC.

As the coding and decoding operations introduces com-
plexity the computational requirement is increased. These
operations will increase the Central Processing Unit (CPU)
load and thus the energy consumption. However, the num-
ber of redundant packets transmitted from the source and
feedback messages sent from the sinks can be decreased
which help to decrease energy consumption.

2.4. Systematic network coding

To decrease the complexity systematic NC can be used [9].
Systematic NC combines the broadcast and NC approaches.
As there is no obvious gain in coding the first g packets, the
source broadcasts these packets and code the remaining r

packets. Each uncoded packet is useful for all N sinks as
they are linear independent. The following r packets are
coded and have a high probability of being independent of
the n uncoded packets. This approach decreases the com-
putational complexity at the source and the sinks as only r

packets has to be coded and decoded.
The different approaches are compared in Table I.

3. NETWORK CODING

This section introduces the coding operations necessary in
NC and the algorithms used in the demo application, for
details and analysis see Reference [10]. We base our solu-
tion on performing RLNC over a Galois field. When Ga-
lois fields are implemented on computer systems the Galois
elements are generally of the form 2i, where i ∈ Z∗, and

typically i ∈ {8, 16, 32}. We choose the smallest possible
Galois Field, GF(2), to decrease the computational com-
plexity of coding operations. This is done to overcome the
challenges posed by the limited computational resources
available on the test platform.

3.1. Coding operations

In NC data to be transferred from the source to the sinks is
divided into packets of length m. The number of original
packets over which encoding is performed is typically ref-
ereed to as the batch size or generation size and denoted g.
Thus, the g original data packets of length m are arranged
in the matrix M = [m1m2 . . . mg], where mi is a column
vector.

3.1.1. Encoding. To encode a packet x at the source,
M is multiplied with a randomly generated vector g of
length g, x = M × g. In this way we can construct X =
[x1x2 . . . xg+r] that consists of g + r coded data packets
and G = [g1g2 . . . gg+r] that contains g + r randomly gen-
erated encoding vectors, where r is the number of redundant
packets.

Note that if an encoding vector consists of all zeros except
a single scalar that is one, the coded packet is equal to an
original packets and we say that it is trivially encoded.

3.1.2. Recoding. Any relay or sink node that have received
g − i > 1 linear independent packets, can recode and thus
create new coded packets. All received coded packets are
placed in the matrix X̂ = [x̂1x̂2 . . . x̂g−i] and all encoding
vectors are placed in the matrix Ĝ = [ĝ1ĝ2 . . . ĝg−i], we
denote this the decoding matrix. The number of received
linear independent packets g − i is equal to the rank of Ĝ.
Ĝ and X̂ is multiplied with a randomly generated vector
h of length g − i, g̃ = Ĝ × h, x̃ = X̂ × h. In this way we
can construct G̃ = [g̃1g̃2 . . . g̃g−i] that contains g − i ran-
domly generated recoding vectors and X̃ = [x̃1x̃2 . . . x̃g−i]
that consists of g − i recoded data packets.

Note that h is only used locally and that there is no need
to distinguish between coded and recoded packets when
further recoding or decoding is performed.

3.1.3. Decoding. In order for a sink to successfully de-
code the original data packets, it must receive g linear inde-
pendent coded packets and encoding vectors. All received
coded packets are placed in the matrix X̂ = [x̂1x̂2 . . . x̂g]
and all encoding vectors are placed in the matrix Ĝ =
[ĝ1ĝ2 . . . ĝg]. The original data M can then be decoded

as M̂ = X̂ × Ĝ
−1

.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

A NETWORK CODING PROTOTYPE 741

Note that the set of g linear independent packets can con-
tain any mix of uncoded, coded and recoded packets.

3.2. Coding algorithms

In this section we present pseudo code for the coding oper-
ations in RLNC based on GF(2).

3.2.1. Encoding. A packet in GF(2) can be encoded in two
simple steps. First the encoding vector, g, of length g, is gen-
erated as a random bit vector, where the indices in the vector
corresponds to packets in the original data set i.e. index one
corresponds to packet one. The second step is performed
by iterating over the encoding vector and adding packets
where the corresponding index in the encoding vector is 1.

The following listing shows the encoding algorithm in
pseudo code, where M is the data buffer containing all orig-
inal packets, g is an encoding vector and x is the resulting
encoded packet.

1: procedure ENCODEPACKET (M,x,g)
2: x = 0
3: for each bit b in g do
4: if b equal 1 then
5: i = position of b in g

6: x = XOR(x, M[i])
7: end if
8: end for
9: end procedure

3.2.2.. Recoding of the received g − i packets in M̂

is performed similar to encoding. However, instead of
combining all g original data packets, the received g − i

received packets are combined. First the recoding vector, h,
of length g − i, is generated as a random bit vector, where
the indices in the vector corresponds to received packets
i.e. index one corresponds to packet one. The second step is
performed by iterating over the recoding vector and adding
packets where the corresponding index in the encoding
vector is 1. Simultaneously the packets corresponding en-
coding vectors are added in order to create a new encoding
vector.

The following listing shows the recoding algorithm in
pseudo code, where M̂ is the data buffer containing all re-
ceived packets both partially and fully decoded, Ĝ is the
corresponding encoding vectors, h is the recoding vector,
x̃ is the resulting recoded packet, and g̃ is the resulting en-
coding vector.

1: procedure RecodePacket(M̂,Ĝ,h,x̃,g̃)
2: x̃ = 0, g̃ = 0
3: for each bit b in h do

4: if b equal 1 then
5: i = position of b in h

6: x̃ = XOR(x̃, M̂[i])
7: g̃ = XOR(g̃, M̂[i])
8: end if
9: end for

10: end procedure

3.2.3.. Decoding is performed on the run in two steps with
a slightly modified Gauss-Jordan algorithm. Thus the re-
ceived data at the sink is always decoded as much as possi-
ble and the load on the CPU is distributed evenly. In the first
step we reduce the incoming encoded packet by perform-
ing a forward substitution of already received packets. This
is done by inspecting the elements of the encoding vector
from start to end and thus determining which original pack-
ets the coded packet is a combination of. If an element is 1
and we have already identified a packet with this element
as a pivot element we subtract that packet from the coded
packet and continue the inspection. If an element is 1 and
we have not already identified a packet where this element
is a pivot element we have identified a pivot packet and con-
tinue to the second stage of the decoding. Note that if we
are able to subtract all information contained in the received
encoded packet, it will contain no information useful and is
discarded.

In the second step we perform backward substitution with
the newly identified pivot packet. This is done by subtract-
ing the pivot packet from previously received packets for
which the corresponding encoding vector indicates that the
particular packet is a combination of the pivot packet.

The following listing shows the decoding algorithm in
pseudo code, whereM̂ is the packet decode buffer of packets
received and decoded so far and Ĝ is the corresponding
encoding vector buffer, x̂ is a newly received encoded packet
and ĝ is the newly received encoding vector.

1: procedure DecodePacket(M̂,Ĝ,x̂,ĝ)
2: pivotposition = 0
3: pivotfound = false
4: for each bit b in ĝ do (Forward substitution
5: if b equal 1 then
6: i = position of b in ĝ

7: if i’th packet is in M̂ then
8: ĝ = XOR(ĝ,Ĝ[i])
9: x̂ = XOR(x̂,M̂[i])

10: elseif pivotfound equal false
11: pivotfound = true
12: pivotposition = i

13: end if
14: end if

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

742 M. V. PEDERSEN ET AL.

15: end for
16: if pivotfound equal false then
17: exit procedure (Discard packet
18: end if
19: for each packet j in M̂ do (Backward substitution
20: k = Ĝ[j]
21: if bit at pivotposition in k equal 1 then
22: Ĝ[j] = XOR(Ĝ[j],ĝ)
23: M̂[j] = XOR(M̂[j],x̂)
24: end if
25: end for
26: Ĝ[pivotposition] = ĝ (Insert packet
27: M̂[pivotposition] = x̂

28: end procedure
The algorithm can also be used unmodified in a system-

atic coding approach, in which case we only have to ensure
that uncoded packets are treated as pivot packets.

4. DEMO APPLICATION

A demo application, PictureViewer, has been developed to
illustrate what is happening when NC is applied. There-
fore, the PictureViewer application allows users to broad-
cast images located on their phones to a number of receiving
devices. To illustrate the difference between different NC
approaches the application allows users to monitor the de-
coding process directly. The decoding process is displayed
by drawing the actual content of the decoding matrix onto
the display of the receiving phones. As the application is
primarily meant for demonstration purposes it may not be
very useful in the real world. However, if the pictures where
substituted with some other data, e.g. video or audio it might
be useful for streaming in a local network or similar.

In Figure 2 the first column of screenshots shows the
decoding process when pure NC is used. Here only coded
packets are transmitted, and initially as shown in Figure 2(a)
the content of the decoding matrix appears random. As the
decoder receives more linear combinations, the decoding
process solves the decoding matrix, and the original picture
start to appear, see Figure 2(c). In Figure 2(e) the picture
has been decoded and the transmission is complete. The
second column of screenshots shows systematic NC, where
all data is first transmitted uncoded. Figure 2(b) shows how
uncoded packets are being inserted into the decoding ma-
trix. In Figure 2(d) the application has entered the coding
phase, where erasures which occurred during the uncoded
phase are repaired by transmitting encoded packets. In this
test the PEP was approximately 30% and therefore 70% of

the data was received uncoded without need for additional
decoding. This illustrates the advantage of the systematic
approach as the number of packets that had to be decoded
was reduced by 70%.

5. RESULTS

In this section we present the results of three measurements
evaluating the performance of the used algorithms. The first
tests focuses on the performance of the algorithms i.e. the
amount of MB/s which can be encoded and decoded us-
ing the presented algorithms and the additional energy con-
sumed. In the second test the code is used as an end-to-end
code in an ad hoc Wireless Local Area Network (WLAN) to
measure the impact of encoding and decoding. In the third
test recoding is added and the sinks form a small cooper-
ative cluster, hence the test provides information about the
impact of recoding and simple cooperation. These test are
intended to provide basic information about how the use NC
impacts throughput and energy consumption, in a small ad
hoc broadcast network comprising mobile devices with low
computational capabilities.

5.1. Coding throughput

To determine the synthetic performance of the encoding
and decoding algorithms we have implemented a coding
library designed to deliver high throughput by optimising
it through assembly and Single Instruction, Multiple Data
(SIMD) instructions. This implementation was then ported
to the Symbian platform and used in the PictureViewer ap-
plication which allowed testing the algorithms on commer-
cially available mobile phones. In the following tests the
Nokia N95-8GB mobile phone with the following specifi-
cations was used; ARM 11 332 MHz CPU, 128 MB RAM,
Symbian OS 9.2. In the throughput test a single phone was
used to perform both the encoding and decoding opera-
tions by first encoding packets, saving the encoded data
to memory, and subsequently decoding them. Packets were
coded using the generation sizes q = {16, 32, 64, 128, 256}
and a packet size of 1200 bytes. This test was performed
both for pure NC and systematic NC. For pure NC g coded
packets were generated and subsequently decoded. To get
an indication of the impact of using systematic NC a test
was also be conducted where the first 0.7·g of the packets
were uncoded and the last 0.3·g packets were coded. Thus,
the coding performance corresponds to what would be ex-
pected if the packets were transmitted over a channel with
PEP = 0.3.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

A NETWORK CODING PROTOTYPE 743

Figure 2. Pure NC: (a) partially decoded data, (c) image starting to appear as the decoders rank increases, (e) the final decoded image.
Systematic NC: (b) received uncoded data, (d) erasures corrected by coded packets, (f) the final decoded image.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

744 M. V. PEDERSEN ET AL.

16 32 64 128 256
0

5

10

15

20

25

30

35

40

Generation size [Packets]

T
hr

ou
gh

pu
t [

M
B

/s
]

Encoding pure
Decoding pure
Encoding systematic
Decoding systematic

Figure 3. Synthetic throughput for encoding and decoding.

As seen in Figure 3 the encoding and decoding speed
decreases as the generation size increases. Additionally the
decoding throughput is somewhat lower than the encoding
throughput. This is expected due to the higher computa-
tional complexity of the decoding algorithm. The test also
shows that the systematic approach achieves approximately
twice the throughput compare to the pure NC approach for
a generation size of 16. For generation size of 64 and above
the throughput is approximately tripled. Encoding and de-
coding of trivially coded packets require no computation,
which results in a large speedup for the systematic approach.
We note that the coding performance in a real network will
depend on the ratio between uncoded and coded packets. In
the extreme case where all packets are received coded, the
two approaches perform identically and thus have the same
throughput. The measured coding throughput indicate that
the coding algorithms are fast enough to saturate the WLAN
interface for all tested generation sizes, when compared to
the achievable WLAN data rates of the Nokia N95 [11].
This result is important as the computational complexity
introduced by coding should have minimal impact on the
network and device performance, when compared to strate-
gies without NC. A test was also performed to estimate the
cost of coding in terms of energy. To measure the energy
used for the coding operations, the Nokia Energy Profiler
(NEP) was used during the tests. The results from the en-
ergy measurement are shown in Figure 4. To calculate the
approximate energy consumption per coded packet, the test
application first measured the idle power of the device using
NEP. This was subtracted from the measured values during
encoding and decoding, which gave the approximate power
consumption caused by the coding operations.

16 32 64 128 256
0

100

200

400

600

Generation size [Packets]

E
ne

rg
y

[µ
J/

P
ac

ke
t]

Encoding energy
Decoding energy

Figure 4. Energy spent per packet during encoding and decoding.

As seen in Figure 4 the energy consumption per packet
increases as the generation size grows. The power consump-
tion was approximately constant during all tests, but as the
throughput decreased the energy per packet increased. The
energy used to decode a packet is slightly higher than for
encoding, this can be attributed to the higher complexity of
decoding and the following lower coding throughput.

5.2. Coding in a network

A simple approach to distribute the data from the source to
all sinks in Figure 1 is to use systematic coding at the source
and overshoot with a comfortable margin. Thus the source
transmit so many packets that with a very high probability
all sinks are able to decode, and as the source know nothing
about the PEP for the sinks, r needs to be high. This is not
very useful in a real network, but it allow us to observe
the impact that the code has on the channel throughput and
energy consumption, and thus choose parameters for the
code that are appropriate for our test devices.

We measured from the first packet was received until the
packet which completes the decoding of the generation was
received. This allows us to obtain the performance as if we
had a perfect feedback-channel and feedback scheme. The
sink records the following parameters; time per generation,
PEP, total packets, uncoded packets, coded packets and lin-
ear dependent packets.

The test was conducted using two Nokia N95s, one source
and one sink. Packets were coded using the generation sizes
q = {16, 32, 64, 128, 256} and a packet size of 1200 bytes.
Approximately 100.000 test runs were completed in to-
tal. All measurements were binned according to their PEP,
Table II shows the number of measurements in each bin. We

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

A NETWORK CODING PROTOTYPE 745

Table II. The number of generations counted for different
values of PEP.

PEP [%]

0–10 10–20 20–30 30–40 40–50

g = 16 40707 10789 509 124 56
g = 32 18820 3407 794 662 676
g = 64 10907 3373 695 343 150
g = 128 9393 1372 287 183 158
g = 256 4263 890 215 142 138

Table III. Average number packets per generation for g = 16.

PEP [%]

g = 16 0–10 10–20 20–30 30–40 40–50

nsent 16.63 19.09 22.09 26.92 30.87
nrecieved 16.20 16.55 16.91 17.36 17.23
nuncoded 15.52 13.78 12.52 10.64 9.18
ncoded 0.48 2.22 3.48 5.36 6.82
ndependent 0.20 0.55 0.91 1.36 1.23

note that the uncertainty in the measurements are higher for
high PEP values as fewer results were observed in those
bins.

In the following Tables III–VII we have grouped the re-
sults according to the different generation sizes. For each
generation nsent denotes the average number of packets sent
from the source before completing the generation. nsent was
calculated using the first and last sequence number in the
generation. nreceived denotes the average number of packets
received to complete the generation i.e. including nuncoded,
ncoded and ndependent which denote, respectively, the coded
packets, uncoded packets and linear dependent packets re-
ceived.

Several trends in the tables are similar for all generation
sizes. As the measured PEP increases the ratio between
uncoded packets and coded packets change. This is to
be expected as the number of uncoded packets sent in

Table IV. Average number packets per generation for g = 32.

PEP [%]

g = 32 0–10 10–20 20–30 30–40 40–50

nsent 32.88 38.04 43.93 51.86 61.33
nrecieved 32.27 32.76 33.25 33.56 33.58
nuncoded 31.32 27.88 24.61 21.30 18.28
ncoded 0.68 4.12 7.39 10.70 13.72
ndependent 0.27 0.76 1.25 1.56 1.58

Table V. Average number packets per generation for g = 64.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 66.17 75.82 86.53 99.94 118.59
nreceived 64.56 65.28 65.36 65.37 65.54
nuncoded 62.28 54.52 49.29 44.12 35.91
ncoded 1.72 9.48 14.71 19.88 28.09
ndependent 0.56 1.28 1.36 1.37 1.54

Table VI. Average number packets per generation for g = 128.

PEP [%]

g = 128 0–10 10–20 20–30 30–40 40–50

nsent 130.66 150.42 171.63 199.21 237.15
nrecieved 128.67 129.39 129.56 129.68 129.69
nuncoded 125.99 109.99 95.12 81.68 72.52
ncoded 2.01 18.01 32.89 46.32 55.48
ndependent 0.67 1.39 1.56 1.68 1.69

the initial phase is fixed, and as the PEP increases, more
and more erasures must be fixed in the second phase of
the systematic code. Additionally the amount of linear
dependent received packets increases. This makes sense
as each coded packet has a non-zero probability of being
linear dependent. Inspecting nreceived we see that the
generations are typically completed using between zero
and two additional packets depending on the PEP. This
is in agreement with the analytical results of the coding
performance presented in Reference [10].

In Figure 5, the development in throughput versus PEP
is shown. The throughput approximately drops affine with
the PEP, and it can be seen how the higher computational
complexity of the larger generations sizes affect the per-
formance as the PEP increases and more packets must be
coded. The average maximal throughput 0.395 MB/s mea-
sured lies approximately 33% below the maximal WLAN
throughput without coding presented in Reference [11] on

Table VII. Average number packets per generation for g = 256.

PEP [%]

g = 256 0–10 10–20 20–30 30–40 40–50

nsent 260.69 301.28 340.35 398.73 465.49
nreceived 256.79 257.59 257.50 257.47 257.61
nuncoded 252.34 219.57 186.49 153.87 120.94
ncoded 3.66 36.43 69.51 102.13 135.06
ndependent 0.79 1.59 1.50 1.47 1.61

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

746 M. V. PEDERSEN ET AL.

0−10 10−20 20−30 30−40 40−50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Channel PEP [%]

C
ha

nn
el

 th
ro

ug
hp

ut
 [M

B
/s

]

g = 16
g = 32
g = 64
g = 128
g = 256

Figure 5. Throughput for different strategies with a single sink
as a function of the PEP.

the same type of device. This stresses that the coding op-
erations are not ‘free’ and further work should be done to
optimise their implementation.

Using the measured ratios given in Tables III–VII we are
able to calculate the energy consumption of the different
schemes. To compute this we use the energy consumed due
to the sending and receiving and the energy consumed due
the coding operations. We use the values given in Refer-
ence [7] for energy receiving and sending data over WLAN
and the energy measurement given in Section 5.1. Figure 6
shows the development in energy per byte spent as the PEP
increases. The lower generation sizes perform worse, in
terms of energy consumption, compared to the larger gen-
eration sizes, especially for higher PEPs. Thus in this case

0−10 10−20 20−30 30−40 40−50
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−6

Channel PEP [%]

E
ne

rg
y

[J
/B

]

g = 16
g = 32
g = 64
g = 128
g = 256

Figure 6. Energy for different strategies with a single sink as a
function of the PEP.

we see that the higher overhead in terms of linear dependent
packets for small generation sizes outweighs the higher en-
ergy consumption of the encoding/decoding of the larger
generation sizes.

Based on these results we see an interesting trade-off
between energy and speed. Where small generation sizes
deliver high throughput, but higher generation sizes deliver
a better energy per byte ratio. We also stress that the proto-
type did not use any form of feedback from the sink to the
source. If feedback was introduced e.g. on a per generation
basis the lower generation sizes may loose its advantage in
speed as it would need a higher amount of signalling.

5.3. Coding and cooperation in a network

To observe the effect of recoding we need to test a setup
where the sinks are cooperating by forwarding recoded
packets to each other. The simplest approach is to let each
sink recode and forward whenever it receives a packet from
the source, with some fixed probability pR. This probability
should be chosen in accordance with the PEP of the sinks
in the cluster, and will also depend on what parameters we
wish to optimise, here we have chosen 5% and 10%. This
simple protocol allows us to observe the effect of recod-
ing. Enabling recoding should offload the source, in terms
of both energy and computations, by moving some of the
coding to the cluster. The effect should be biggest when the
PEP is high, and especially visible in cases where the chan-
nel between the source and a sink is weak, but the channels
between cooperating sinks are strong. In this case a fixed
pR was used; however, for a real protocol implementation
it will be important to consider when a sink has enough
information to be a useful ‘recoder’.

In the test we measured from the first packet was re-
ceived until the packet which completes the decoding of
the generation was received. This allows us to obtain the
performance as if we had a perfect feedback-channel and
feedback scheme. The sink records the following parame-
ters; time per generation, PEP, total packets, uncoded pack-
ets, coded packets, linear dependent packets, relayed coded
packets, relayed linear dependent packets.

As in the previous setup the test was conducted using
three Nokia N95s, one source and two sinks. Packets were
coded using the generation size q = 64 and a packet size
of 1200 bytes. Approximately 9.000 test runs were com-
pleted in total for each pR. All measurements were binned
according to their PEP, Table VIII shows the number of
measurements in each bin. We note that the uncertainty in
the measurements are higher for high PEP values as fewer
results were observed in those bins.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

A NETWORK CODING PROTOTYPE 747

Table VIII. The number of generations counted for different val-
ues of PEP.

PEP [%]

0–10 10–20 20–30 30–40 40–50

g = 64 8091 891 176 53 63
pR = 5%
g = 64 8114 1355 266 140 109
pR = 10%

As in the previous tables rows starting with n denotes data
originating from the server, in addition the rows starting
with c i.e. ccoded and cdependent denotes, respectively, the
useful coded packets and linear dependent packets received
from the relay. As shown in the Tables IX and X we can
observe the same tendencies as in the non-cooperation case
for the source to sink communication. However, in the relay
communication we can observe, as expected, that the relay
becomes an increasingly better source of information as the
PEP increases. The main reason for this, is that the relay will
only be able to repair the uncorrelated losses, that is losses
which occurred only at the other sink. In addition since
RLNC is used the relay will randomly pick which packets
to recode, further minimising the probability of selecting
an useful packet. However, as the PEP increases so does
the probability that one relay has useful packets to offer the
second relay. This tendency can be seen for pR = 5% where
the ratio of useful packets changes from 19% to 73% and
for the pR = 10% case where the ratio changes from 21%
to 58%.

These results indicate that a successful relay protocol
should be able to adapt to the current channel conditions
in order to avoid sending unnecessary redundant data e.g.
when the PEP is low. We do however also see that any
packets coming from the relay will aid the source, in the way
that the source needs to transmit a relative lower overhead

Table IX. Average number packets per generation for g = 64. Us-
ing 5% pR.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 67.12 73.44 80.30 87.75 93.46
nreceived 63.45 64.65 64.21 62.69 62.72
nuncoded 61.40 57.01 52.57 48.15 44.49
ncoded 2.04 5.92 9.98 13.64 16.92
ndependent 0.01 1.72 1.66 0.90 1.31
ccoded 0.56 1.07 1.45 2.21 2.59
cdependent 2.46 1.87 1.32 0.92 0.92

Table X. Average number packets per generation for g = 64. Using
10% pR.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 67.48 73.37 80.36 87.31 93.11
nreceived 62.77 63.75 62.99 63.29 62.66
nuncoded 60.35 56.06 52.14 50.09 47.46
ncoded 2.41 6.17 9.19 11.24 13.47
ndependent 0.01 1.52 1.66 1.96 1.73
ccoded 1.24 1.77 2.67 2.67 3.07
cdependent 4.65 3.98 3.18 2.89 2.18

to overcome the channel PEP as part of the redundancy is
now coming from the relays.

6. DISCUSSION

When NC is used several parameters must be defined, these
parameters influences the performance in terms of cod-
ing throughput, network throughput, decoding delay, etc.
A good choice will depend on the type of application, the
target platform, the network characteristics, etc. In the fol-
lowing we will discuss these parameters and how they can
be selected.

6.1. Parameter considerations

The field size, q, defines the size of the field over which cod-
ing operations are performed and also the size of the data
symbols. From a network perspective a high q is preferable
as it gives a low probability that packets are linear depen-
dent. However, a high q can result in low coding throughputs
which can be problematic in many applications and can in-
fluence the energy consumption negatively. Here we have
considered only q = 2, as this is the only choice that have
currently been shown to be practical realisable on the target
platform [12, 7, 10, 13]. On other platforms this choice can
be less restricted [14, 15].

The generation size, g, defines the number of packet in
each generation and thus the number of packets coded to-
gether. A low g gives a high coding throughput but a higher
probability of linear dependent packets, a higher g gives a
lower probability of linear dependent packets but a lower
coding throughput [10]. Thus the choice of g is a trade-off
between network performance and coding throughput. Ad-
ditionally a higher g increases the decoding delay, which
is important for some applications, e.g. audio and video
streaming.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

748 M. V. PEDERSEN ET AL.

The packet size, m, defines the number of symbols per
packet. A higher m increases the coding throughput [14,
7]. However, a high m can be impractical as it can result
in fragmentation at lower layers. If one coded packet is
fragmented into several frames, and one of these frames is
lost, the rest of the frames will be useless.

A good choice of these parameters depend on the ap-
plication data. For bulk data transfer the requirements to
decoding delay is loose, the file(s) will not be usable until
everything is decoded. However, if relatively large amounts
of data is to be transferred quickly, it is important that the
coding throughput is high, in order to reduce the usage of
computational resources. For audio and video streaming a
very important requirement is a low decoding delay, but the
requirement can be loosened by increasing the playback
buffer size. This is not possible for VOIP and video confer-
encing as it would introduce lag in the communication.

6.2. Protocol considerations

The challenge of ensuring reliable multicast transmission
in arbitrary networks is an open problem with no solution
within sight. To create a usable application this problem
needs to be addressed at least for the scenario where the
application is deployed.

The solution in the prototype is simply to overshoot, thus
sending additional packets for each generation in order to
compensate for packet losses. Such an approach is for ex-
ample used in Multimedia Broadcast and Multicast Services
(MBMS) system where the overshooting is tuned based on
infrequent feedback from nodes in the network, such that
a predefined fraction of the sinks can decode. Because the
overshooting is fixed at some level the sinks that experience
a packet loss below this level will be able to decode the data,
while the remaining sinks will not. This approach is sim-
ple and works well if the sinks have relatively uniform and
static channel conditions. If the feedback channel is weak
or non-existing this may be the only available solution.

Another approach is to let the sinks request more data
if they need it. The source sends data from a generation,
alternatively it also send some overhead, and then proceeds
to the next generation. If any of the sinks were not able
to decode the generation they signal that they needs addi-
tional information which the source sends. This approach
adapts better to changing channel conditions and as such
can utilise the channel better, however, the feedback from
the sinks introduces the exposure problem [16] and the cry-
ing baby problem [17]. Thus this approach works best if the
sinks have relatively uniform channel conditions, and if the
number of sinks is moderate.

As the links to sinks are independent they will hold differ-
ent information when the source has transmitted data. Thus
an interesting approach is to let the sinks cooperate and
thus exploit the connection diversity. Instead of a sink re-
questing additionally data specifically from the source, any
node that received the request could respond, thus more than
one node could potentially attempt to answer the request,
which would introduce the implosion problem [16]. One of
the main drawbacks of this approach is the high complexity
it introduces, one technique to remedy this could be the NC.
Additionally if done correctly it could potentially allow for
transmission in partially connected networks.

Thus in addition to the overall system operation there is
several problems reliable transmission in a broadcast net-
work that must be addressed, namely the implosion, ex-
posure, and crying baby problem. Furthermore, a range of
protocol functionality is necessary or beneficial, such as
service discovery, cluster forming, multi-hop routing, con-
nection loss and reconnection, TCP friendliness, and secu-
rity, especially when partial connected mesh networks and
cooperation is considered.

7. CONCLUSION

In this paper we have introduced a demo application for
mobile phones, PictureViewer, that via network coding en-
ables a user to share content with several other users. The
application itself is simple but it demonstrates that network
coding does not necessarily result in high complexity or
overwhelming energy consumption. The implemented al-
gorithms are designed to allow for high coding throughput,
therefore a binary Galois Field and a systematic random
code was used.

The achieved encoding, recoding and decoding through-
put are relatively high when compared with the throughput
of the WLAN. As the generation increases the computa-
tional complexity increases, as a result the coding through-
put decreases and the energy consumption increases. Not
surprisingly the systematic approach is considerably faster,
especially when the PEP is low.

When the source is encoding and the sinks are decod-
ing the rate at which the source transmits is significantly
reduced when the generation size is increased. The energy
consumption depends mostly on the PEP, but is also influ-
enced by the generation size. In the test setup a generation
size of 64 appears to achieve a good trade-off between cod-
ing throughput and linear dependence, if we observe the en-
ergy consumption. On platforms with higher computational

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

A NETWORK CODING PROTOTYPE 749

capabilities and/or lower network throughput it is likely that
a higher generation size would be a good choice.

The use of recoding was beneficial when the observed
PEP was increased. For low values of PEP a large ratio of
sent packets where linear dependent. However, as the PEP
increased this ratio changed. This indicates that protocols
using recoding in this type of networks, should be aware of
the channel conditions using recoding only when detecting
a certain level of PEP. The use of recoding at the relays was
however in all cases beneficial for offloading the source
when compared to the non-recoding case.

ACKNOWLEDGEMENTS

This work was financed by the CONE-FTP project grant No. 09-
066549, by the Danish Ministry of Science, Technology and In-
novation. The authors would like to thank Nokia for providing
technical support as well as mobile phones. Special thanks to Mika
Kuulusa, Gerard Bosch, Harri Pennanen and Nina Tammelin from
Nokia.

REFERENCES

1. Ahlswede R, Cai N, Li SYR, Yeung RW. Network information
flow. IEEE Transactions on Information Theory 2000; 46(4):1204–
1216.

2. Ho T, Koetter R, Medard M, Karger D, ros M. The benefits of coding
over routing in a randomized setting. Proceedings of the IEEE Inter-
national Symposium on Information Theory, ISIT ’03, 2003. URLcite-
seer.ist.psu.edu/ho03benefits.html.

3. Médard M, Koetter R. Beyond routing: an algebraic approach to net-
work coding. INFOCOM, 2002.

4. Katti S, Rahul H, Hu W, Katabi D, Medard M, Crowcroft J. Xors in the
air: practical wireless network coding. Proceedings of the 2006 Con-
ference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM ’06), ACM Press, 2006;
243–254.

5. Park JS, Gerla M, Lun DS, Yi Y, Medard M. Codecast: a network-
coding-based ad hoc multicast protocol. Wireless Communications,
IEEE [see also IEEE Personal Communications] 2006; 13(5):76–81,
doi:10.1109/WC-M.2006.250362.

6. Jacobsen R, Jakobsen K, Ingtoft P, Madsen T, Fitzek F. Practical eval-
uation of partial network coding in wireless sensor networks. 4th In-
ternational Mobile Multimedia Communications Conference (Mobi-
Media 2008), ICTS/ACM: Oulu, Finland, 2008.

7. Heide J, Pedersen MV, Fitzek FHP, Larsen T. Cautious view on net-
work coding - from theory to practice. Journal of Communications
and Networks (JCN) 2008; 10(4):403-411.

8. Fragouli C, Boudec J, Widmer J. Network coding: an instant primer.
SIGCOMM Computer Communication Review 2006; 36(1):63–68.

9. Xiao M, Aulin T, Médard M. Systematic binary deterministic rateless
codes. Proceedings IEEE International Symposium on Information
Theory, 2008.

10. Heide J, Pedersen MV, Fitzek FH, Larsen T. Network coding for mo-
bile devices - systematic binary random rateless codes. The IEEE
International Conference on Communications (ICC), Dresden, Ger-
many, 2009.

11. Pedersen M, Perrucci G, Fitzek F. Energy and link measurements for
mobile phones using IEEE802.11b/g. The 4th International Workshop
on Wireless Network Measurements (WiNMEE 2008) - in Conjunction
with WiOpt 2008, Berlin, Germany, 2008.

12. Pedersen MV, Fitzek FH, Larsen T. Implementation and performance
evaluation of network coding for cooperative mobile devices. IEEE
Cognitive and Cooperative Wireless Networks Workshop, IEEE, 2008.

13. Shojania H, Li B. Random network coding on the iphone: fact
or fiction? NOSSDAV ’09: Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digi-
tal Audio and Video, ACM: New York, NY, USA, 2009; 37–42,
doi:http://doi.acm.org/10.1145/1542245.1542255.

14. Shojania H, Li B. Parallelized progressive network coding with hard-
ware acceleration. Quality of Service, 2007 Fifteenth IEEE Interna-
tional Workshop on, 2007; 47–55, doi:10.1109/IWQOS.2007.376547.

15. Vingelmann P, Zanaty P, Fitzek FH, Charaf H. Implementation of
random linear network coding on opengl-enabled graphics cards. Eu-
ropean Wireless 2009, Aalborg, Denmark, 2009.

16. Radoslavov P, Papadopoulos C, Govindan R, Estrin D. A compari-
son of application-level and router-assisted hierarchical schemes for
reliable multicast. Networking, IEEE/ACM Transactions on 2004;
12(3):469–482, doi:10.1109/TNET.2004.828950.

17. Holbrook HW, Singhal SK, Cheriton DR. Log-based receiver-reliable
multicast for distributed interactive simulation. SIGCOMM Computer
Communication Review 1995; 25(4):328–341, doi:http://doi.acm.
org/10.1145/217391.217468.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
DOI: 10.1002/ett

